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Resumé de la thèse:Dans 
ette thèse, nous présentons une étude théorique et expérimentale des �u
tuations dans dessystèmes dissipatifs for
és hors de léquilibre. Dans une première partie nous étudions les �u
tuationsde la puissan
e inje
tée né
essaire à maintenir le système dans un régime stationnaire, dans le 
asd'un forçage aléatoire gaussien. Nous montrons que la fon
tion de distribution de probabilité (PDF)de la puissan
e inje
tée 
omporte des ailes exponentielles et une singularité en zéro. Ces propriétéssont dé
rites à laide dun 
al
ul théorique simple. Nous montrons aussi que 
e type de PDF peut êtreobservée dans di�érents systèmes dissipatifs. Nous étudions également la relation entre les �u
tua-tions de la puissan
e inje
tée moyennée sur un intervalle de temps et l'énergie interne (Théorème deFlu
tuation). Dans une deuxième partie, nous présentons deux études expérimentales des �u
tua-tions de l'amplitude lo
ale des vagues à la surfa
e d'un liquide. La première étude est 
onsa
rée aux�u
tuations des ondes de surfa
e résultant de lampli�
ation paramétrique en présen
e d'un é
oule-ment tourbillonnaire. Nous montrons que les �u
tuations de l'amplitude et le seuil d'instabilitéparamétrique augmentent ave
 l'intensité de l'é
oulement tourbillonnaire. La deuxième étude est
onsa
rée à la turbulen
e d'ondes 
apillaires à la surfa
e d'un liquide en apesanteur ou à linterfa
eentre deux liquides non mis
ibles de même densité. Nous montrons que la densité de puissan
e spe
-trale (PSD) de l'amplitude lo
ale des vagues suit une loi de puissan
e en fon
tion de la fréquen
e etnous trouvons un bon a

ord entre l'exposant mesuré et sa prédi
tion théorique.Mots 
lés: GRANDEURS GLOBALES, FONCTION DE GRANDES DEVIATIONS,THEOREME DE FLUCTUATION, AMPLIFICATION PARAMETRIQUE, TURBU-LENCE DE DEFAUTS, TURBULENCE D'ONDES.Abstra
t:In this thesis, we present a theoreti
al and experimental study of �u
tuations in dissipative sys-tems for
ed out of equilibrium. In the �rst part, we study the �u
tuations of the inje
ted powerne
essary to maintain a system in a stationary state in the 
ase of a random gaussian for
ing. Weshow that the probability distribution fun
tion (PDF) of the inje
ted power presents exponential tailsand a singularity at zero. These properties are des
ribed by means of a simple theori
al 
al
ulation.We also show that this type of PDF 
an be observed in di�erent dissipative systems. Then, we studythe relation between the �u
tuations of the inje
ted power averaged over a given time lag and the in-ternal energy of the system (Flu
tuation Theorem). In the se
ond part, we present two experimentalstudies of the lo
al amplitude �u
tuations of surfa
e waves at a �uid-�uid interfa
e. The �rst study isdevoted to the �u
tuations of parametri
ally ampli�ed surfa
e waves in the presen
e of a vortex �ow.We show that the amplitude �u
tuations and the parametri
 instability threshold in
rease with thevortex �ow intensity. The se
ond study is devoted to 
apillary wave turbulen
e developing in a mi-
rogravity environment or at the interfa
e between two inmis
ible �uids of equal densities. We showthat the power spe
tral density (PSD) of the lo
al wave amplitude follows a power-law as a fun
tion offrequen
y and we �nd good agreement between the measured exponent and its theoreti
al predi
tion.Key words: GLOBAL OBSERVABLES, LARGE DEVIATION FUNCTION, FLUC-TUATION THEOREM, PARAMETRIC AMPLIFICATION, DEFECT-MEDIATEDTURBULENCE, WAVE TURBULENCE.Thèse préparée au Laboratoire de Physique Statistique, UMR 8550 Département de Physique del'E
ole Normale Supérieure de Paris, 24 rue Lhomond 75005, Paris, Fran
e.4



A
knowledgements
During my period as a PhD student I had lots of help and en
ouragement, more than I thought Iwould get with the help of my run-of-the-mill fren
h from more people that I thought I would meet.In these lines I'll try to a
knowledge the aid of these people, whi
h are all of great importan
e in thedevelopement of this manus
ript.I have to start by thanking the former dire
tor of the Laboratoire de Physique Statistique del'E
ole Normale Supérieure de Paris (LPS-ENS), Ja
ques Meunier, and the present dire
tor,Eri
 Perez, for re
eiving me and allowing me to take part in this a
tive resear
h enviroment.I don't know if any of the former students under the dire
tion of Stéphan Fauve 
an reallydetermine how mu
h they owe to him or how mu
h they have learnt from his knwoledge, expertiseand intuition in several domains of physi
s (I am tempted to say "in every domain", by most likely,he would 
ra
k a joke saying "you exagerate... again"). It is out of the question to say that thisPhD work 
ould not be done without his advi
e, not only from the experimental and theoreti
alpoint of view, but from the personal one also. I am mu
h indebted to him for all his support, timeand interest. Even from the beginning, when he had no time to spare (that is a new one...), hefound a way to 
ommen
e my PhD resear
h subje
t when he introdu
ed me to Eri
 Fal
on (noa

ent on the "o"), who be
ame the se
ond advisor of this thesis. There is no doubt that his humor,professionalism and dedi
ation have advan
ed this work and enri
hed it mu
h farther and furtherthan our initial expe
tations. I learnt a lot from him, and I hope to keep doing so.I thank M. Phillipe Petitjeans and M. Olivier Cadot, who have kindly a

epted toread, 
orre
t and report this manus
ript, and M. Yves Couder, M. Angel Alastuey and M.Christophe Josserand, the members of the jury, for their interest in this PhD work.I have great pleasure to a
knowledge the 
onstant support and humor of la pié
e D24 and allthe people who 
ame through those doors and that I had the 
han
e to meet. I have to start bythanking the omnipresent Mi
haël Berhanu, from whom I've learnt quite a lot about magneto-hydrodynami
s, ele
tromagnetism and fren
h 
ooking. He always had the time to spare and 
orre
tadvise when I needed. I owe him also for his ever full 
ookie drawer, from whi
h I ines
rupulouslytook quite a few 
ookies, when my experiments run along the night. I sin
erely hope we will meetagain soon.I am grateful for the 
onstant interest and time that Fran
ois Pétrelis gave to me, even whenI tried, in my poor, almost laughable fren
h, to explain a problem to him. He taugh me with thebest of moods a lot of new tri
ks on how to devi
e experimental set-ups, approa
h a new problemfrom a simple point of view (and how not to drink mojitos). Almost every single day, I 
ould 
ounton him to dis
uss physi
s or other non related subje
ts, making the labwork an enjoyable time.Ni
olas Mordant always had the time to show me some new stu� on physi
s. And did it withthe best of the attitudes. Even when he 
ould not a�ord the time. I am mu
h grateful for that. Ihope he 
ontinues to do so with Basile Gallet, who arrived last year, to whom I wish the best oflu
ks in his forth
omming PhD period.I have to thank the help of Sébastien Aumaître, with whom I've dis
ussed the subje
t of the�u
tuations of inje
ted power in out-of-equilibrium systems. I pro�ted a lot from his knowledge onthe subje
t and his simpli
ity to explain very 
omplex phenomena.I am mu
h indebted to Jose da Silva Quintas, Claude Laro
he and Artyom Petrosianfor their te
hni
al support in devi
ing the experimental set-ups of this thesis. Without their help, it5




ould not be done. Nor it 
ould be done without the help of Marie Gefflot, Annie Ribaudeauand Nora Sadaoui, the se
retaries of the LPS-ENS, on the multiple administrative tasks.Agradez
o al 
ontingente 
hileno que sigue en la larga y angosta franja de tierra y que ha seguidodesde lejos los avan
es de este trabajo por su interés y buenos 
onsejos: Mar
el Cler
, EnriqueTirapegui, Ni
olás Muji
a, Rodrigo Soto.Ahora, tengo el pla
er de agrade
er al 
ontigente 
hileno que sigue en la Fran
ia, por el buenhumor, amistad y alegría que me regalaron durante mi periplo europeo, y que en verdad, no penséen
ontrar. Mu
has gra
ias, a Giorgio y Miguel, los primeros 
olo
s en la llegada a Paris (y quetuvieron que soportarme por largos dos años), a Gustavo "la Máquina" Düring, el presidente eméritode la Asefe, a los Tamarillos, a los BravOviedo, a Dani y Gaby, a Fran
is
a, a Sergio Ri
a in
luso, aLu
hito, a Cristobal (Ratita) y MariLu, en �n, a la 
omunidad 
hilena que me alegro los días tristes.Al �nal, tengo que darle las gra
ias a mi familia, que me aguanta y me sostiene, y que sin ellosesto en verdad sería un trabajo sin gra
ia. Todas las gra
ias de mundo a mis hermanos Cristián yFelipe, y a mis papás Moisés y Gladys por mantenerme tranquilo. Y a Mar
ela, mi negra, por lograrmantenerme 
ontento.

6



A mis papás, Moisés y Gladyslos dos motores de este trabajo.

7



Part IIntrodu
tion

8



Introdu
tionThe theoreti
al and experimental studies developed in this thesis are fo
used on the statisti
al prop-erties of observables and their �u
tuations in dissipative systems when they are for
ed into a statisti-
ally stationary state far from equilibrium. In order to say that a system is "out-of-equilibrium" weneed to de�ne �rst what "equilibrium" means. A system with a large number of degrees of freedomis said to be in equilibrium (also 
alled thermodynami
 equilibrium) when is either isolated and doesnot intera
t with its surroundings or its temperature T is �xed externally by a thermal bath, also
alled a thermostat. In the 
ase where the system has its temperature �xed externally, its energy E�u
tuates and the probability of �nding the system in a ma
ros
opi
 state of energy E is proportionalto exp[−E/kBT ], where kB is the Boltzmann 
onstant. In this "equilibrium" state, equipartition ofenergy o

urs in the 
lassi
al limit and ea
h one of the internal degrees of freedom has a mean energy
e = kBT

2
. For any observable O of the system, its higher order moments 
an be 
omputed using theweight of the ma
ros
opi
 state with energy E. Even more, when a small external for
ing is appliedto the system, su
h as a small ele
tri
 �eld on a 
ondu
ting liquid1, or a small pressure gradient ona 
oloidal suspension2, the response of the internal degrees of freedom to the perturbation 
an beestimated a

urately by just assuming that the internal �u
tuations of the system 
reated sponta-neously the small perturbation. This is the so 
alled Flu
tuation-Dissipation theorem. In that sense,just knowing the distribution fun
tion of a ma
ros
opi
 state, we 
an estimate its response to smallperturbations of its equilibrium.This workframe breaks down when dissipation is in
luded into the system. When this happens, nomi
ros
opi
 assumptions on the dynami
al evolution of the internal degrees of freedom 
an be made.The system loses energy in time through 
ertain pro
esses and an external operator must be inje
tingit 
ontinously. In this 
on�guration, �u
tuations still o

ur, that are driven by the balan
e betweeninje
ted and dissipated power. Therefore, the energy �u
tuations of the system are not externally
ontrolled and a des
ription that 
an use the Boltzmann weights as a distribution fun
tion of theenergy of the system is not possible. The observables, either global or lo
al, present �u
tuations that
annot be des
ribed by simply knowing the energy of the ma
ros
opi
 state, be
ause large energy�u
tuations 
an be present and be
ome quite 
ommon as the systems is 
ontinually maintained farfrom its equilibrium.In this regime, there are no general distribution fun
tions that 
an des
ribe in di�erent 
lasses ofsystems, the �u
tuations of the observables of interest. In any 
ase, we will not try to develop a studyfor any type of "out-of-equilibrium" system. We shall fo
us on the parti
ular 
ase of statisti
allystationary states, where temporal averages are well de�ned. We will use the temporal average 〈〉 andassume that the system under study presents a stationary out-of-equilibrium state, in some sense,ergodi
3. In that way, the spatial average over the system volume V of the temporally averaged1As �rst studied by Smolu
howski (M. von Smolu
howski, Bull. Int. A
ad. S
i. Cra
ovie, 184 (1903)).2An approa
h to this problem was �rst given by Einstein (A. Einstein, Annalen der Physik 17, 549-560 (1905)).3For ergodi
ity in statisti
al me
hanin
s, see, for instan
e the book by Ri
hard C. Tolman, The Prin
iples ofStatisti
al Me
hani
s, (New York, Dover, 2nd Edition, 1979)9



observable 〈O(t)〉,
1

V

∫

V

〈O(t)〉dV,is the same as the ensemble average of the observable O(Γ),
∫

Σ

Φ(Γ)O(Γ)dΓ,where Γ is the phase spa
e of the system, Σ is the volume of the phase spa
e and Φ(Γ) is the ergodi
invariant measure of the system, whi
h depends solely on the available phase spa
e volume and weassume it is known and 
an be 
al
ulated.This fa
t allows us to relate ensemble averages, whi
h are taken by averaging over the availablephase spa
e of the dissipative system using a suitable distribution fun
tion and temporal averages.Global observables are quantities, su
h as the energy of the system or its entropy 
reation, thatare averaged over the entire volume of the system. Even after being averaged on a large number ofe�e
tive degrees of freedom, they 
an present large �u
tuations with respe
t to their averaged values.These �u
tuations 
an be asymmetri
 in their distribution fun
tions, a fa
t related to the la
k ofmi
ros
opi
 reversibility (due to dissipation) and external 
ontrol of the internal energy �u
tuations.It is in this 
ontext that we present the �rst part of our study.On the other hand, lo
al �u
tuations in systems for
ed far from equilibrium, su
h as the lo
alvelo
ity �u
tuations in turbulent �ows or the lo
al 
on
entration of 
hemi
als in a 
haoti
 
hemi
alrea
tion, are known to display large �u
tuations, bursts and even intermitten
y. The distributionfun
tions and statisti
al properties of lo
al �u
tuations have been studied in depth in hydrodynami
turbulen
e4 and turbulent-like regimes in out-of-equilibrium systems. A great deal of attention hasbeen pla
ed on the study of these types of 
haoti
 or sto
hasti
 regimes in systems that 
an sustainwaves, su
h as bending waves of elasti
 sheets, Rayleigh waves on the surfa
es of elasti
 solids,ele
tromagneti
 waves in va
uum or in a nonlinear medium, sho
k waves in gases, Langmuir waves inplasmas, and so forth5. In hydrodynami
s, for instan
e, a �uid 
an sustain surfa
e waves or internalwaves, su
h as sound waves or inertial waves, whi
h propagate in the bulk of the �uid. These waveswill have di�erent properties mainly des
ribed by their dispersion relation whi
h depends on the typeof restitution for
e that sustains them. When they are strongly ex
ited or ampli�ed, nonlinearitiesbe
ome important in their dynami
al evolution.These nonlinear intera
tions 
hange the wave properties su
h as their energy transfer me
hanismor their dissipation s
ale. They 
an also produ
e �u
tuations in the amplitude or the phase of thewaves that 
an modify the spatio-temporal evolution of the wave system. This type of �u
tuationswill be the main interest of the se
ond part of our study.The manus
ript is divided into two di�erent parts. The First Part is devoted to the global �u
-tuations of observables in out-of-equilibrium systems. We present the energy balan
e equation thatrelates inje
ted and dissipated power and we use it to study simple systems where we 
an modelisethese two observables (see Chapter 1). We extra
t relations between the statisti
al properties ofthese observables (su
h as their 
orrelation time s
ales and standard deviations) when the system isset in a stationary out-of-equilibrium state. In Chapter 2, we study the inje
ted power �u
tuations Iin dissipative systems where the dissipated power is proportional to the internal energy E of the sys-tem and the for
ing driving the system is a random gaussian noise. The inje
ted power distribution4See for instan
e the work of A. S. Monin and A. M. Yaglom, Statisti
al Fluid Me
hani
s: Me
hani
s of Turbulen
e(Dover Publi
ations, 2nd Edition, 2007).5A long review on waves 
an be found in Whitham (G. B. Whitham, Linear and Nonlinear Waves (Wiley-Inters
ien
e, New York, 2nd Edition, 1999 ) 10



fun
tion displays several robust features, su
h as the appearan
e of exponential tails and a singular
usp 
lose to I ≃ 0. Then, we dis
uss several systems where the inje
ted power �u
tuations displaythis type of probability distribution fun
tion. In Chapter 3, we probe the validity of the Flu
tuationTheorem in su
h dissipative out-of-equilibrium systems.The Se
ond Part is devoted to the lo
al �u
tuations of waves in out-of-equilibrium systems.In Chapter 4 we present the general framework of wave �u
tuations and dis
uss some spe
i�
 sys-tems where turbulent-like states develope. In Chapter 5 we present an experimental study on the�u
tuations of parametri
ally ex
ited surfa
e waves. In two separate studies, statisti
al propertiesof the standing waves are studied when the wave pattern displays �u
tuations. Finally, Chapter 6is devoted to the experimental investigation of 
apillary wave turbulen
e. We present two separatestudies where the statisti
al properties of pure 
apillary dispersive waves are studied.Con
lusions and Perspe
tives are presented in the last part in whi
h we underline the main resultsof our work and propose further developements related to this study.
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Chapter 1Energy balan
e in out-of-equilbrium systemsWe re
all in this Chapter, through a simple but general balan
e equation, several results on theproperties of the energy �u
tuations in ou-of-equilibrium dissipative systems in steady states. Someinteresting relationships between inje
tion and dissipation of energy in these systems are also pre-sented in Se
tion 1.1. Then, we study the 
ase of 
onstant dissipation as the simplest type ofdissipation in Se
tion 1.2. As an approa
h to other 
omplex systems, we then study the 
ase oflinear damping in Se
tion 1.3.1.1 Des
ription of the problem1.1.1 Balan
e EquationThe main equation that 
on
erns the energy �ux to drive a system into an out-equilibrium state isthe following
dE(t)

dt
= Pinj(t) − Pdiss(t). (1.1)Here Pinj(t) stands for the inje
ted power to drive the system out-of-equilibrium, Pdiss(t) standsfor the dissipated power and E(t) is the energy of the system. The three observables are globalquantities, spatially averaged over the whole system. We will 
all R(t) = Pinj(t) − Pdiss(t), thefor
ing term of the system. Eq. (1.1) des
ribes the evolution of the rate of 
hange of the internalenergy as these two operators balan
e their e�e
ts.For several out-of-equilibirum systems, the energy �ux evolution 
an be written in the form ofEq.(1.1), for example:� In
ompresible hydrodynami
 turbulen
e [1℄. In hydrodynami
s, as the mean �ow of a �uidis in
reased, turbulen
e develops. A statisti
al approa
h to the study of the �ow properties(su
h as the energy �u
tuations or transport 
oe�
ients) is often used. The transition froma laminar or smooth situation to a �u
tuating or turbulent one is 
ontrolled by the Reynoldsnumber Re = V L/ν, where V and L are the typi
al velo
ity and length s
ales of the �ow, and

ν is the kinemati
 vis
osity of the �uid. For Re ≫ 1, large �u
tuations in the velo
ity �eldo

ur and turbulen
e is said to be developed. In this regime the energy balan
e equation ofEq.(1.1) has been studied [2℄. Taking the Navier-Stokes equation
ρ

[
∂v

∂t
+ v·∇v

]
= −∇p+ ρν∇2v + f ,13



where ρ is the density of the �uid,∇p its lo
al pressure gradient and f(r, t) is the external for
ingper unit of volume. Multiplying the above equation by the velo
ity �eld v(r, t) and integratingover the volume of the system V , the energy balan
e equation (Eq. (1.1)) is statis�ed with
E = ρ

∫

V

v2

2
dr, Pinj =

∫

V

f · vdr, Pdiss = ρν

∫

V

ω2dr,where ω ≡ ∇× v is the lo
al vorti
ity �eld. The velo
ity �eld v(r, t) is zero at the boundariesbut its vorti
ity is not. Here, Pdiss is always positive and Pinj 
an 
hange sign depending onthe sign of the integrated lo
al inje
ted power f · v. To eliminate the boundary terms relatedto the velo
ity, we have used the in
ompressibility 
ondition ∇ · v = 0 and to eliminate theboundary term related to the pressure we have assume that the boundaries do not move. Inthe 
ase where the for
ing is made by means of a moving boundary ∂V (su
h as impellers [2℄or wavemakers[3℄), the inje
tion term will read in that 
ase
Pinj =

∫

∂V

(p+
ρv2

2
)v · ndS +

∫

∂V

ρν(v × ω) · ndS.The �rst term will be nonzero when the velo
ity v is not ortogonal to the unitary ve
tor n,normal to the moving boundary of the impellers, as it is shown in Fig.(1.1) for instan
e, thatset the �uid in motion. The se
ond one, related to the vis
ous stresses will be zero when noshear is applied on the �uid by the moving boundary.� Granular gases [4℄. An ensemble of N inelasti
 parti
les 
on�ned in a volume V 
an be regardedas a granular gas when the parti
le density n = N/V is su�
iently low. In this low-density limit,events where 3 or more parti
les 
ollide simultaneously are very unlikely and binary 
ollisionsdominate the momentum transfer between parti
les. The 
ollision rule for the velo
ities of apair of inelasti
 parti
les after they intera
t v1
∗ and v2

∗ (their initial velo
ities being v1 and
v2) is

v1
∗ = v1 −

(1 + r)

2
n(v1 − v2) · n, v2

∗ = v2 +
(1 + r)

2
n(v1 − v2) · n,where n is the ve
tor joining the 
enter of both parti
les. We suposse here that they intera
t ashard inelasti
 spheres [5℄, as shown in Fig. (1.2). The restitution 
oe�
ient 0 < r < 1 relatesthe e�
en
y of the momentum transfer before and after the 
olision. Note that in the elasti

ase r = 1, we 
an 
hange v1 and v2 by v1

∗ and v2
∗ making the system reversible in time. Inthis 
ase no dissipation takes pla
e and as the system is 
ontinually for
ed the energy of thesystem grows. The 
onservative limit 
an be shown to be a singular one, and pre
autions mustbe taken into a

ount when taking the thermodynami
 limit (in this 
ase r → 1) [6℄.The energy loss is proportional to the 
ombined momenta of the parti
les that intera
t. The
oe�
ient of proportionality is given by (1− r2)/4 and the inje
tion of energy is usually madeby the 
olision of the parti
les with a moving boundary that "heats" the granular gas [4℄, asshown in Fig. (1.2). Eq.(1.1) is then satis�ed with

E =
1

2

N∑

i=1

mv2
i Pinj = 2νp

N∑

i=1

mVp · (Vp − vi), Pdiss =
(1 − r2)

4
νc

N∑

i6=j

mvi · vj,where νp and νc are the mean 
ollision frequen
y of a parti
le with the boundary and withanother parti
le respe
tively, and Vp the velo
ity of the moving boundary.14



z

y
x

B
o

B
z

B
x

B
y

2

1
f

(1 )

f

O

S

(2 )

Figure 1.1: Experimental set-up of the VKS experiment, where a large volume of liquid Na is setinto turbulent motion by means of rotating impellers at frequen
ies f1 and f2 to study the e�e
t ofturbulent �u
tuations on the dynamo a
tion (Figure taken from [2℄).� Turbulent thermal 
onve
tion [7℄. Let us 
onsider a �uid 
on�ned between two in�nite horizon-tal plates separated by a distan
e h. The temperature of the lower and upper plates are �xed at
Td and Tu respe
tively, with the temperature di�eren
e (Td − Tu) > 0. When the temperaturegradient (Td−Tu)/h is strong enough to over
ome the dissipative losses due to vis
ous fri
tion,the �uid strati�
ation is unstable to small velo
ity perturbation and it starts to moves. In theBoussinesq aproximation the motion of an in
ompresible �uid obeys

ρ

[
∂v

∂t
+ v·∇v

]
= −∇p+ ρν∇2v + ρgαδTez,and the lo
al temperature δT (r, t) follows the adve
tion-di�usion equation

ρCp

[
∂δT

∂t
+ v·∇δT

]
= λ∇2δT,where ρ, α, ν, Cp and λ are the �uid density, thermal expansion 
oe�
ient, kinemati
 vis
osity,heat 
apa
ity and thermal 
ondu
tivity respe
tively, and g is the a

eleration of gravity. Ea
h
oe�
ient, in this approximation is independent of the lo
al temperature. The buoyan
y for
eis modelized f(r, t) = ρgαδT (r, t)ez, where ez is a unit ve
tor along the verti
al (generally z)axis. Multiplying the equation of 
onservation of momentum by v(r, t) and integrating over15
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Figure 1.2: a) Granular gas with N inelasti
 parti
les 
on�ned in a volume V . The moving boundaryinje
ts energy 
onstantly to the system by 
ollisions. b) Collision rule for two inelasti
 parti
lesintera
ting as hard spheres.the volume, Eq.(1.1) is satis�ed with
E = ρ

∫

V

v2

2
dr, Pinj = ραg

∫

V

δTvzdr, Pdiss = ρν

∫

V

ω2dr.When the buoyan
y for
e is mu
h larger than vis
ous fri
tion, 
onve
tion develops in the systemin a random and �u
tuating way. This regime is 
alled turbulent 
onve
tion and develops whenthe Rayleigh number Ra = ρCpgαh
3(Td − Tu)/(νλ) ≫ 1. In this regime, large �u
tuations ofvelo
ity and temperature are observed, as it is shown in Fig.(1.3).� Ele
troni
 systems [9℄. In a simple ele
troni
 dipole 
omposed of a resistan
e R and a 
a-pa
itan
e C, an ele
tromotive for
e ε(t) must be applied to generate the mean motion of theele
trons of the 
ondu
tor, 
reating a 
urrent i whi
h �ows through the resistan
e, as shown inFig.(1.4). Ma
ros
opi
ally, the 
ontinuity equation for the measured tension U(t) over a 
losed
ir
uit, reads
ε(t) = U(t) +Ri(t),where the rate of 
hange of the 
harge Q(t) of the 
apa
itan
e is given by

dQ(t)

dt
= C

dU(t)

dt
≡ i(t).Multiplying the 
ontinuity equation by U , we 
an rewrite the expression as Eq. (1.1), with

E =
1

2
U2, Pinj = γεU, Pdiss = γU2,where γ = 1/RC is the inverse of the 
harging time of the RC dipole. We will take thissimple system as a 
anoni
al example of a dissipative system and explore further the statisti
alproperties of the �u
tuations of these global quantities in later 
hapters.16
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Figure 1.3: A shadowgraph showing the spatial distribution of thermal plumes in 3-D turbulent
onve
tion (Figure taken from [8℄)As shown above, we 
an often dis
riminate inje
tion and dissipation of energy per unit of time.However, it is important to noti
e that the 
hoi
e of what is de�ned as the inje
ted power anddissipated power is arbitrary. In ea
h system under study we will be very 
lear on the 
hoi
e of theseoperators.It is straightforward to show that, in order to maintain a dissipative system whose energy evolutionis des
ribed by Eq. (1.1) in a stationary state, a 
ertain amount of power Pinj has to be inje
ted intoit. Power is generally transfered from the for
ing devi
e (for instan
e, rotating dis
s in turbulentswirling �ows [2℄, a vibrating plate in a granular gas [6℄, a heating plate in turbulent 
onve
tion [10℄,a moving wavemaker in wave turbulen
e [3℄) into the system that will make use of the a

essibleinje
ted power to ex
ite its internal degrees of freedom and later dissipate it, if it 
an. Dissipationusually takes pla
e at s
ales mu
h smaller than the inje
tion s
ale [1℄ and time-s
ales mu
h shorterthan the 
orrelation time of the inje
ted power.The statisti
s of Pinj and Pdiss 
an display remarkable di�eren
es. This is mainly due to the fa
tthat dissipation is always de�ned positive Pdiss ≥ 0, while the inje
ted power 
an display negativeand positive events, depending on the type of driving for
e a
ting on the system.1.1.2 Stationary StatesIn a stationary non-equilibrium state, global quantities, su
h as the energy of a system E, �u
utate.We suppose, from now on, that these observables have statisti
ally well-de�ned averages. This means17
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Figure 1.4: Ele
troni
 RC dipole submitted to an ele
tromotive for
e ε(t).that for a time T larger than the internal 
orrelation time τc of its �u
tuations, the temporal average
〈E〉T (t) =

1

T

∫ t+T

t

E(t′)dt′,does not 
hange with respe
t to T in the limit T → ∞. In this limit, we will dis
ard the index T inthe time-averages and we will simply write 〈E〉, independent of time.Following the reasoning in Se
tion 1.1, a balan
e between the inje
ted and dissipated powermust be a
hieved in order to negle
t the mean rate of 
hange of E. Hen
e, several 
onstrains andrelationships between Pinj and Pdiss have to be satis�ed for a dissipative system to sustain a steadyout-of-equilibrium state. These 
onstraints are related to the statisti
al properties of these quantities,su
h as their averages 〈Pdiss〉,〈Pinj〉 or rms �u
tuations σPinj
, σPdiss

, where σX =
√
〈X2〉 − 〈X〉2 fora given variable X.In 
ertain 
ases their �u
tuations display values that are several times larger than their averagevalues. Their statisti
s also present large deviations, even when they are averaged over the entirevolume of the system or its boundaries [2℄. Therefore, in this type of systems, the usual tools ofequilibrium statisti
al me
hani
s do not apply, or 
an only be applied when the inje
tion of energyinto the system 
an be regarded through the s
ope of the Flu
tuation-Dissipation theorem [11℄.Averaging over time Eq. (1.1) leads to 〈Ė〉 = 〈Pinj − Pdiss〉 = 0 .We 
an see that, in order tomaintain the system in a statisti
ally stationary regime,

〈Pinj〉 = 〈Pdiss〉 ,where the bra
kets 〈〉 stand for time average and we suppose that the system is, in a statisti
al sense,ergodi
. From the de�nition above, 〈R〉 = 0, whi
h means that all the inje
ted power is somehowdissipated by the system. This point is 
ru
ial: physi
ally, the system itself 
hooses the way todissipate its ex
ess energy input. Even more, it 
hooses the way to relate the rms �u
tuations of
Pinj and Pdiss, and by doing so, it �xes the rms �u
tuations of the energy E, as we will show in thefollowing parragraph.1.1.3 Statisti
al properties of the energy �ux in frequen
y domainAs shown above, the mean values of both inje
ted and dissipated power have to be balan
ed in orderto maintain the system in a stationary out-of-equilibirum state. But what about the �u
tuations of18



su
h quantities? What relationships 
an be extra
ted for their �u
tuations? How do these relations
ontrol the energy �u
tuations? These questions 
an be partially answered by looking 
arefully intothe spe
tral properties of Pinj and Pdiss. For that matter we de�ne the Fourier transform of the�u
tuating variable X(t) as
X̂(ω) =

1

2π

∫ ∞

−∞

X(t)e−iωtdt,and X̂(ω)∗ = X̂(−ω), where X̂(ω)∗ stands for the 
omplex 
onjugate of X̂(ω). When taking theFourier transform of both inje
ted and dissipated powers, we have eliminated their mean values usingthat their averages 
an
el ea
h other in the steady state.This pro
edure enables us to relate the statisti
al properties in frequen
y domain to the onesin time. For that matter we de�ne the 
ross-
orrelation fun
tion of the statisti
ally stationary�u
tuating variables X(t) and Y (t) by
CXY (t, t′) ≡ 〈X(t)Y (t′)〉 − 〈X〉 〈Y 〉 .It follows that in a statisti
ally stationary state� CXY (t, 0) = CY X(0,−t) (time translation)� CXY (t, t′) = CXY (|t− t′| , 0) ≡ CXY (|t− t′|) (stationarity)� |CXX(0)| ≥ |CXX(t)| (maximum 
orrelation at the initial time)� limt→∞ CXY (t) → 0 (events with large time lag are statisti
ally independent)This fun
tion indi
ates the degree of statisti
al dependen
e of a variable (or variables) at di�erentperiods of time. It 
an be related dire
tly to the the spe
tral properties of their Fourier transformsby means of the Wiener-Khin
hin theorem [11℄ whi
h states

SX(ω) = lim
T→∞

1

2

∫ T

−T

CXX(t)e−iωtdt. (1.2)whi
h simply means that the power spe
tral density SX(ω) of the variable X(t) de�ned by
〈X̂(ω)X̂(ω′)∗〉 = SX(ω)δ(ω − ω′),is the Fourier transform of its auto
orrelation fun
tion CXX(t).In di�erent dissipative systems, it is possible to estimate the rms �u
tuations and typi
al times
ales of the large s
ale (low-frequen
y) for
ing of the system, related dire
tly to the energy inje
tionme
hanism, but no dire
t information 
an be given on the dissipation me
hanism and its intrinsi
dynami
s. Furthermore, 
ross-
orrelation fun
tions of both global quantities 
annot be dedu
edfrom �rst prin
iples. This means that global relationships between Pinj and Pdiss are of paramountimportan
e to probe the internal energy transfer me
hanisms and intermediate dynami
s betweeninje
tion and dissipation.We apply the former de�nition of power spe
tral density and 
orrelation fun
tions to the energybalan
e equation. Taking the Fourier transforms of Eq. (1.1), the energy balan
e in frequen
ydomain reads

−iωÊ(ω) = P̂inj(ω) − P̂diss(ω). (1.3)19



We 
an dedu
e from Eq.(1.3) an interesting relationship between the typi
al time s
ales of inje
-tion and dissipation and their rms values. Multiplying Eq.(1.3) by P̂inj(ω)∗ + P̂diss(ω)∗, the equationreads
−iωÊ(ω)(P̂inj(ω)∗+P̂diss(ω)∗) = |P̂inj(ω)|2−|P̂diss(ω)|2+P̂inj(ω)∗P̂diss(ω)−P̂inj(ω)P̂diss(ω)∗. (1.4)This lengthy expression 
an be simpli�ed by taking ω = 0. Due to the fa
t that both variablesare real, we have P̂inj(0) = P̂inj(0)∗ and P̂diss(0) = P̂diss(0)∗, whi
h eliminate the 
rossed produ
ts.This leads to the zero-frequen
y equality of the power spe
tral densities of both variables |P̂inj(0)|2 =

|P̂diss(0)|2, or, written in time-domain using the Wiener-Khin
hin theorem,
∫ ∞

0

(〈Pinj(t)Pinj(0)〉 − 〈Pinj〉2)dt =

∫ ∞

0

(〈Pdiss(t)Pdiss(0)〉 − 〈Pdiss〉2)dt. (1.5)In order to extra
t dire
t information on the rms �u
tuations, we 
an assume that the auto
or-relation fun
tions of the inje
ted and dissipated power have exponentially de
reasing behavior as
CPingPinj

(t) ∼ σ2
Pinj

e−|t|/τinj and CPdissPdiss
(t) ∼ σ2

Pdiss
e−|t|/τdiss , by doing so, we obtain the relationship

σ2
Pinj

τPinj
= σ2

Pdiss
τPdiss

, (1.6)where σX and τX are the rms and 
orrelation time of the variable X. This relates both 
orrelationtimes to the standard deviations of the inje
tion and dissipation. In that sense, their rms values are�xed by the 
onstrain of Eq.(1.6).All the above relationships 
an be derived by integrating dire
tly Eq. (1.1) in the long time limit.It is instru
tive to dedu
e the later relation between the zero-frequen
y spe
trum of Pinj and Pdissin the stationary regime as follows [12℄
σ2

Pinj
τinj =

∫ ∞

0

[
〈Pinj(t)Pinj(0)〉 − 〈Pdiss〉2

]
dt

=

∫ ∞

0

[〈
(Ė(t) + Pdiss(t))(Ė(0) + Pdiss(0))

〉
− 〈Pdiss〉2

]
dt

=
〈
(E(∞) − E(0))(Ė(0) + Pdiss(0))

〉
+

∫ ∞

0

[〈
Pdiss(t)(Ė(0) + Pdiss(0)

〉
− 〈Pdiss〉2

]
dt

= 〈E〉 〈Pdiss〉 − 〈E(0)Pdiss(0)〉 +

∫ ∞

0

[〈
Pdiss(0)(Ė(−t) + Pdiss(t)

〉
− 〈Pdiss〉2

]
dt

=

∫ ∞

0

[
〈Pdiss(t)Pdiss(0)〉 − 〈Pdiss〉2

]
dt

= σ2
Pdiss

τdiss (1.7)where we have only used the stationarity of the system.We have shown that the two quantities, Pinj and Pdiss, and their �u
tuations drive the dynami
sand 
ontrol the statisti
al properties of the internal energy E of an out-of-equilibrium system in asteady state (〈Ė〉 = 0). In a statisti
ally steady state, they are related by equations su
h as (1.6).Although experimentally, we 
annot impose the form of dissipation the system will use to eliminatethe ex
ess of energy given by the inje
ted power, it is an interesting task to modelised Pdiss in simplesystems, satisfying the previous results. 20



1.2 Constant DissipationThe simplest 
hoi
e of dissipation in an out-of-equilibrium system is the 
ase where the dissipatedpower Pdiss is 
onstant and no dynami
al 
onsiderations are taken into a

ount for its �u
tuations.This fun
tional form is not 
ompletly unphysi
al: in granular gases it has been shown that in theelasti
 limit, the dissipated power 
an be taken as a 
onstant [6℄. Naturally, for a given type ofinje
tion operator Pinj (whi
h we will 
all I from now on), the dissipated power Pdiss 
annot remain
onstant for an in�nite ammount of time and it must eventually develop dynami
al �u
tuationsin order to satisfy Eqs.(1.1) and (1.6). Anyway it is an interesting question to study this type ofdissipation form.For the 
ase of 
onstant dissipation, the energy balan
e reads
dE

dt
= I(t) − 〈I〉 ≡ δI(t),where the energy �u
tuations are related only to the auto
orrelation fun
tion of the inje
tion oper-ator, bea
use R(t) = δI(t). Although it is the simplest di�erential equation, in terms of sto
hasti
pro
esses, it has several apli
ations des
ribing di�erent physi
al pro
esses su
h as brownian motion[13℄ proposed by Langevin or e�e
tive di�usion in hydrodynami
 turbulen
e [14℄ proposed by Taylor.Eq. (1.1) 
an be formally integrated, to 
ompute E(t) =

∫ t

0
(I(u)−Pdiss(u))du =

∫ t

0
R(u)du. We 
an�x the zero energy level at will and by doing so, the mean value of the energy 〈E〉, whi
h will be�xed at zero for simpli
ity.1.2.1 Energy Flu
tuationsThe energy �u
tuations 
an be 
al
ulated dire
tly from Eq.(1.1) integrating it twi
e, giving theexpression

〈
E2

〉
= lim

t→∞
2

∫ t

0

dt′
∫ t′

0

〈R(t′)R(s)〉 ds, (1.8)whi
h relates them dire
tly to the time-integrated auto
orrelation fun
tion of the for
ing term R(t).By the same arguments, we 
an 
al
ulate the n-th moment of the energy 〈En〉, but we will fo
usmainly on the rms �u
tuations.The �u
tuations of global observables in a stationary state must remain bounded. To main-tain the energy �u
tuations bounded, we must impose 
ertain 
onditions on the time-integratedauto
orrelation of R(t). As before, assuming an exponentially de
reasing time 
orrelation fun
tion
CRR(t′) ∼ σ2

R exp (− |t′|/ τR), Eq.(1.8) reads at a �xed time t,
〈
E2

〉
(t) = σ2

Rτ
2
R(t/τR − 1 + exp (−t/τR)). (1.9)For short times 
ompared to the 
orrelation time of the for
ing t ≪ τR, 〈E2〉, whi
h is relateddire
tly to the energy �u
tuations, grows as σ2

Rt
2 (balisti
 limit) and for long times t≫ τR they growas σ2

RτRt (di�usive limit). For both of these limiting behaviors, the rms value of E diverges in theasymptoti
 limit t→ ∞.One way to eliminate the divergen
e of the moments of E is to impose ∫ ∞

−∞
〈R(0)R(s)〉 ds =

σ2
RτR = 0, meaning that the zero frequen
y part of the power spe
tral density |R̂(ω = 0)|2 mustbe zero. This 
an be understood from Eq. (1.8), arguing that if the integral of the auto
orrelationfun
tion de
reases fast enough we 
an separate the two integrals: one related to the zero-frequen
y21
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Figure 1.5: a) Fun
tional form of the normalised power spe
tral density (|R̂(ω)|2/σ2
RτR as a fun
tionof the normalised frequen
y ω/τR. b) Inset: Log-Log plot. The dashed line shows the asymptoti
behavior |R̂(ω)|2/σ2

RτR → ω2 
lose to ω = 0.part of the power spe
tral density and another that grows linearly in time. This is just the di�usivelimit for long times, as it was already shown above. It is a strong assumption, be
ause using the fa
tthat the auto
orrelation fun
tion is exponentially de
reasing we 
an see from Eq. (1.9) that the rmsvalue will not only be bounded, but a
tually zero. This means that the auto
orrelation fun
tion of
R(t) does not behave as simply as a de
aying exponential in any way. Using Eq. (1.1) and takingthe Fourier transform |Ê(ω)|2 = |R̂(ω)|2/ω2, and integrating it in ω-spa
e, we get

〈
E2

〉
=

∫ ∞

−∞

|R̂(ω)|2
ω2

dω. (1.10)With this expression we 
an study the rms �u
tuations of E by means of the spe
tral properties of
R̂(ω). If we assume that the for
ing rms �u
tuations 〈R2〉 are bounded and knowing that |R̂(0)|2 = 0,we 
an assume that

lim
ω→0

|R̂(ω)|2/σ2
RτR → ωα

lim
ω→∞

|R̂(ω)|2/σ2
RτR → ω−(1+β) (1.11)with α, β > 0. In
luding this in Eq. (1.10) and impossing bounded rms �u
tuations of the energy, wesee that α ≥ 2 to prevent divergen
es at zero frequen
y (that is, the di�usive limit). Indeed, due tothe fa
t that R is real and assuming that it is bounded when t→ ∞, we 
an expand in series its powerspe
trum 
lose to ω = 0. From |R̂(0)|2 = 0, we 
an assume that |R̂(ω)|2 ∼ σ2

RτR((ω2/τ 2
R)+O((ω/τR)4)when ω → 0. The typi
al shape of |R̂(ω)|2 following this limit in frequen
y is shown in Fig. (1.5).Although all of these 
al
ulations are made for the 
ase of 
onstant dissipative power, the generalrelationships drawn for R(t) and E(t) 
an be applied for any type energy �ux that satis�es Eq. (1.1),for instan
e when the dissipative power is proportional to the energy of the system, as we will studyin the next parragraph. 22



1.3 Linear dampingLet us take Eq.(1.1) and assume that the dissipated power Pdiss is proportional to the energy ofthe system E ∝ Pdiss, with a 
oe�
ient of proportionality with units of frequen
y 
alled dampingrate, mu
h like the 
ase of a damped brownian parti
le [13℄ or water surfa
e waves in in
ompressiblevis
ous �uids [15℄. The balan
e equation (1.1) then reads
dE(t)

dt
= I(t) − γ′E(t) (1.12)where the damping rate γ′ does not depend on the energy of the system and will be regardedas a 
onstant in the following 
al
ulations. It is straightforward to show that in the steady state

〈E〉 = 〈I〉 /γ′ and the initial 
onditions are lost after a 
hara
teristi
 time of order γ′−1. Furthermore,due to the linearity of 1.12, we 
an integrate it dire
tly to solve the linear di�erential equation. Thatmeans that for a given inje
tion power pro
ess, all the 
umulants and moments of the energy are justthe integrated 
umulants and moments of I with a 
ertain weight fun
tion. This weight fun
tion is inthis 
ase a de
reasing exponential exp[−γ′t]where the damping rate takes the role of a 
hara
teristi

orrelation time of the dissipative pro
ess.1.3.1 Energy Flu
tuationsFrom the linear system, we 
ompute the solution simply as
E(t) =

∫ t

0

I(t′)eγ′(t−t′)dt′where the initial 
ondition of the energy are negle
ted in the stationary regime when a time of theorder of 1/γ′ has passed. For the se
ond moment 〈E2〉, the expression reads
〈
E2

〉
= lim

t→∞

∫ t

0

∫ t

0

〈I(u)I(v)〉 e−γ′(t−u))−γ′(t−v)dudv, (1.13)In the 
ase where the auto
orrelation fun
tion of I behaves exponentially, and assuming station-arity of the system, we have CII(t) = σ2
I exp (−t/τI), where σI = σPinj

and τI = τPinj
. Computingnow 〈E2〉 for the stationary regime, we get

〈
E2

〉
=
σ2

I τI
γ′

+
〈I〉2
γ′2

=
σ2

I τI
γ′

+ 〈E〉2 (1.14)From the later equation, we 
an 
ompute the standard deviation of E, whi
h is simply σE =
σI

√
τI/γ′. For higher moments, i.e., 〈En〉 , n > 2, we have to know in advan
e how the n-point
orrelation fun
tion of I behaves. For instan
e, the third order moment 〈E3〉 
an be written as

lim
t→∞

∫ t

0

∫ t

0

∫ t

0

〈I(u)I(v)I(w)〉 e−γ′(3t−u−v−w)dudvdwwhere we need expli
itly the form of the 3-point 
orrelation fun
tion of I.In the frequen
y domain, we 
an also extra
t some interesting 
on
lusions relating the powerspe
tral densities of both the energy and the inje
ted power. Taking the Fourier transform fromEq.(1.12), we have
−iωÊ(ω) + γ′Ê(ω) = Î(ω).23



From the absolute value of the Fourier transform of the energy |Ê(ω)|2, we �nd
|Ê(ω)|2 =

|Î(ω)|2
ω2 + γ′2

, (1.15)whi
h means that the auto
orrelation fun
tion of E is given by the Fourier transform of Eq. (1.15),and, using the Wiener-Khin
hin theorem, we also have
∫ ∞

−∞

(〈E(t)E(0)〉 − 〈E〉2)dt =
1

γ′2

∫ ∞

−∞

(〈I(t)I(0)〉 − 〈I〉2)dt,whi
h is just Eq. (1.6), written for a dissipated power proportional to the energy. In fa
t, supposingexponentially de
reasing auto
orrelation fun
tions for both observables, this gives
σ2

E = σ2
IτI/γ

′.Thus, in the 
ase where Pdiss is proportional to E, the main parameters 
ontroling the energy�u
tuations are the zero-frequen
y 
omponent of the power spe
tral density of I and the damping rate
γ′, whi
h a
ts as an impedan
e to the energy �ux input. This type of dissipative power dependen
eon the energy will be further studied in the next 
hapter.1.3.2 Inje
tion and Dissipation CorrelationsTime and spa
e 
orrelations are indeed present in out-of-equilibrium systems and have importante�e
ts on the dynami
s of the internal degrees of freedom. Using (1.12) we 
an also study the 
ross-
orrelation fun
tions of inje
tion and dissipation. The non-zero 
orrelation of both observables is
lear from the fa
t that E and its moments depend linearly on I, mainly be
ause

CIPdiss
(t) = 〈I(0)Pdiss(t)〉 − 〈I〉2 =

∫ t

0

(〈I(0)I(t′)〉 − 〈I〉2)e−γ′(t−t′)dt′.In the 
ase of exponentially de
reasing auto
orrelation fun
tions, this is just the integration of twode
reasing exponentials with 
ara
teristi
 times τI and τdiss = γ−1.Straightforward 
al
ulations lead to the fun
tion CIPdiss
(t) = σ2

If(t), with
f(t) =

γ′τI
γ′τI − 1

(exp[−t/τI ] − exp[−γ′t]),whi
h is always possitive, as shown in Fig.(1.6). It has a maximum that de
reases when γ′τI grows.This means that I and Pdiss lose their statisti
al dependen
e when their time s
ales begin to separate.We 
an also show that the 
orrelation time t∗/τI for the pair of variables, i.e. where CIPdiss
ismaximum, grows logarithmi
ally in the normalised time variable t/τI as a fun
tion of γ′τI , as shownin Fig.(1.7).1.4 Con
lusionsIn this Chapter we have shown several examples and simple systems where the energy balan
eequation takes part in des
ribing the intera
tion of inje
ted power Pinj = I and dissipated power

Pdiss when a dissipative system is maintained in an out-of-equilibrium stationary state. Althoughdissipation is hard to measure (and in some 
ases even not a

essible), 
ertain relationships 
an besorted out, by a
knowledging the fa
t that the inje
ted power furnished by the for
ing devi
e has tobe dissipated. Correlation times and standard deviations of both observables 
an be related and, insome 
ases, even restri
tions for them 
an be given.24
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Chapter 2Inje
ted Power into randomly for
eddissipative systems in stationaryout-of-equilibirum statesIn this Chapter we study the statisti
al properties of the inje
ted power I into a dissipative system inthe 
ase where the for
ing driving the system into a steady out-of-equilibrium state 
an be modelisedby a random Gaussian noise with a 
hara
teristi
 time s
ale. In Se
tion 2.1 and Se
tion 2.2 weset the theoreti
al ba
kground for the 
al
ulation of the inje
ted power �u
tuations in this simplemodel. In Se
tion 2.3 we study experimentally this type of for
ing in an ele
troni
 RC 
ir
uit, wherethe random for
ing is externally 
ontrolled. The probability density fun
tion (PDF) of the inje
tedpower displays exponential tails and a 
usp 
lose to I = 0. This PDF 
an be 
omputed and is generi
sin
e it appears in several systems driven out of equilibrium, as we wil show in Se
tion 2.4.2.1 Langevin equation with random for
ingThe inje
ted power I provides a permanent energy input into a dissipative system, in order tomaintain it in a dynami
al state, di�erent from the one at equilibrium. It has been often 
onsid-ered theoreti
ally as a 
onstant input parameter in out-of-equilibrium systems (for instan
e in theapproa
h of Kolmogorov of fully developed turbulen
e [1℄). However, even when the number of
omponents or degrees of freedom of the system under study is large, I 
an �u
tuate strongly andrearding it as a 
onstant is nor realisti
 neither suited for its des
ription.Its mean value 〈I〉 > 0 
annot be �xed solely by the external for
ing: it depends on the impedan
eof the system. As shown in the previous 
hapter, its rms �u
tuations have to satisfy 
ertain 
onstrainsin order to maintain the for
ed system in a statisti
ally stationary out-of-equilibrium state. In 
ertainsimple limits, it 
ontrols the internal energy �u
tuations and its higher moments. It is then aninteresting question to study the statisti
al properties of the inje
ted power I and its relation to theinternal energy �u
tuations.To do so, we will study one of the simplest dissipative systems, des
ribed by a linear Langevinequation. Although it is the 
anoni
al example of �u
tuations in equilibrium statisti
al me
hani
s[2℄ des
ribing the thermalization of a brownian parti
le, it 
an also be envisioned as a stronglyout-of-equilibrium system [3℄, as we will show below.We will use a simple model where the response of the system to a random for
ing follows the27



linear Langevin equation
dv(t)

dt
= −γv(t) + f(t), (2.1)as one of the simplest dissipative system, where v(t) is the response of the system (for instan
e, thevelo
ity of a damped parti
le [4℄, γ is the damping rate 
oe�
ient and f(t) is a random for
ing. Thismodelisation only assumes that the response of the system is proportional to the for
ing (mainly thatthe rms �u
tuations of v are proportional to the rms �u
tuations of f). Eq. (2.1) is 
learly dissipativeand 
an be written as an energy balan
e equation by multiplying it by v(t). The energy of the system

E = v2/2 is pumped by the inje
ted power I = fv and later dissipated, Pdiss = γv2 = 2γE. In astationary out-of-equilibrium state, dissipation is proportional to the energy of the system, thereforethe general relationships presented in the previous Chapter hold.This simple system was �rst studied as a simple dissipative system by Farago [3℄ for for
ing fwhi
h is a gaussian white noise (with zero 
orrelation time) and later for a 
olored noise (non-zero
orrelation time) with a given auto
orrelation fun
tion. Here, we will take the for
ing f a
tingon the system to be an Orstein-Ulhembe
k (O-U) type of noise with an exponentially de
reasingauto
orrelation fun
tion satisfying, thus
df(t)

dt
= −λf(t) + ζ(t). (2.2)where ζ(t) is a gaussian white noise with zero mean value and auto
orrelation fun
tion 〈ζ(t)ζ(t′) =

Dδ(t− t′). Here, D is the noise intensity and δ(t) is the delta fun
tion satisfying x(t) =
∫
Ω
x(t′)δ(t−

t′)dt′, when t ∈ Ω and zero otherwise. In that sense the for
ing f and the response v follow the sametype of equation. For the for
ing f satisfying Eq.(2.2) the auto
orrelation fun
tion is 〈f(t)f(t′)〉 =
D
λ
e−λ|t−t′|.Both variables f and v are by no means statisti
ally independent. This 
omes from the fa
t that

〈I〉 = 〈fv〉 is positive in order to maintain the system in an out-of-equilibrium state. Given thelinearity of the Eq. (2.1), we 
an 
al
ulate expli
itly 〈I〉.We will study the inje
ted power �u
tuations in this system in the next se
tion. We will see thatthey present large exponential tails and a 
usp near I ≃ 0. Given the fa
t that the system is in astationary state and both variables are gaussian, we will also 
al
ulate expli
itly the inje
ted powerPDF, as shown in the next se
tion.2.2 Cal
ulation of the Probability Density Fun
tion of the In-je
ted PowerSupposing that the for
ing f on the system is a random gaussian noise with zero mean and dueto the linearity of Eq.(2.1), so will be v. The �u
tuations of both variables 
an be des
ribed by ajoint Probability Density Fun
tion (PDF) P(v, f, t), whi
h 
an be 
al
ulated from the Fokker-Plan
kequation [6℄ of the system. This pro
edure is explained in the Appendix. In the stationary limit,
P(v, f) reads

P(v, f) =
1

2πσvσf (1 − r2)1/2
exp

[
− 1

2(1 − r2)

(
v2/σ2

v − 2rvf/(σvσf ) + f 2/σ2
f

)]
.Here σv and σf are the rms �u
tuations of v and f respe
tively and r is the normalised 
orrelation
oe�
ient r = 〈vf〉/(σvσf ). From Eqs.(2.1) and (2.2), we 
an 
ompute dire
tly these 
oe�
ients as28
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Figure 2.1: PDF of X = I/(1 − r2)σvσf for di�erent values of r. The arrow shows in
reasing valuesof r at �xed values of σv, σf .fun
tions of D, λ and γ as
σf =

√
D

2λ
, (2.3)

σv =

√
D

2λγ(λ+ γ)
, (2.4)and

r =
〈I〉
σvσf

=

√
γ

γ + λ
(2.5)The normalised 
orrelation 
oe�
ient r is also the normalised mean inje
ted power into the dissipativesystem. This 
oe�
ient must be positive (in order to inje
t energy into the system) and smaller than1 due to the Cau
hy-S
hwartz identity [5℄ 〈fv〉 ≤ √

〈v2〉 〈f 2〉. Integrating dire
tly the expression of
P(f, v) to 
al
ulate the mean values of v or f gives 〈v〉 = 〈f〉 = 0.From the expression of the joint PDF, we 
an integrate dire
tly the PDF of the inje
ted power
I. To do so, we 
hange variables from v and f to I = fv and u = v, for example. The 
al
ulationsare straightforward, giving the expresion for the PDF of I

P (I) = C exp

(
r

I

(1 − r2)σvσf

)
K0

(∣∣∣∣
I

(1 − r2)σvσf

∣∣∣∣

)
, (2.6)where C = (πσvσf

√
1 − r2)−1 is a normalisation 
onstant and K0(x) is the zeroth order modi�edBessel fun
tion of the 2nd kind. In the normalised variable X = I/[(1−r2)σvσf ], we 
an see that the29



only parameter that 
ontrols the assymetry of the PDF is the 
orrelation 
oe�
ient r, related dire
tlyto the mean dissipated power 〈D〉 = 〈I〉. For a given value of r, we show in Fig.(2.1) the typi
alshape of the PDF of the inje
ted power �u
tuations for a system des
ribed by Eqs. (2.1) and (2.2).Knowing the PDF of the inje
ted power, all of its moments and 
umulants 
an be dire
tly 
omputed,as it is shown in the Appendix. For instan
e, the �rst 4 moments are 〈I〉 = r, 〈I2〉 = 1 + 2r2,
〈I3〉 = 9r + 6r3 and 〈I4〉 = 9 + 72r2 + 24r4.For any value of r ∈ (0, 1), the 
usp at zero 
an be also dedu
ed from the asymptoti
 behavior of
K0(x), be
ause limx→0K0(x) ∼ − log(x). The PDF displays large exponential asymmetri
 tails anda 
usp near I = 0. We 
an estimate both exponential tails using the assymptoti
 behavior of

lim
x→∞

K0(x) ∼ exp(−x),whi
h means that the PDF of X 
an be 
omputed, using the steepest des
ent method as
P (X) = C ′ exp (rX − |X|)√

|X|
, (2.7)with C ′ a normalisation 
onstant. We refer to the Appendix for this 
al
ulation. From ths approxi-mate expression both exponential tails are

P (X) → exp (−(1 − r)X) for X > 0 (2.8)
P (X) → exp (−(1 + r) |X|) for X < 0. (2.9)The limiting 
ases where r = 0 and r = 1 
an be understood as follows. When r = 0, bothvariables v and f are statisti
ally independent and no 
orrelation between them exists. In this 
asethe PDF of X is symmetri
 with respe
t to zero (see Fig. (2.1)), as it is for K0(|X|) whi
h behaves asan exponential fun
tion for large X. In this limiting 
ase no mean inje
ted power enters the system,hen
e it 
annot be viewed rigorously as an out-of-equilibrium system. When r = 1, both variablesare statisti
ally dependent in the sense that v ∝ f and the PDF of X is the PDF of a squaredgaussian random variable, therefore it follows a χ-square distribution of 1 degree of freedom. In this
ase the χ-square distribution displays an exponential tail for positive events and no negative eventso

ur.2.3 Inje
ted power into a simple experimental system: RC
ir
uitTo test the later theoreti
al results, we 
an use a simple physi
al system: an ele
troni
 
ir
uit with aresistor of resistan
e R in series with a 
apa
itor of 
apa
itan
e C, whi
h is submitted to a sto
hasti
voltage ζ(t), as shown in Fig. (2.2).The voltage 
ontinuity equation, applied to the 
ir
uit reads (see Chapter 2)
γ−1dV (t)

dt
+ V (t) = ζ(t), (2.10)where RC = γ−1. The quasi-gaussian sto
hasti
 for
ing ζ(t) is generated by a Spe
trum Analyzer(Hewlett-Pa
kard HP 35670A). This noise is low-pass �ltered at a 
ut-o� frequen
y λ �xed to 5 kHz,unless spe
i�ed otherwise. The 
ontrol parameter of this system is the noise amplitude D de�nedby the 
onstant value of its power spe
tral density, as an analogy to the white noise limit. C is30
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Figure 2.2: Ele
troni
 RC dipole submitted to a sto
hasti
 voltage ζ(t).�xed to 1 µF, and R 
an be varied between 200 Ω and 10 kΩ leading to values of γ from 50 Hz to10 kHz. The output V (t) of the RC 
ir
uit is multiplied by the random for
ing ζ(t) by means ofan analog multiplier (Analog Devi
es AD540). The resulting voltage V (t)ζ(t) is proportional to theinje
ted power (as it was shown in Chapter 1) and it is a
quired with a Digital-to-Analog A
quisition
ard (AT-MIO-16X) at 100 kHz sampling frequen
y for 10 s, with a resolution of 0.3 mV. Thissimple system mimi
s the Langevin equation of a brownian parti
le, submitted to a random for
ing.Multiplying the latter equation by V (t) leads to the same fundamental balan
e equation (Eq. (1.1)),where the energy of the system E(t) = 1
2
V (t)2, I(t) = γζ(t)V (t) and Pdiss(t) = γV (t)2 = 2γE(t).The analog multipli
ation gives dire
tly ζ(t)V (t), whi
h is proportional to I(t).A typi
al temporal tra
e of the normalised inje
ted power I/〈I〉 is displayed in Fig.(2.3). Qui-es
ent periods with a small amount of inje
ted power are observed and interrupted by bursts where

I(t) 
an take both positive and negative values, although 〈I〉 ≥0. These �u
tuations are large withrespe
t with the mean value, equal to 〈I〉=6.6 x 10−2 Vrms2 Hz.The aim is now to study the probability distribution fun
tion (PDF) of these inje
ted power�u
tuations in the RC 
ir
uit.2.3.1 Statisti
al properties of the Inje
ted PowerWe study in this se
tion the statisti
al properties of the inje
ted power through its probability densityfun
tion. The PDF of the inje
ted power, I, is shown in Fig.(2.4) for di�erent values of the noiseamplitude D, and the damping rate γ. For all values of D and γ, the PDFs exhibit two asymmetri
exponential tails and a 
usp near I ≃ 0. As shown in Fig.(2.4), the PDF asymmetry in
reasesstrongly with γ at �xed D. Moreover, the extremal �u
tuations in
rease strongly with D at a �xed
γ. At a �xed value of γ, the PDFs of I are plotted in Fig. (2.5) for 9 di�erent in
reasing noiseamplitudes. As shown in the inset of Fig. (2.5), all these PDFs 
ollapse on the same 
urve whenplotted in the 
entered-redu
ed variable, (I−〈I〉)/σI , where σI is the rms value of I, and 〈I〉 its meanvalue. Su
h a 
ollapse means that all the moments of I s
ale as σI . As shown in Fig.(2.6), σI (as wellas 〈I〉) s
ales linearly with D. This linear dependen
e with D of the moments of I 
an be re
overed31
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e of the normalised inje
ted power I/〈I〉 in the RC 
ir
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by dimensional analysis from the linear Langevin Eqs. (2.1) and (2.2). Due to the linearity of this setof equations, the rms �u
tuations of the for
ing σf are proportional to D, and the rms �u
tuationsof the for
ing σv are proportional to the ones of the σf , and hen
e σv ∝ σf . Consequently, I ∝ D,and all of its higher order moments follow a similar s
aling 〈I〉n ∝ Dn. Following this reasoning, theslopes of the exponential tails s
ale as D−1, so when the noise amplitude D is doubled, the typi
al�u
tuation s
ale of I is doubled.
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Figure 2.5: Probability density fun
tions of inje
ted power, I, for D = 0.06 (+) to 1.56 (⊲) x 10−3V2
rms/Hz, for γ = 200 Hz. Inset: Probability density fun
tions in the re-s
aled variable (I − 〈I〉)/σI .The noise amplitude D is now �xed in order to study the e�e
t of the damping rate γ on theinje
ted power �u
tuations. For di�erent values of γ, 〈I〉 and σI are plotted in Fig.(2.6). Both s
aleas power laws of γ with two di�erent exponents. As they s
ale di�erently with γ, no 
ollapse o

urswhen the PDFs of I are plotted in the 
entered-redu
ed variable for di�erents values of γ. However,as displayed in Fig.(2.8), both the exponential tails of positive and negative values of I show powerlaw dependen
es with γ. The slope of the positive exponential tails s
ales like ∼ γ−1.65±0.05, whereasthe negative one s
ales like ∼ γ−1.33±0.05. This means that the probability of having negative valuesof inje
ted power de
reases faster than the probability of having positive ones as the system be
omesmore and more dissipative. As γ in
reases, the 
orrelation time of the voltage V (t) de
reases, makingthe random voltage ζ(t) and the voltage V (t) more and more dependent of ea
h other, in
reasingtheir 
orrelation 
oe�
ient r = 〈I〉/σV σζ . Therefore, as γ is in
reased, the negative �u
tuations ofthe inje
ted power tend to zero.Taking into a

ount both the e�e
ts of D and γ, the PDF of the positive values of I behaves, farfrom the 
usp at I ≃ 0, as

P+(I) ∼ exp

(
−α+

I

Dγ1.65

)
. (2.11)Similarly, the PDF of the negative values of I behaves as

P−(I) ∼ exp

(
α−

I

Dγ1.33

) (2.12)33
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Figure 2.6: Top Left: Mean 〈I〉 and standard deviation σI of the inje
ted power as linear fun
tionsof the noise amplitude D. γ = 200 Hz. Top Right: Mean 〈I〉 and standard deviation σI of theinje
ted power as a fun
tion of the damping rate γ. D = 0.75 x 10−3V2/Hz and λ = 5 kHz. (−):linear best �ts of slopes 1.9 V and 1.59 V, respe
tively. Bottom Center: S
aling of the mean 〈I〉and standard deviation σI with the 
ut-o� frequen
y λ. D = 0.75 x 10−3V2/Hz and γ = 200 Hz.(−):linear best �t of slopes 0.11 V and 0.56 V, respe
tively.where α± are two 
onstants.The experimental shape of the distribution of inje
ted power 
an be 
ompared with the predi
tionof Eq.(2.6). Here, there are no adjustable parameters. This is shown in Fig.(2.7) for two di�erentvalues of γ. The 
omputed PDFs display a 
usp at I = 0 and exponential asymmetri
al tails for largevalues of I in good agreement with the experimental shapes. As shown in Fig.(2.7), in
reasing thedamping rate γ with all the other parameters �xed leads to more and more asymmetri
al PDFs withless and less negative events. The asymmetry then in
reases when the damping rate γ in
reases.The asymmetry or skewness of the inje
ted power distribution is then 
ontrolled by the dampingparameter γ, or said di�erently, on the mean dissipated power.Let us now have a look on the s
aling of �rst 
umulants (〈I〉 and σI) with the parameters D, γand λ. For D and γ �xed, we study the e�e
t of the the random noise 
ut-o� frequen
y λ on 〈I〉 and
σI . As shown in Fig.(2.6), when λ is varied from 3 kHz to 40 kHz, the mean inje
ted power slightlyin
reases with λ, whereas σI s
ales as the square root of λ.Thus, one has experimentally that the two �rst 
umulants of the inje
ted power 
an be writtenas a fun
tion of D, γ and λ as

〈I〉 ∼ Dγ1.90 and σI ∼ Dγ1.59λ0.50. (2.13)34
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All these exponents are measured with a pre
ision of ±0.05. Thus, the noise amplitude D is found todrive the s
ale of the inje
ted power �u
tuations whereas the damping rate γ 
ontrols the asymmetryof the PDF of I for a �xed 
orrelation time λ−1.Theoreti
ally, one 
an 
al
ulate the mean and rms values of I dire
tly from the PDF of Eq.(2.6)(or from the set of Eqs.(2.1) and (2.2) by dire
t integration). They 
an be written, in the stationarylimit, as[6℄
〈I〉 = γ2 Dλ

λ+ γ
, (2.14)

σI = γ2 Dλ

λ1/2γ1/2
. (2.15)In the limit γ/λ << 1, Eq. (2.14) yields

〈I〉 ∼ Dγ2, (2.16)whi
h does not depend on the 
ut-o� frequen
y λ, and Eq. (2.15) yields
σI ∼ Dγ3/2λ1/2 (2.17)The range of γ used experimentally is between 50 and 2000 Hz, and the frequen
y 
ut-o� λ isin the range from 3 kHz to 40 kHz. This leads to γ/λ ∼ 0.1 in the worst 
ase. The �rst two
umulants of Eqs. (2.16) and (2.17) derived from the O-U pro
ess thus are in good agreement withthe experimental results of Eqs. (2.13).2.4 Appli
ation to various systemsThe typi
al shape of the PDF of I 
an be found in several systems submitted to a random for
ing.Even when the for
ing is not 
ompletely gaussian, some features are generi
, being mainly theexponential tails and 
usp near zero, the sole 
ontol parameter is the mean inje
ted power. Wepresent some of these systems in the following se
tion.2.4.1 Wave turbulen
eWave Turbulen
e deals with the statisti
al steady state of a set of weakly nonlinear intera
ting waves,whose properties will be explained in Chapter 6. To drive this state, a 
onstant input of energy mustbe supplied. Theoreti
ally, only the mean �ux of energy 〈I〉 has been 
onsidered and is seen as a
ontrol parameter. However, experimentally large �u
tuations of I appear and, moreover, the mean�ux is determined by the system itself balan
ing inje
tion and dissipation. Here, we present twowave turbulen
e experiments where this point is studied in the frame of random for
ing.Wave Turbulen
e experiments in water and mer
ury:A wavemaker is used to generate waves at the surfa
e of a �uid that 
an display out-of-equilibriumstationary states su
h as wave turbulen
e [7℄. The velo
ity V (t) of the wave maker and the for
e

FA(t) applied by the moving blade of the wavemaker are measured simultaneously. The velo
ity
V (t) of the wave maker is measured using a 
oil pla
ed on the top of the ele
tromagneti
 shaker (B36
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Figure 2.9: PDF on the power inje
ted by the random vibrations of a wavemaker into the surfa
ewave turbulen
e for experiments in small (bla
k) and large (red) 
ontainer of mer
ury (from [7℄).Data are normalized by their mean value 〈I〉 = 0.05 W. The for
ing is a gaussian low frequen
y noiseof bandwidth [0, 6] Hz. Dashed line �ts 
orrespond to the formula (2.6). Verti
al full and dashedlines show the 
orresponding average and most probable value. Inset: Temporal tra
e of the inje
tedpower over 3 s and 〈I〉 = 0.05 W.
& K 4809). This shaker drives the wavemaker with a low-frequen
y gaussian random noise. Theindu
ed voltage generated by the moving permanent magnet of the vibration ex
iter is proportionalto the ex
itation velo
ity. The for
e FA(t) applied by the ele
tromagneti
 shaker to the wave makeris measured by a piezoresistive for
e transdu
er (FGP 10 daN). Both signals display statisti
s 
loseto gaussian of zero mean value.For a given for
ing with a low-pass �ltered bandwidth, the rms value of velo
ity is proportionalto the applied tension driving the shaker and does not depend on the �uid density ρ. The for
e rms�u
tuations, on the 
ontrary, in
reases with in
reasing �uid density. The power inje
ted into the �uidby the wave maker is I(t) ≡ −FR(t)V (t) where FR(t) is the for
e applied by the �uid on the wavemaker. This value generally di�ers from the measured one, FA(t)V (t) be
ause of the piston inertia,
omparable in some 
ases with the one of the �uid (in the 
ase of water) whi
h is been pushed. Themean values of FR(t)V (t) and FA(t)V (t) are the same, though. Keeping this in mind, we have alsomeasured the a

eleration of the piston V̇ to dedu
ed the for
e exer
ed over the wavemaker fromNewton's law

MV̇ = FA(t) + FR(t),for the piston of mass M . In the 
ase of mer
ury, MV̇ is negligible and I(t) 
an be estimateda

urately by −FA(t)V (t). In the 
ase of water, inertia has to be taken in to a

ount in 
omputingthe �u
tuating values of the inje
ted power.The �u
tuating inje
ted power displays bursts and large �u
tuations with respe
t to the averageinje
ted power 〈I〉. Figure (2.9) shows the PDF of the inje
ted power for two di�erent experimental
on�gurations. Here, the main 
hange in the experimental 
onditions is the size of the 
ontainers. Forthe 
omputed 
urves, the working �uid is me
ury (density ρ = 13.6 x 104 kg/m3, kinemati
 vis
osity37



ν= 1.2 x 10−7 m2/s and surfa
e tension σ= 0.4 N/m). On
e again, we see a 
usp at I ≃ 0 andasymmetri
 tails. Using the a
quired tra
es of both FA(t) and V (t), we 
ompute the mean inje
tedpower and their 
orrelation 
oe�
ient r. For the small 
ontainer r ∼ 0.6 and for the large 
ontainer
r ∼ 0.7. Using this information we 
an 
ompare these PDFs with the 
omputed ones (Eq.(2.6)).There is a good agreement between theoreti
al and experimental results, although we 
an see that inthe smaller 
ontainer the tails slightly depart from exponential �t. There is no asjustable parameterbeing used in this 
omparison.Wave Turbulen
e experiments in elasti
 plates:
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Figure 2.10: PDF of inje
ted power into the bending elasti
 wave turbulen
e, from [9℄ (N. Mordant,Private Com.). Data are normalized by their mean value and the 4 
urves have been shifted by afa
tor 3 for 
larity. The for
ing is a gaussian low frequen
y noise of bandwidth [0, 15] Hz. Frombottom to top 〈I〉 = 0.64, 0.33, 0.124 and 0.022 W. Dashed line �ts 
orrespond to the formula (2.6).Inset: Temporal tra
e of the inje
ted power over 2 s and 〈I〉 = 0.64 W.Bending waves on an elasti
 plate 
an also display wave turbulen
e. It has been theoreti
allypredi
ted[8℄ and experimentally measured[9℄ that these waves 
an intera
t non-linearly between themto a
hieve a nonequilibrium steady state in thin elasti
 plates. Measurements of the inje
ted powerto maintain this out-of-equilibrium steady state have been performed, as in the experimental set-updes
ribed above. A 2 x 1 m2 steel plate, 0.4 mm of thi
kness (Young modulus E= 2.0x1011 N/m2,density ρ=7.85xg/
m3 ) is pin
hed on its top (short) side and hangs under its own weight. The otherthree sides are free ex
ept from the two bottom 
orners whi
h are loosely held by springs of lowsti�ness, only to prevent too large ex
ursions of the bottom of the plate. A vibrator type V406/8from LDS is �xed at a point lo
ated 40 
m from the plate bottom and in the middle of the plate inthe horizontal dire
tion. This vibrator 
an move normally to the plate to ex
ite bending waves. Thefor
ing ex
itation here is a low-frequen
y gaussian random noise of bandwidth restri
ted to 15 Hzfor example. The for
ing ne
essary to ex
ite the bending waves is re
orded by a for
e probe of typeNTC from FGP sensors and an a

elerometer 4393V 
one
ted to a 
harge ampli�er 2365, both from38
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Figure 2.11: PDF of the renormalized power, X =
I/σvσf

1−(〈I〉/σvσf )2
, inje
ted by a random for
ing into theGOY shell model. The random for
e is modeled by the OU noise with τc = λ−1 equal to 1 (blue line)and 20 (red line) whereas other parameters: the rms value of the for
ing σf = 7.1 · 10−2, the numberof shells Ns = 20 and the vis
osity ν = 4.0 × 10−6, are keept 
onstant. The dashed and dot-dashedlines are respe
tivelly the exa
t formula (2.6) and the approximated expression (2.7).B & K. Both the re
orded for
e Fp(t) and velo
ity V (t) display statisti
s 
lose to a gaussian and therms �u
tuations of V (t) are proportional to the ones of Fp(t).In a similar way as in [7℄, the inje
ted power I(t) 
an be estimated by the produ
t −Fp(t)V (t).Figure 2.10 shows the PDF of the inje
ted power I for two di�erent values of the rms value of thefor
e. The typi
al features appear (a 
usp at I = 0 and exponential asymmetri
al tails). In this 
ase,the larger is the rms value of the for
e, the larger is the asymmetry between positive and negativeevents of the PDF. Also we 
an see a small departure from the exponential tails of the PDF for largeevents of inje
ted power. AS before, no adjustable parameter is being used for this 
omparison.2.4.2 Other systemsThe same type of statisti
s 
an be found in other 
omplex systems with a larger number of degrees offreedom. It 
an even be found in systems where the probability distribution fun
tions of the variablesuse to 
ompute the inje
ted power are not gaussian (as in the 
ase of turbulent 
onve
tion). Wedes
ribe in the following se
tion some examples of su
h systems.The GOY shell modelThe shell models in hydrodynami
s have been introdu
ed to mimi
 some aspe
ts of the dynami
sof fully developped turbulen
e in wave number spa
e. A few tens of dis
rete modes are simulatedwith suitable short range intera
tions in order to reprodu
e the turbulent spe
tra. We 
hoose hereto study energy �ux in the GOY shell model whi
h have been optimized to mimi
 turbulen
e andturbulent intermitten
y [10℄. The GOY shell model des
ribes the energy 
as
ade through a set of39
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Figure 2.12: Left: PDF of the renormalized dimensionless lo
al 
omponents of the heat transport,
X = αJi/(1 − (α〈Ji〉)2) with α = 1/(σvi

σδT ), near the side wall of a 
onve
tive 
ell in the turbulentregime (Ra=2.6 × 109) extra
ted from [12℄. Blue dots show the horizontal 
omponent whereas reddots show the verti
al ones. The dashed and dot�dashed lines show respe
tivelly the relations (2.6)and (2.7). The unknown 
oe�
ient α is used as a �tting parameter. Right: PDF of the spatial�u
tuations of the heat �ux at Ra = 108 (blue) extra
ted from [14℄. Continuous red line 
orrespondsto relation (2.6) where r is used as a �tting parameterdi�erential equations
dun

dt
= ikn

(
u∗n+1u

∗
n+2 −

θ

2
u∗n−1u

∗
n+1 −

1 − θ

2
u∗n−2u

∗
n−1

)
+ fn − νk2

nun, (2.18)where un is the 
omplex amplitude of the mode n and (∗) stands for 
omplex 
onjugate, kn = 2n−4stands for the shell wave number, and fn is the for
e applied on the shell n. The dissipation at ea
hshell is given by νk2
nun, ν being the kinemati
 vis
osity. In absense of for
ing and dissipation thisset of equations 
onserve the energy

E =
1

2

N∑

i=1

|u2
n|,and depending on the value of θ, intermitten
y o

urs in the system. θ is related to the se
ond
onserved quantity of the set of equations (whi
h is quadrati
 in un), when no for
ing nor dissipationare taken into a

ount.Instead of the usual 
onstant for
ing we use a random one. Su
h a for
ing does not modify theenergy 
as
ade of the shell model. The random for
ing is on
e again 
hosen as an O-U type of noise,in order to be able to keep the 
hara
teristi
 time s
ale of energy inje
tion larger than dissipativeones. This random for
e is applied to the 4th shell of the model, and the inje
ted power I(t) is
al
ulated as the real part of u∗4f(t). At this stage, the PDF of both f(t) and u4(t) are gaussian. ThePDF of the inje
ted power I is shown in Fig.(2.11). For both plots of Figure 2.11, we just 
hangethie 
orrelation time τc = 1/λ, keeping 
onstant the rms value of the for
ing, σf=7.1 x 10−2, thetotal number of shells, Ns = 20, and the vis
osity, ν =4.0 x 10−6. In this simulation, we have used aRunge-Kutta method of order four and the time step was set at 2x10−5. The asymmetry in
reaseswith τc. 40



Turbulent Conve
tionThe same type of statisti
s was also found for the turbulent heat �ux in 
onve
tive transport. Thestudies on turbulent 
onve
tion have been fo
used sin
e a long time only on the relation between themean temperature di�eren
e, ∆T = (Td−Tu), and the heat transport, Q, or in dimensionless variablesbetween the Rayleigh number Ra (de�ned in Chapter 2) and the Nusselt number, Nu = Qh/(λ∆T ).Only re
ently measurements have been performed on the �u
tuations of the heat �ux [11, 12, 13, 14℄.The heat �ux 
an be estimated as the produ
t ot two random quantities: the velo
ity 
ompo-nent vi(r, t), either verti
al (parallel to the temperature gradient) or horizontal (perpendi
ular tothe temperature gradient), and the temperature perturbation δT (r, t). These quantities have beenestimated lo
ally in mid-height of a Rayleigh-Bénard experiment 
lose to the boundary of the 
ell[12℄, or by a Langrangian probe adve
ted by the 
onve
ting �uid [13℄, or in numeri
al simulationwhere the spatial �u
tuations 
an be measured [14℄. In all these 
ases, the PDF presents the sameshape. We show on the left part of Fig. (2.4.2) the 2 
omponents of the dimensionless lo
al heat�ux, Ji(r, t) ≡ vi(r, t) × δT (r, t), measured by Xia [12℄ at mid-height of the 
onve
tion 
ell 
lose tothe lateral walls where a 
onve
tive large s
ale wind provides most of the heat �ux. In 
ontrast to itshorizontal 
ounterpart, the average of the verti
al 
omponent of this �ux, 〈Jz(r, t)〉, is not expe
tedto vanish sin
e there is an average heat �ux from the bottom to top of the 
ell. The heat trans-port in the horizontal dire
tion (x�axis) is more than ten times smaller, 〈Jx(r, t)〉/〈Jz(r, t)〉 = 0.06,therefore the PDF is almost symmetri
al. This 
an be simply understood from the fa
t that theverti
al velo
ity vz(r, t) is pumped by the temperature di�eren
e δT (r, t), therefore spatio-temporal
orrelations between both variables must be large, as we 
an see from Fig. 2.4.2. On the right partof this �gure, we present the instantaneous spatial �u
tuations of the verti
al heat �ux estimatedby numeri
al simulation in a large aspe
t ratio 
ell for a large value of the Rayleigh number Ra[14℄.It is astonishing that, although in several studies the temperature �u
tuations have been found todisplay large events that do not follow gaussian statisti
s, the PDF of the normalised lo
al heat �ux
Ji(r, t)/〈Ji(r, t)〉 displays exponential tails following the simple expressions (2.6) or (2.7), where thesole parameter is its mean value related dire
tly to the 
orrelation between velo
ity and temperature�u
tuations.2.5 Con
lusionsIn this Chapter, we have studied the probability distribution fun
tion of the inje
ted power in out-of-equilibrium systems when the for
ing a
ting on the system is a random gaussian noise. Theprobability distribution fun
tion (PDF) of I(t) displays a 
usp near I ≃ 0 and asymmetri
 expo-nential tails. This typi
al PDF shape has been observed in more 
omplex dissipative systems (su
has in granular gases, wave turbulen
e and 
onve
tion). We have studied experimentally in a sim-ple ele
troni
 system the dependen
e of I(t) with respe
t to the damping rate rate. The relevantparameters of the system 
an be easily 
hanged in our simple experiment. Using a simple model(two 
oupled linear Langevin equations) we 
an dedu
ed the shape of the distribution of �u
tuationsof I. The sole 
ontrol parameter in this approa
h is the 
orrelation 
orrelation 
oe�
ient r relateddire
tly to the mean dissipation, driving the asymmetry of the distribution of I(t): the larger themean dissipation, the larger is the asymmetry of the PDF.

41
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Chapter 3Inje
ted power �u
tuations and theFlu
tuation Theorem in dissipative systemsThis Chapter is devoted to probe the validity of the Flu
tuation Theorem (FT) in an experimental,and therefore dissipative, system driven out-of-equilibrium in a stationary state. The Flu
tuationTheorem des
ribes the asymmetry of distribution of a �u
tuating global quantity su
h as the inje
tedpower I, averaged over a time τ mu
h larger than its typi
al 
orrelation time τc. In that sense, the FTrelates dire
tly the inje
ted power �u
tuations and the internal energy �u
tuations when a dissipativesystem is set in an out-of-equilibrium stationary state. The experimental devi
e used to test the FTis the simple ele
troni
 RC 
ir
uit des
ribed in Chapter 2.The Chapter is divided as follows: in the �rst part (Se
tion 3.1) we re
all what the FT statesand the hypothesis that it ne
essitates for its appli
ation to a dissipative system. In the se
ond part(Se
tion 3.2), we experimentally test the FT in an ele
troni
 RC 
ir
uit for
ed by a quasi-gaussianrandom noise. We �nd out that in this simple system it does not hold. We test the FT also in waveturbulen
e experiments performed in �uids and elasti
 sheets as shown in Se
tion 3.3.3.1 Flu
tuation Theorems and their appli
ation to dissipativeout-of-equilibrium systemsA dissipative system set in a statisti
ally stationary out-of-equilibrium state ne
essitates a 
onstantin�ux of energy. This point has been dis
ussed in-extenso in Chapters 1 and 2, where the statisti
alproperties and the distribution fun
tion of the inje
ted power �u
tuations have been studied in simpleexamples (for instan
e when the dissipated power Pdiss is 
onstant or proportional to the internalenergy E) and related to the internal energy �u
tuations of the system under study. A pertinentquestion is if there is a suitable way to des
ribe these �u
tuations and how the relationships that wehave found 
an be extended to dissipative systems for
ed strongly out of equilibrium in a statisti
allysteady state, where there is no external 
ontrol on the inje
ted and dissipated power �u
tuations.We know that in equilibrium statisti
al me
hani
s, the distribution fun
tion P (O) of an observable
O in thermodynami
 equilibrium, is a gaussian 
entered around its mean value 〈O〉,

P (O) ∼ exp

[
O − 〈O〉
σ2

O

]
, (3.1)with σO the standard deviation of O, whi
h, as the number of degrees of freedom of the system

N grows, goes to zero ∼ N−1/2. This is a 
onsequen
e of the 
entral limit theorem: the sum of a43



large number of independent random variables, ea
h one of them having a �nite mean and standarddeviation, will be approximately normally distributed. In an isolated system (or a system in 
onta
tof with a thermal bath at temperature T ) 
onsisting of a large number of non intera
ting parti
les, theenergy of the system at any instant of time E(t) 
an be written as the sum of the kineti
 energy of ea
hparti
le whi
h �u
tuates due to thermal agitation. For a large number of parti
les, the distributionfun
tion of the energy will follow Eq. (3.1). When a system is set in an out-of-equilibrium state, thisis usually not the 
ase for the distribution fun
tions of its global observables.In this 
ontext, theoreti
al approa
hes to the problem of distribution fun
tions in out-of-equilibriumsystems have been given in re
ent years. Universal distributions, su
h as Gumbell, χ-squared[1℄ orother distributions [2℄ have been proposed to des
ribe quantities in systems for
ed strongly out-of-equilibirum or into turbulent-like states. Although they seem to �t a

urately 
ertain sets ofexperimental or numeri
al data, there is no generalization of these distributions to a larger 
lass ofdissipative systems. In that sense, instead of sear
hing for "universal" distribution fun
tions, theattention has been fo
used on �u
tuation relations.Flu
tuation relations have re
eived mu
h attention, sin
e the early work of Nyquist and Johnson[3℄ and of Callen and Welton [4℄ on the �u
tuation-dissipation theorem, whi
h relates the out-of-equilibrium behavior of a system from its reversible �u
tuations in thermodynami
 equilibrium.Although the relationship between equilibrium �u
tuations with irreversible behavior was alreadyfound by Einstein in his theory of brownian motion [5℄, it was not given rigorous mathemati
al proofuntil the works of Onsager [6℄ and Kubo [7℄. Later, they where expanded to the nonlinear regimes[8℄, or as 
one
tions between equilibrium states through out-of-equilibirum pro
esses [9℄, but alwaysin the 
ontext of equilibrium distributions or small perturbations of them.Far from equilibrium, there has been theoreti
al advan
es in �u
tuation relations. These relationsdes
ribe mainly the asymmetry of the distribution fun
tion of the global observable O averaged in thelong time limit τ → ∞, whi
h is mu
h larger than the auto
orrelation time τc of O. The smoothingor running average of O, Oτ , de�ned as
Oτ(t) =

1

τ

∫ t+τ

t

O(t′)dt′, (3.2)is used to 
ompute the asymmetry fun
tion [10℄
ρ(ǫ) ≡ lim

τ→∞

τc
τ

log

[
P (ǫ)

P (−ǫ)

]
, (3.3)where ǫ = Oτ/〈O〉 is the normalized observable whi
h follows a distribution P (ǫ). This fun
tion isthus an indi
ator of the asymmetry of the distribution fun
tion of the averaged normalised observable

ǫ. By 
omputing the running average Oτ , we smear out the large �u
tuations or transient dynami
sof the system. It is 
lear that by averaging in an interval of length τ , the �u
tuations of Oτ willde
rease strongly. In the assymptoti
 limit τ → ∞, one would expe
t ǫ to 
onverge to 1, and its�u
tuations to be distributed as a gaussian
P (ǫ) ≃ exp[τ(ǫ− 1)2/2σ2

ǫ ], (3.4)where
σǫ ≡ lim

τ→∞

∫ τ

−τ

〈O(t′)O(0)〉 − 〈O〉2
〈O〉2 dt′is the temporal integral of the auto
orrelation fun
tion of O, and by the Wiener-Khin
hine theorem,the zero-frequen
y 
omponent of its power spe
trum density |Ô(ω)|2.44



The asymmetry fun
tion ρ(ǫ) is the starting point to study the Flu
tuation Theorem (FT).The FT (also 
alled the Gallavotti�Cohen relation) [11, 12, 13℄ was �rst introdu
ed in a numeri
alsimulation where a newtonian �uid was subje
ted to an external shear[8℄. Later, a mathemati
alproof was given [14℄. It states that,
ρ(ǫ) = βǫ, (3.5)whi
h means that in the long time limit ρ(ǫ) loses the temporal dependen
e on τ and only depends on

ǫ linearly. The 
onstant β, independent of the averaging time τ and value of the normalized observable
ǫ, is related to the internal energy �u
tuations and therefore related dire
tly to the "temperature"of the system. Therefore the FT 
an relate the 
omputed probability density fun
tion P (ǫ) of themeasured observable ǫ to the internal �u
tuations of the system, a

essing information that otherwise
ould not be a

essed. To do so, large negative and possitive �u
tuations of ǫ must o

ur.It is important to re
all the hypothesis under whi
h the FT is valid. First, for the appli
ationof the FT the internal dynami
s of the system under study must be mi
ros
opi
ally reversible intime. This point means that inverting the temporal evolution of the system leaves the equations ofmotion of the inner degrees of freedom un
hanged. The se
ond hypothesis is that the system must bedissipative, 
ontra
ting the phase spa
e. Lastly, the dynami
s on the phase spa
e should be 
haoti
.This is an analogy to ergodi
ity in equilibrium statisti
al me
hani
s, where the available phase spa
eis 
ompletely o

upied and invariant measures 
an be de�ned and used to extra
t and 
omputeaverages of observables [11, 12, 13℄. The type of systems where these hypothesis are satis�ed are veryspe
ial: they 
an inter
hange dissipation with inje
tion just by 
hanging t→ −t. Experimentally, asystem that ful�lls these restri
tions are very hard (not to say impossible) to �nd.The relation of Eq.(3.5) has been tested experimentally in granular gases [15℄, turbulent �ows[16℄, liquid 
rystals [17℄, ele
tri
 dipoles [18℄, me
hani
al os
illators [19℄ and 
olloidal parti
les [20℄and also numeri
ally in granuar gases [21℄ and turbulent �ows [22℄. In all the di�erent studies, forlong averaging times, the linear relation between ǫ and ρ(ǫ) has been observed, but for a small rangeof ǫ. We will study experimentally the ful�llment of Eq.(3.5) in a simple system where large valuesof ǫ 
an be rea
hed (ǫ ≃3), in the next se
tion.The PDF of P (ǫ) for large averaging τ 
an be de�ned also by means of the Large DeviationFun
tion (LDF) f(ǫ). It is generally de�ned as

f(ǫ) ≡ lim
τ→∞

τc
τ

log [P (ǫ ≡ Oτ/〈O〉)], (3.6)and it des
ribes how the �u
tuations of ǫ with respe
t to 〈ǫ〉=1 behave as the averaging time τ/τcin the smoothing average be
omes larger and larger. Developing Eq. (3.3) using the de�nition of theLDF leads to
ρ(ǫ) = f(ǫ) − f(−ǫ). (3.7)Developing Eq. (3.7) up to �rst order in ǫ, thus taking into a

ount only the terms 
lose to ǫ ≃ 0,leads to

ρ(ǫ) ≃ 2f ′(0)ǫ,whi
h easily satis�es the Gallavotti-Cohen relation of Eq. (3.5). It is just needed that the LDF hasa linear part f(ǫ) = αǫ + g(ǫ), where g(ǫ) is a nonlinear fun
tion of the normalized variable ǫ. Forinstan
e, if the PDF of ǫ is similar to Eq. (3.4), the LDF is f(ǫ) = (ǫ− 1)2/2σ2
ǫ and the relation of45
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Figure 3.1: Left: Typi
al temporal tra
es of ǫ = Iτ/ < I > for the τ/τc=0 (blue), 13 (red) and 63(bla
k) for γ = 1/RC = 500 Hz. Right: Standard deviation σIτ
/〈I〉 as a fun
tion of the averagenormalised time τ/τc for γ = 1/RC = 500 Hz. Best �t is σIτ

/〈I〉 ∼ (τ/τc)
−0.51.Eq. (3.7) gives ρ = 2ǫ/σ2

ǫ , satisfying the FT with β = 2σ−2
ǫ . The linear aproximation of the LDF asan explanation of the linearity found in experien
es and numeri
s was �rst 
onje
tured by Aumaîtrein his PhD thesis [21℄ and then predi
ted in a Langevin equation in a dissipative regime by Farago[10℄.3.2 Experimental test of the Flu
tuation Theorem in an ele
-troni
 RC 
ir
uitWe will test experimentally whether the FT is satis�ed in a simple dissipative system maintained inan out-of-equilibrium steady state. For this matter, we will 
ontinue to use the ele
troni
 RC 
ir
uitof Chapter 2. As it was explained before, this simple 
ir
uit 
an be viewed as a mimi
 of a brownianparti
le strongly for
ed out -of-equilibrium. The for
ing is still a random Gaussian noise with zeromean and a 
hara
teristi
 
orrelation time 1/λ where λ is the frequen
y 
ut-o� of its power spe
trumdensity.The smoothing average of the inje
ted power Iτ is 
omputed from the previous data of I as

Iτ (t) =
1

τ

∫ t+τ

t

I(t′)dt′, (3.8)where τ stands for the time of average of the signal, whi
h is several times the 
orrelation time τcof the inje
ted power I. For our experimental set-up, the 
orrelation time τc is the inverse of the
ut-o� frequen
y, 1/λ, whi
h is now �xed to 10−4 s. We show a typi
al temporal tra
e of ǫ = Iτ/〈I〉in Fig.(3.1), as we in
rease the averaging time. We 
an see how, by in
reasing the averaging time τ ,the �u
tuations around the mean, 〈ǫ〉 =1, de
rease their value. The rms �u
tuations de
rease with
τ/τc as a power law ∼ (τ/τc)

−1/2, just as in the 
ase of the 
entral limit theorem. With this data,one 
an 
ompute ρ(ǫ).First, it should be noted that our simple system is not time reversible, therefore the hypothesisused to derive the FT are not ful�lled in this system. However, we will try to test the relationEq.(3.5) with our experimental data. 46
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 = 200 Figure 3.2: PDF of Iτ/〈I〉 for various values of τ/τc = 0, 5, 10, 50, 100 and 200 at a �xed value of

γ = 2000 Hz. The straight line (−) 
orrespond to Iτ/〈I〉 = 0 and the dashed line (−−) to Iτ = 〈I〉.Fig. (3.2) displays the PDF of time-averaged inje
ted power Iτ/〈I〉 when τ/τc is in
reased.Several features appear. First, the negative inje
ted power events de
rease with in
reasing τ untilthey disappear for τ & 5τc. Se
ond, when τ/τc is in
reased, the PDF shape for negative values of
Iτ/〈I〉 
hanges from an exponential shape to a Gaussian one, whereas the exponential shape of thepositive part is quite robust. Only when τ ≫ τc, the PDF shape 
lose to the maximum tends towardsa gaussian, as one would expe
t from the 
entral limit theorem. In Fig.(3.2), when τ/τc in
reases,the PDF most probable value ǫ∗ (i.e., where the PDF amplitude is maximum) in
reases slowly from
Iτ/〈I〉 = 0 to 1 (the mean value of the inje
ted power). This dependen
e of ǫ∗ is shown in Fig. (3.4)as a fun
tion of τ/τc. We will see below that this dependen
e is very important with respe
t to thepossible ful�llment of the FT.The question that needs to be addressed is what happens when ǫ is far from zero. The experi-mental values of the asymmetri
al fun
tion ρ(ǫ) are shown in Figs. (3.5) and (3.6) for two di�erentvalues of γ = 1/RC, as a fun
tion of ǫ with 0 ≤ ǫ < 3. The a

essible values of ǫ are large withrespe
t to the later experimental studies. For small ǫ, ρ(ǫ) in
reases linearly as expe
ted, then ρ(ǫ)saturates when ǫ is in
reased further. For ea
h value of τ/τc, the beginning of the saturation o

ursfor a 
riti
al ǫ value, smaller than the average 〈ǫ〉=1. The saturation value of the 
urve 
orrespondsthe most probable value of the PDF of ǫ as we 
an see Fig. (3.4)). For values of ǫ < ǫ∗, the linear�t of Eq. (3.5) is satis�ed, but for values ǫ > ǫ∗, the asymmetri
 fun
tion departs from Eq. (3.5),as it is shown in Fig. (3.4). After that point there is a 
hange of behavior of the PDF: for values of
ǫ larger than the most probable value ǫ∗ the PDF behaves exponentially, 
ontrary to the smootherbehavior of the PDF ǫ smaller than ǫ∗ (see Figs. (3.2) and (3.3)). Moreover, in
reasing γ at a �xedvalue of τ/τc leads to de
reasing available values of ǫ ne
essary to probe the FT, as it is displayedin Figs. (3.2) and (3.3). With these PDFs we 
ompute the asymmetry fun
tion ρ(ǫ), as displayedin Figs.(3.5) and (3.6)). It 
omes from the fa
t that when γ is in
reased, the number of negativeinje
ted power events, ǫ < 0, de
reases (γ 
ontrols the skewness of the PDF at a given τc ∼ 1/λ).47
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t that the damping rate γ, and therefore the mean dissipation, is not 
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Figure 3.7: Probability density fun
tion P (ǫ = Iτ/ < I >) for τ/τc =1, 3, 11 and 50. Solid lineindi
ate the mean value ǫ = 1. This PDF 
orresponds to the inje
ted power when the working �uidis water with depth of h = 23 mm. (Taken from [23℄).ones in the referen
es above), the linear relationship between ǫ and ρ stated in Eq. (3.5) has benobserved. As explained above using Eq. (3.7), this is due to the small range of explored ǫ ≤ 0.8at high τ/τc ≤ 20. In our experiment, large range of ǫ (up to 3) is also available even for high
τ/τc ≃20. This allows us to test in a deeper way the FT. As explained above, the FT works onlyfor ǫ values smaller than the most probable value as it is shown in Fig. (3.4). Above this value, asaturation o

urs, due to the di�erent behaviors of the PDF. Large events of inje
ted power are notdes
ribed by the FT, and lead to the observed saturation of ρ(ǫ). To further investigate this point wetest the FT in other systems with a larger number of degrees of freedom and more 
omplex internaldynami
s. A larger range of ǫ has been rea
hed experimentally in a di�erent experimental devi
e inwave turbulen
e experiments. With this larger available range, the FT was tested, founding, again,that it was not satis�ed. We show these results in the following se
tion.3.3 Experimental test of the Flu
tuation Theorem: Wave Tur-bulen
e experimentsWe have also studied the validty of the FT in more 
omplex systems, with a large number of degrees offreedom. As we have already explained in the previous se
tion, the probability distribution fun
tionof the inje
ted power I(t) ne
essary to ex
ite the turbulent-like regime of surfa
e wave turbulen
e(in �uids) and bending wave turbulen
e (in elasti
 sheets) displays exponential tails and a 
usp 
loseto I ≃ 0. With the re
orded �u
tuations of I(t), we 
omputed the normalised smoothing averages
ǫ = Iτ/〈I〉 and their probability density fun
tions P (ǫ) for di�erent averaging times. We show themain results with respe
t to the ful�llment of the FT for these experiments.50
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] for 16<τ/τc<39. (Taken from [23℄).3.3.1 Wave Turbulen
e experiments in �uidsFollowing [23℄, we present the probability density fun
tion of ǫ for 4 di�erent values of τ/τc =1, 3,11 and 50, shown in Fig.(3.7). The 
orrelation time of the inje
ted power is τc =0.03 s, 
al
ulatedfrom the auto
orrelation fun
tion of I(t). As τ/τc grows, the PDF of the normalized running averagebe
omes smoothly peaked around ǫ = 1, as it 
onverges to the LDF of the averaged normalizedvariable. The 
onvergen
e to the asymptoti
 shape of the LDF is slower than in the 
ase of theele
troni
 
ir
uit, taking averaging times of the order of τ ≃ 50τc to 
onverge 
losely to the LDF.As in the 
ase of the RC 
ir
uit, the amount of negative events be
omes negligible as τ/τc grows.With the PDFs 
omputed for di�erent averaging times, we 
al
ulate the asymmetri
al fun
tion ρ(ǫ),displayed in Fig.(3.8). We found that the FT is not ful�lled, i.e it does not follow Eq. (3.5), whenlarge values of ǫ are a
hieved. For a given value of τ/τc, as ǫ grows, the fun
tion ρ(ǫ) smoothensand the linear behavior is not ful�lled. In
reasing the averaging time shortens the available ǫ range,whi
h will not surpass the average value 〈ǫ〉=1. In this small range, as explained in Se
tion 3.1, thelinear behavior of ρ(ǫ) in ǫ is re
overed, as a 
onsequen
e of the expansion of the LDF of ǫ 
lose to
ǫ ∼0.3.3.2 Wave Turbulen
e experiments in elasti
 plates:In bending wave turbulen
e over elasti
 sheets, the inje
tion of energy is needed to ex
ite theturbulent-like regime. Using the temporal tra
es of the inje
ted power I(t) taken from the ex-periment by Mordant [24℄, we have also studied the statisti
s of the inje
ted power Iτ averaged overa time interval τ . The 
orrelation time of the inje
ted power in the experimental set-up des
ribed in[24℄ is τc = 0.06 s. This 
orrelation time is of the same order of magnitude as the frequen
y 
ut-o�of applied for
e on the elasti
 sheet fdrive 
al
ulated from the auto
orrelation fun
tion of I(t). Weshow, in Fig.(3.9), the 
omputed asymmetri
al fun
tion ρ(ǫ). We found that the FT is not ful�lledwhen large values of ǫ are a
hieved, as in the previous example of sufa
e wave turbulen
e. In
reasingthe values of ǫ, the asymmetri
al fun
tion departs from linearity instead of being linear in ǫ as forsmall values with respe
t to the mean 〈ǫ〉=1. We show also the value of ρ(ǫ) for the instantaneous51
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Figure 3.9: Plot of ρ(ǫ)/τc = 1
τ

log
[

P (ǫ)
P (−ǫ)

] for 0<τ/τc<31.�u
tuations of the inje
ted power. Due to the exponential behavior of the PDF, the linearity holds.Comment on the Flu
tuation Theorem and Instantaneous Flu
tuations: In Fig.(3.9), wehave shown the behavior of ρ(ǫ) as a fun
tion of the averaging time τ/τc. For all values of τ/τc>0, theasymmetri
al fun
tion does not follow the relation of Eq.(3.5). But for the instantaneous �u
tuationsof I(t), a �u
tuation relation is satis�ed. Taking into a

ount the probability distribution fun
tionof the inje
ted power des
ribed in the previous 
hapter
P (I) ≃ exp[rI/σvσf (1 − r2)] ×K0(|I|/σvσf (1 − r2)),we 
an 
al
ulate the "instantanteous" asymmetri
al fun
tion ρinst(I) as

ρinst(I) = log[
P (I)

P (−I) ] =
2r

σvσf (1 − r2)
I, (3.9)where 2r

σvσf (1−r2)
is 
onstant. If we use the de�nitions of σ2

f = D/2λ, σ2
v = D/2λγ(λ + γ) =

σ2
f/γ(λ+ γ) and r =

√
γ/(γ + λ) the expression of Eq.(3.9) 
an be written as

ρinst(I) =
2

σ2
vλ
I,where λ is the inverse of the 
orrelation time of the inje
tion and σ2

v/2 = E is the internal energyof system. In that sense, we 
an estimate the energy of the system, by 
omputing the slope dρinst(I)
dIand the 
orrelation time of the inje
ted power. 52



3.4 Con
lusionsIn this Chapter we have experimentally studied the possible appli
ation of the Flu
tuation Theorem(FT) on a simple dissipative system: an ele
troni
 RC 
ir
uit ex
ited by an sto
hasti
 voltage. TheFT has been probed by measuring the asymmetri
al fun
tion ρ(ǫ) with ǫ = Iτ/〈I〉, and Iτ thesmoothing average on a time lag τ , mu
h larger than the 
orrelation time of the inje
ted power. Inthis simple experiment, large �u
tuations of ǫ have been observed (ǫ ≃ 3) even for long averagingtime (τ/τc ≃ 20). We have found out that the FT is only satis�ed for small values of ǫ with respe
t tothe most probable value of the its distribution fun
tion. For larger values, the asymetri
al fun
tionis no longer linear with ǫ but saturates. Thus, the FT does not hold for the large values of ǫ even atlarge τ/τc. This disagreement is not a parti
ular feature of this ele
troni
 system, but seems to begeneri
 in several other systems, su
h as two di�erent wave turbulen
e experiments, as soon as large�u
tuations of ǫ are experimentally a
hieved.
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Chapter 4Flu
tuations in Surfa
e WavesIn the present Chapter we review some basi
 results about waves at the interfa
e between a horizontal�uid layer or between two inmis
ible �uids. These systems are used as tools to study the propertiesof out-of-equilibrium stationary states that 
an develop from intera
ting waves. We will start bygiving the working frame of wave propagation in Se
tion 4.1, de�ning the dispersion relation and thewave equations of motion.4.1 Wave motionWaves 
an propagate over interfa
es. We 
an observe them in di�erent systems su
h as bendingwaves in elasti
 membranes and sheets [1, 2℄, Rayleigh waves or Love waves at the surfa
es of elasti
solids [3℄ or Rossby waves at the surfa
e of the o
ean [4℄. We are used to see wave propagation everyday at �uid surfa
es as it is shown in Fig. 4.1, where the disturban
es propagate at di�erent speeds,with di�erent wavelengths os
illating at di�erent frequen
ies.The way to relate these parameters, when the wave amplitude is small with respe
t to the wave-length, is through the dispersion relation of surfa
e waves
ω(k, {θ}) = ω, (4.1)whi
h relates the pulsation frequen
y ω with the waveve
tor k of a wave and the parameters of the�uid {θ} whi
h enable wave propagation, su
h as its density ρ, surfa
e tension σ, diele
tri
 
onstant

ǫ, et
. We will assume the �uid that sustains surfa
e wave propagation is homogenous and isotropi
,so the pulsation ω only depends on the modulus of the wave ve
tor |k| = k. This relation des
ribesalso the phase cp(k) = ω(k)
k

and group cg = ∂ω(k)
∂k

velo
ities at a given wave ve
tor. In this �rstapproximation, we will not be 
on
erned by vis
ous damping, as explained in the following se
tions.The dispersion relation is also related to the restitution for
es that sustain waves. In the nextparagraph, we 
ompute the dispersion of the surfa
e waves in a �uid of depth h, in presen
e of gravityand surfa
e tension.4.1.1 Gravity-
apillary wavesWaves are driven by gravity e�e
ts, when the �uid balan
es its inertia with the a
tion of gravity thattries to keep its surfa
e in its equilibrium �at possition with a heavier �uid under a lighter one. In
ontrast, waves are driven by 
apillarity when the restoring me
hanism balan
es the 
urvature e�e
tsof the �uid surfa
e and its inertia. The equations of wave propagation 
ome from the �uid equations57



Figure 4.1: Ripples at the surfa
e of water.of motion when the interfa
e dynami
s are taken into a

ount. To wit, we 
onsider the 
ase of twoinmis
ible and invis
id �uids indexed by i = 1, 2. We will assume that the �uids are 
ontained in a boxof height 2h = h1 + h2 and unbounded in the orthogonal 
oordinates r = (x, y). η(r, t) 
orrespondsto the surfa
e elevation between them, ρ1 is the density of the bottom �uid (−h1 < z < η), ρ2 thedensity of the upper �uid (η < z < h2) with ρ1 > ρ2 and σ the surfa
e tension 
oe�
ient betweenthe two �uids. The velo
ity �elds vi(r, t) are governed by the in
ompressible Euler equations
∇ · vi = 0,[

∂vi

∂t
+ vi · ∇vi

]
= −∇pi

ρi
+ g, (4.2)where the �rst equation is the �ow in
ompressibility 
ondition and the se
ond equation is just themomentum 
onservation. Here, ∇pi is the pressure gradient a
ross the �uid of density ρi and g isthe a

eleration of gravity, pointing verti
ally in the ẑ dire
tion. The normal velo
ity of the �uidshould be zero at the solid boundaries of the 
ontainer, whi
h means

v1(z = −h1) · ẑ = v2(z = h2) · ẑ = 0, (4.3)where we have 
hosen the normal to the solid boundaries in the ẑ dire
tion. At the interfa
e betweenthe fwo �uids, the velo
ity �elds vi must satisfy the kinemati
 
ontinuity 
ondition
∂η

∂t
+ vi · ∇⊥η = vi · ẑ (4.4)where vi is evaluated at the interfa
e z = η(r, t) and ∇⊥ stands for the gradient in the r 
oordinates.58
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Figure 4.2: Lo
al amplitude perturbation η(x, y, t) of the interfa
e (at z = 0) between two invis
idinmis
ible �uid layers of depths h1 and h2. The �uid densities are ρ1 and ρ2 respe
tively.The propagation of waves is a dynami
 phenomenon. Therefore, we need a dynami
 
onditionover the for
e balan
e a
ross the interfa
e to explain the me
hanism of wave propagation. In absen
eof vis
ous stresses, this is given by the pressure di�eren
e ∆p = p1 − p2 between the upper and lower�uid, normal to the free surfa
e. This pressure jump a
ross the interfa
e z = η(r, t) is given by theLapla
e for
e related to the prin
ipal radii of 
urvature R1 and R2, namely,
∆p = σ

(
1

R1
+

1

R2

)
= −σ∇⊥ · ∇⊥η

(1 + |∇⊥η|2)1/2
, (4.5)where the last term is just the mathemati
al expression of the mean 
urvature κ =

(
1

R1
+ 1

R2

) of thesurfa
e η(r, t) at the point r.When the surfa
e is in equilibrium, it rests �at. In this state the the velo
ity �elds are zero andpressure �elds follow the hydrostati
 solution of Eq. (4.2), i.e. peq
i = −ρigz. As the interfa
e isdeformed, the hydrostati
 solution does not hold. The velo
ity �elds generate deformations a
rossthe surfa
e, whi
h in turn 
reate a dynami
 pressure 
omponent. These disturban
es must satisfyEqs. (4.2) and the boundary 
onditions (Eqs. (4.3) and (4.4)). We will simplify the problem byassuming that the perturbed velo
ity �elds are irrotational ∇×vi = 0. By Thompson's theorem [1℄,this is true for all times when the �uid is invis
id. The irrotational 
ondition means that vi 
an bedetermined from a potential fun
tion φi as vi = −∇φi. Therefore, Eqs. (4.2) 
an be written as

−∇2φi = 0,

−∇
[
∂φi

∂t
+

|∇φi|2
2

]
= −∇pi

ρi
+ g, (4.6)where the �rst equation is just the de�nition of an harmoni
 �eld and the se
ond is Bernoulli'sequation of energy 
onservation. This 
ondition is ful�lled over the whole �uid, in
luding its freesurfa
e. The whole 
ondition 
an be rewritten as a �rst integral of the hydrodynami
 problem,namely as

ρi
∂φi

∂t
+ ρi

|∇φi|2
2

+ pi + ρigz = B,with B a 
onstant that 
an be introdu
ed in pi or in φi to renormalise its value, given the fa
t thatonly pressure di�eren
es and velo
ities∇φi are important in the dynami
al evolution of disturban
es.Now, we 
an state the problem in terms of only two types of variables: the potential fun
tions φi,59



whi
h generate the pressure di�eren
es and velo
ity �elds inside the �uids and η whi
h relates thepressure jump a
ross the �uids. We write the kinemati

∂η

∂t
+ ∇⊥φi · ∇⊥η =

∂φi

∂z
, (4.7)and dynami


(ρ1 − ρ2)gη + ρ2
∂φ2

∂t
− ρ1

∂φ1

∂t
+

1

2

[
ρ2|∇φ2|2 − ρ1|∇φ1|2

]
= −σ∇⊥ · ∇⊥η

(1 + |∇⊥η|2)1/2
(4.8)
onditions evaluated at the free interfa
e z = η(x, y, t). In the former 
onditions, nonlinearities 
anbe negle
ted if we assume that the disturban
es a
ross the interfa
e are small with respe
t to thewavelength (∇⊥η ≪ 1). In this linearized 
ase, the evaluated �elds at the interfa
e z = 0 for smallamplitude of the perturbations satisfy

∂η

∂t
=

∂φi

∂z
|z=0,

(ρ1 − ρ2)gη + σ∇2
⊥η = −

[
ρ2
∂φ2

∂t
− ρ1

∂φ1

∂t

]
|z=0. (4.9)

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

(σ/gρ)1/2k

(σ
/g

3 ρ)
1/

4 ω
(k

)

Figure 4.3: Adimensional dispersion relation ( σ
g3ρ1

)1/4ω(k) for gravity-
apillary waves as a fun
tionof the adimensional wave ve
tor ( σ
gρ1

)1/2k.To study wave propagation and the dispersion relation, we 
onsider sinusoidal disturban
es of theinterfa
e η(r, t)=η0 exp i(k⊥ · r − ωt) and of the potential fun
tions φi(r, z, t)=fi(z) exp i(k⊥ · r − ωt),where k⊥ is the orthogonal wave ve
tor and |k⊥| = k⊥ = k. The separation of the potentialfun
tions in orthogonal and verti
al 
omponents is related to Eq. (4.3), whi
h states that their60



normal derivative to the solid boundaries are zero. From the harmoni
 de�nition of ∇2φi = 0, thepotential fun
tions satisfy the equations
d2fi(z)

dz2
− k2fi(z) = 0,subje
ted to the boundary 
onditions f1(z = −h1)

′ = f2(z = h2)
′ = 0 with (·)′ the derivative withrespe
t to the z 
oordinate. The equations for both fi(z) are of se
ond order, therefore, two 
onstantsare needed to 
al
ulate the full solution. Using the boundary 
onditions, we 
an write

f1(z) = f 0
1

cosh k(z + h1)

cosh kh1
, f2(z) = f 0

2

cosh k(z − h2)

cosh kh2
,where f 0

i 
an be tra
ed ba
k to the initial surfa
e perturbation η0, using the dynami
 
ondition ofpressure di�eren
e. Through the kinemati
 
ondition of velo
ity 
ontinuity normal to the interfa
e(Eq. (4.4)), we have
−iωη0 = f 0

1k⊥ tanh (kh1) = −f 0
2 k⊥ tanh (kh2).These relationships, 
oupled to pressure jump a
ross the interfa
e of Eq. (4.9), gives the dispersionrelation

ω2 =
(ρ1 − ρ2)gk + σk3

ρ1 coth kh1 + ρ2 coth kh2

. (4.10)
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Figure 4.4: Adimensional group velo
ity ( ρ1

gσ
)1/4cg(k) for gravity-
apillary waves as a fun
tion of theadimensional wave ve
tor ( σ

gρ1
)1/2k.With this expresion we 
an relate the wavelength λ = 2π

k
with the pulsation frequen
y of aperturbation ω = ω(k). The above relation displays several interesting limits. When ρ2/ρ1 ≪ 1, the61



dispersion relation reads
ω2 =

[
gk +

σ

ρ1
k3

]
tanh kh1.This is the typi
al 
ase of a liquid-vapor interfa
e (su
h as air-water or nitrogen-mer
ury interfa
es,used in the following 
hapters). The �rst term on the right hand side is related to gravity andthe se
ond to 
apillary for
es. The multipli
ative term tanh (kh1) is related to the e�e
t of the
hara
teristi
 penetration length of the wave (whi
h in this 
ase is of the order of the wavelength)on the propagation of a wave in a �nite depth layer h1 of �uid.From this expression, we 
an see there are two 
ross-over lengths. One, where the e�e
ts of bothrestitution for
es are equal lc =

√
σ

ρ1g
and another one where the depth of the layer is 
omparableto the wavelength. For in�nite depth (kh1 ≫ 1) the multipli
ative term is 
onstant. In this regime,the waves with wavelengths larger than lc propagate with a pulsation frequen
y ωg =

√
gk and are
alled gravity waves. The phase velo
ity cp(k) = ω(k)

k
=

√
g/k, that is, the velo
ity at whi
h afront of 
onstant phase ψ = k⊥ · r − ω(k⊥)t propagates, is larger as the wavelength is larger. Thegroup velo
ity cg(k) = ∂ω(k)

∂k
=

√
g/4k, that is the velo
ity at whi
h a wave modulation in amplitudepropagates, is twi
e as small as the phase velo
ity. This means that waves with large wavelengthpropagate faster than waves with smaller wavelength.When the wavelength is smaller than lc, the dispersion relation reads ω(k) = ( σ

ρ1
)1/2k3/2. Thewaves that follow this relationship are 
alled 
apillary waves. The phase velo
ity cp(k) = ω(k)

k
=

( σ
ρ1

)1/2k1/2 is larger as the wavelength is smaller. The group velo
ity cg(k) = ∂ω(k)
∂k

= 3
2
( σ

ρ1
)1/2k1/2 islarger than the phase velo
ity. Therefore, as a wave pa
ket 
ontaining wavelengths smaller than lcpropagates, its shape 
hanges as the small wavelengths propagate faster than the larger ones. Surfa
ewaves on �uid surfa
es are dispersive be
ause of this latter fa
t: wave pa
kets do not maintain theirshape as they propagate.When we take into a

ount wavelengths that are 
omparable to the �uid depth of the layer h1, thedispersion has to take into a

ount this fa
t. In this limit, tanh kh1 ∼ kh1 and, hen
e, we 
an expressthe pulsation frequen
y as ω(k) =

√
gh1k. With this expression, we 
an see that wave propagationis non-dispersive for large wavelength with a 
onstant velo
ity cg = cv =

√
gh1.We 
an also 
al
ulate the dispersion relation by energy 
onsiderations, given the fa
t that wavestransport energy, as well as momentum. To simplify the 
al
ulations we 
onsider the limit where

ρ2/ρ1 ≪ 1, so we 
an negle
t the upper �uid. The energy E of the system 
an be written as a kineti

ontribution
K = ρ1

∫

V

v2

2
dV,and a potential 
ontribution

U = ρ1g

∫

V

zdV + σ

∫

∂V

dA,where V stands for the volume of the �uid of density ρ1 and ∂V its free surfa
e. We will use theequipartition of energy K = U , where (·) stands for the average over a period of the wave os
illation.This approa
h will only be valid in the small amplitude aproximation, as it will be dis
ussed infollowing se
tions. The gravitational term of the potential energy 
an be rewritten as
Ug = ρ1g

∫
dr

∫ η

−h1

zdz = ρ1
g

2

∫
η2dr + U0

g ,
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where U0
g is 
onstant. The surfa
e 
omponent of potential energy 
an be expressed as

Uc = σ

∫ √
1 + |∇η|2dr ≃ σ

2

∫
|∇η|2dr + U0

c ,where, as before, U0
c is 
onstant. Therefore, the equipartition of energy then reads,

∫ η

−h1

dz

∫
ρ1|∇φ|2

2
dr =

1

2

∫
[ρ1gη2 + σ|∇η|2] dr (4.11)for kineti
 and potential energy averged over a wave period. We 
an use the solutions of Eqs. (4.3)and (4.4), to relate both the potential and interfa
e disturban
es. This approa
h 
an be useful toestimate also the bulk dissipation of the �uid in the small vis
osity limit, as we will will see next.4.1.2 Vis
ous e�e
ts in gravity-
apillary wavesWhen we take into a

ount the vis
osity e�e
ts in the �uid, we 
annot assume the �ow to be potentialeverywhere. Even for small values of the kinemati
 vis
osity ν, vorti
ity, whi
h is just the 
url ofthe velo
ity �eld ∇×v is non-zero. It is generated in small and shallow layers 
lose the boundarieswhere the velo
ity �eld su�ers strong shear. The penetration length δ, that is, the typi
al size of theboundary layer where the �uid is not potential 
an be estimated by balan
ing the temporal derivativeof the velo
ity �eld ∂v

∂t
and the vis
ous term ∇2v in the Navier-Stokes equation as δ ∼ √

ν/ω.Using the same simple analysis one 
an estimate the bulk dissipation in the �uid. To do so, weassume that vis
osity is low, therefore we 
an negle
t the boundary layer 
ontribution to the kineti
energy. Also, for simpli
ity we 
an assume that we are in the "deep layer limit" kh1 ≫ 1, where the�ow does not rea
h the bottom. In this limit, the dissipation rate of the energy γ 
an be estimatedby γ = Pdiss

E
= Pdiss

2K
. The dissipated power by vis
ous stresses Pdiss] is given by

Pdiss =
1

2
ρ1ν

∫

V

e2ijdV,where eij is the se
ond order tensor related to the symmetri
 part of the velo
ity gradients. Sin
e wehave assumed that the vis
ous layer is negligible and thinner than the layer depth, we 
an express
Pdiss as

Pdiss =
1

2
ρ1ν

∫

V

(
∂2φ

∂xi∂xj

)2

dV = 8ρ1νk
4

∫

V

φ2dV.Therefore, the dissipation rate is just γ = 2νk2. Using the Navier-Stokes equation, we 
an alsoestimate the surfa
e layer 
ontribution γS = (νk2)3/2ω
−1/2
k to the damping of surfa
e waves, whi
h isof higher order in the vis
osity, and 
an be negle
ted in the present analysis[7℄. As for the boundarylayer 
ontribution γB, it 
an be found from dimensional analysis, when one balan
es the dissipatedpower over the bondary of depth δ with the kineti
 energy of the �uid in the layer. Taking δ as the
hara
teristi
 s
ale where the velo
ity �eld gradients and v0 its 
hara
teristi
 value, the dissispatedpower due to vis
ous stresses per unit of area is Pdiss ∼ ρ1νv

2
0/δ. The kineti
 energy per unit of area,on the 
ontrary, is going to be integrated over a 
hara
teristi
 distan
e l as ∼ ρ1v

2
0l. In the smallvis
osity limit, δ ≪ l we will not get any 
ontribution of the boundary layer dissipation rate for adeep layer layer of �uid kh1 ≫ 1, be
ause the waves only penetrate 
lose to the free surfa
e over adistan
e of the order of the wavelength. For shallow layers, that is, in the limit kh1 ≪ 1, the wavegenerated �ow rea
hes the bottom of the �uid and therefore the typi
al length l is of the order of the�uid depth. In this 
ase, the dissipation rate related to the boundary layer is γB ∼ ν/δh1 ∼

√
νω/h1.63
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Chapter 5Flu
tuations in Parametri
ally Ex
itedSurfa
e WavesWe present in this 
hapter two experimental studies on the statisti
al properties of the lo
al ampli-tude �u
tuations of parametri
ally ex
ited waves at the surfa
e of a �uid layer. We re
all �rst theme
hanism of parametri
 ampli�
ation of surfa
e waves by means of a simple amplitude equationof the envelope 
lose to the instability threshold. In Se
tion 5.1, following these theoreti
al 
onsid-erations, we present our experimental studies. First, in Se
tion 5.2, we study the lo
al dynami
s ofwave amplitude �u
tuations in an out-of-equilibrium stationary state refered to as defe
t-mediatedturbulen
e, where defe
ts appear over the pattern of standing waves. We des
ribe this turbulent-likeregime and 
hara
terize its appearean
e by means of the qualitative 
hanges of the PDF and PSDof the lo
al wave amplitude. Then, in Se
tion 5.3, we present an experimental study on the e�e
tof spatio-temporal �u
tuations on a set of parametri
ally ampli�ed surfa
e waves. An underlyingvortex �ow generated by a periodi
 Lorentz for
e takes pla
e over the bulk of a 
ondu
ting �uid (inthis 
ase mer
ury) a
ting as the sour
e of these �u
tuations. For that matter we measure both thelo
al wave amplitude and velo
ity �eld of the parametri
 surfa
e waves. We show that the maine�e
ts of these spatio-temporal �u
tuations are to in
rease the threshold value of the parametri
instability and also to de
orrelate the wave amplitude in di�erent pla
es over the 
ontainer, makingthe parametri
ally ampli�ed mode lose its 
oheren
e over the 
ontainer.5.1 Parametri
 Ampli�
ation of Surfa
e WavesThe fundamental idea behind parametri
 ampli�
ation is the temporal or spatial modulation of thefrequen
y of an os
illator or a wave to a
hieve an exponential growth of their amplitude. It was �rstexperimentally studied by Faraday [1℄. He realized that a set of surfa
e waves on a layer of �uidappear when the 
ontainer was vibrated periodi
ally at a given frequen
y. In his experimental set-up,a set of standing waves os
illating at half the for
ing frequen
y (twi
e the period T of the for
ing)appeared over the whole surfa
e, when a threshold value of the 
ontrol parameter (the vibrationamplitude) was surpassed. These waves formed a pattern with di�erent geometries, depending onthe frequen
y and amplitude of the for
ing. This instability was then given theoreti
al ba
kgroundwhen Mathieu[2℄ studied the motion of an os
illating ellipti
 membrane. It has be
ome 
lear thatparametri
 resonan
e is involved in several pro
esses and areas of physi
s, ranging from opti
al andele
troni
 parametri
 ampli�
ation to Bragg s
attering in periodi
 latti
es and energy bands in solidstate physi
s[3℄. 65



To ilustrate this phenomenon in surfa
e waves, we write the evolution equation for the amplitude
ηk(t) of the mode with wave number k and pulsation ωk given by the dispersion relation. Benjaminand Ursell[4℄ have shown that ηk(t) follows a Mathieu equation

η̈k(t) + ω2
k(1 + Γk cos(Ωt))ηk(t) = 0, (5.1)in the linear aproximation for vanishing kinemati
 vis
osity ν (negligible vis
ous layer δh ∼

√
ν/ω2

k).Here, ω2
k satis�es the dispersion relation of surfa
e waves, Γk is the parametri
 for
ing amplitude and

Ω is the for
ing frequen
y. In the 
ase where the a
eleration of gravity is modulated sinusoidally
geff(t) = g + a cos(Ωt), as it is in Faraday's experiment where the 
ontainer is shaken. Γk 
an bewritten as Γk = ak/ω2

k for a deep layer of �uid[5℄.Following the experimental �ndings of Faraday regarding the subharmoni
 behavior of the stand-ing surfa
e waves, we 
hoose Ω = 2(ωk + ∆), where ∆ is 
alled the detunning and represents themismat
h between the eigenfrequen
y ωk of the surfa
e wave of wave number k and the subharmoni
frequen
y of the standing wave pattern Ω/2. The �rst mode of wave number kc to be ampli�ed isthe one with the smallest detunning at a given 
riti
al for
ing amplitude Γkc
. Close to the instabilityonset γ = εΓk (ε ≪ 1) of the �at surfa
e we 
an derive an assymptoti
 normal form for the amplitudeof the mode with wave number kc by writing δ = ε∆. Here ε is a small parameter asso
iated withthe time s
ale separation between the fast time s
ale t ∼ ω−1

k (related to the wave pulsation periodof os
illation) and the slow time s
ale T = εt whi
h 
orresponds to the instability growth rate. Weexpand
ηk(t) = A(T )eiΩ

2
t + A(T )e−iΩ

2
t + h.o.t.,where A(T ) is a 
omplex amplitude, A(T ) is its 
omplex 
onjugate and higher order terms (h.o.t.)
lose to the instability threshold. The variable A des
ribes the slow dynami
al evolution of theenvelope of the standing wave pattern at frequen
y Ω/2. Applying what is 
alled a solvability
ondition, i.e. a 
ondition to eliminate from the solution ηk(t) se
ular terms that grow on a times
ale of the order ∼ εt, we �nd the evolution equation of the slow time dynami
s of the envelope

∂TA = −iδA + i
γ

8
A.Phenomenologi
ally, we 
an add the e�e
t of dissipation in the limit of vanishing vis
osity as Λ = ελand nonlinear saturation by symmetry arguments to the lowest order in the developement in powersof ε. In that 
ase, one 
an write a phenomenologi
al equation for the evolution of the nonlinearlysaturated wave amplitude

∂TA = −(λ+ iδ)A+ i
γ

8
A+ β|A|2A, (5.2)where β is a 
omplex number asso
iated with nonlinear renormalization of the amplitude (real partof β) and frequen
y (imaginary part of β). This equation is known as the 
omplex Ginzburg-Landauequation with parametri
 for
ing and has been extensively studied in several out-of-equilibriumsystems[6℄. It 
an be rigorously 
al
ulated for the parametri
ally for
ed pendulum, where all the
oe�
ients 
an be 
omputed. The threshold value of the instability is found by balan
ing thethe for
ing term γ 
oming from the parametri
 for
ing with the dissipation and detunning. Astraightforward 
al
ulation gives the instability threshold 
urves γ2

c = λ2 + δ2. When the normalized
ontrol parameter ǫ = (γ − γc)/γc is larger than zero, the �at surfa
e be
omes unstable to smallperturbations and a mode of wave number kc grows and invades the whole spa
e. A set of standingwaves appear os
illating at a frequen
y Ω/2, forming a pattern. For working �uids su
h as mer
ury66



and water, the pattern geometry is made of squares. Depending on the sign of the detunning ∆, thenonlinearly saturated wave amplitude behaves di�erently as ǫ grows, as it is shown in Fig. 5.1. Forpositive detunning, the behavior of the nonlinearly saturated wave amplitude A is super
riti
al andthere is no 
oexistan
e with the �at solution A = 0. For negative detunning, A behaves sub
riti
allyand there exists a hysteresis loop that 
onne
ts the nonzero and the �at solution. In the parti
ular
ase where ∆ = 0, the real part of β = 0 and quinti
 terms must be taken into a

ount to saturate
A.
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Figure 5.1: Left: Parametri
 instability 
urves 
urves for the Mathieu equation as it is written inEq. (5.1) for di�erent values of Γk, Ω and ωk. Right: Instability 
urve 
lose to the �rst parametri
resonan
e 
urve for the redu
ed parameters γ, δ and λ.This simple approa
h deals with the 
ase of the ampli�
ation of one single mode. When thefor
ing amplitude is larger than threshold, a set of wave numbers k 
lose to kc 
an be also ampli�ed.It was shown experimentally that se
ondary instabilities develop in parametri
ally ampli�ed surfa
ewaves either at zero wave number (drift instability[7℄) or at �nite wave number (os
illatory instabilityof the kc mode[8℄). Further in
rease in the 
ontrol parameter will lead to a larger ammount of mode
oupling that 
an be taken into a

ount in Eq.(5.2) to the lowest order in ǫ by adding a spatial
oupling of the form α∂XXA. Here, α is a 
omplex number asso
iated with di�usion (real part of
α) and dispersion (imaginary part of α) and ∂X is a large s
ale derivative asso
iated with the wavenumber mismat
h ∆k = k−kc. It is in this 
ontext that the amplitude evolution displays interestingand 
omplex dynami
s, su
h as kinks, domains, lo
alized stru
tures and turbulent-like regimes[9℄.This last type of regime will be the fo
us of the next se
tion, in whi
h we study experimentally thelo
al dynami
s of the standing waves in the turbulent-like regime 
alled defe
t-mediated turbulen
e.5.2 Defe
ts and Defe
t-mediated turbulen
e in parametri
allyex
ited surfa
e wavesAs the normalized 
ontrol parameter ǫ in
reases, more and more modes within the gap of wavenumbers k±∆k are ampli�ed and nonlinearly intera
t. If the gap k±∆k is large enough, this mode-67
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Figure 5.2: Real Re(A) (blue) and imaginary Im(A) (red) parts of the 
omplex amplitude of thelo
al wave pattern for ǫ = 1.41. The lo
ations where A ≃0 
orrespond to defe
ts.
oupling dynami
s will generate a �u
tuating state where large �u
tuations of the wave amplitudeo

ur, large enough to make A approa
h zero in 
ertain pla
es at a given time. The transition fromthe stationary deterministi
 state where the 
omplex amplitude envelope A is 
onstant to a regimewhere spatio-temporal �u
tuations of A o

ur, is a
hieved when the wave system is for
ed stronglyin an out-of-equilibrium state by in
reasing ǫ.There are several of these out-of-equilibrium states or turbulent-like regimes[10℄ that develop when
ellular stru
tures in dissipative systems are present, su
h as the pattern state of the parametri
allyampli�ed Faraday standing waves. Cellular stru
tures in dissipative systems range from periodi
�ngers in dire
ted solidi�
ation to os
illatory patterns in 
hemi
al rea
tions to 
onve
tion rolls[9℄. Inall these 
ases, the amplitude envelope of the periodi
 �eld 
an be des
ribed by an evolution equationsimlar to Eq.(5.2). For the 
omplex amplitude envelope, the turbulent-like regime 
an be dominatedeither by phase or amplitude �u
tations. In the 
ase of phase turbulen
e[11℄, the amplitude of thewave pattern weakly depends on phase �u
tuations. Therefore, no singularities in the amplitudetake pla
e, just small modulations related to the phase dynami
s. When this separation betweenphase and amplitude dynami
s no longer persists, the turbulent-like regime starts to be driven byimperfe
tions in the pattern. The 
hara
teristi
 time s
ale of their dynami
s is slow with respe
t tothe typi
al time s
ale of the standing waves os
illation. Furthermore, their large s
ale �u
tuationsintera
t with the small s
ale of the underlying pattern, transfering the lo
al perturbation from onepla
e of the surfa
e to another one. This is the so 
alled defe
t-mediated turbulen
e[12℄, where thezeros of the wave amplitude appear at random over the pattern.We study experimentally the dynami
s and statisti
s of the zeros of the amplitude in the standingwave pattern. We present the experimental set-up in the following paragraph and the measuringte
hniques used to study the lo
al amplitude dynami
s.68



5.2.1 Experimental set-up and measuring te
hniques
Acc.

sinus at f/2

sinus at f

h(t)

A(t)

Cap.
gauge

amp .

Frequency

synthesizer

PC

Phase sensitive

detection

Shaker

Figure 5.3: First experimental set-up: Waves at the surfa
e of a water layer are parametri
ally am-pli�ed by periodi
 modulation of gravity whi
h is measured by means of a piezoele
tri
 a

elerometerThe lo
al wave amplitude is measured by a 
apa
itive gauge and later demodulated with a phasesensitive devi
e at the subharmoni
 for
ing frequen
y.The s
hemati
 representation of the experimental set-up is shown in Fig.5.3. A 100 x 100 mm2Plexiglass 
ontainer is �lled with a 4 mm layer of water (density ρ ≃ 103 kg/m3, kinemati
 vis
osity
ν ≃ 10−6 m2/s and surfa
e tension σ ≃ 4.0 x 10−2 N/m). In order to prevent evaporation of the �uid,the 
ontainer is sealed with a Plexiglass plate and its temperature is 
ontrolled by 
ir
ulating waterat 20 ± 0.1 °C 
oming from a thermal bath (Lauda RC6 Chiller). To amplify parametri
ally thewaves at the surfa
e of the �uid, the whole 
ontainer was mounted over an ele
tromagneti
 shaker (B
& K 4809) driven by one of the two outputs of a frequen
y syntheziser (HP 8904 A). This providesa 
lean sinusoidal a

eleration geff = a cos(2πft), where f is the ex
itation frequen
y and a is themaximum a

eleration, proportional to the applied voltage V . We have 
hosen f = 60 Hz as theex
itation frequen
y, although we also tested higher frequen
ies between 60 and 120 Hz. There isno qualitative di�eren
e in the pattern or in the lo
al dynami
s of the pattern defe
ts. The verti
ala

eleration modulation geff is measured by a piezoele
tri
 a

elerometer (B & K 4803) �xed to thevibrating 
ontainer, using a 
harge ampli�er (B & K 2635).The lo
al wave amplitude is measured by two 
apa
itive wire gauges, 0.1 mm in diameter, whi
hare pla
ed on one diagonal of the 
ontainer, ea
h one 2 
m away from its 
enter. S
rewed to thePlexiglass plate, they plunge perpendi
ularly to the �uid at rest. This te
hnique, used mainly tomeasure the lo
al height of quasi-stati
 �uids, was applied to wavy liquids in an experiment of69



wave turbulen
e [13℄. The measuring prin
iple of the lo
al wave amplitude uses the fa
t that the
apa
itan
e of a annular 
apa
itor, whi
h plunges into a �uid, is proportional to the lo
al height ofthe submerged part. The insulation (a varnish) of the wire gauge is then the diele
tri
 of the annular
apa
itor with the wire as the inner 
ondu
tor. The outer 
ondu
tor is the �uid itself. For diele
tri
liquids, the measuring prin
iple still holds, although the nature of the outer 
ondu
tor is not 
lear.For an annular 
apa
itor submerged in a diele
tri
 liquid of diele
tri
 
onstant εd, the 
apa
itan
e
C depends on εd/ε0, ε0 being the permitivity of va
uum, and linearly on the submerged length l,that is, the lo
al �uid level. We have measured the 
apa
itan
e C of the wire gauge with the helpof a low-
ost homemade analogi
 multivibrator a
ting as a 
apa
itan
e meter with a response timeof 0.1 ms. It 
an measure 
apa
itan
es up to 200 pF. Depending on the diele
tri
 
onstant of the�uid used to generate the waves, the linear sensing range and proportionality 
oe�
ients 
hange. Wehave experimentally 
omputed the proportionality 
oe�
ients for 3 di�erent �uids (water, εd = 88ε0,ethanol, εd = 10ε0 and sili
on oil, εd = 2ε0), as shown in Table (5.2.1).Fluid Diele
tri
 
onstant ratio εd/ε0

1 Proportionality 
onstant [mm/V℄Water 88 20.15Ehanol 24.3 0.12Sili
on Oil (PDMS) 2.2-2.9 0.02For water-air interfa
e the linear sensing range of the sensor allows waveheight measurementsfrom 0.1 mm (the wire diameter) up to 2 
m with a 20 mm/V sensitivity. It 
an be also appliedto �uid-�uid interfa
es, as long as the diele
tri
 ratio stays large (as it will be seen in the next
hapter). Another important point is the dynami
al range of the 
apa
itan
e meter. The outputof the multivibrator is low-passed �ltered at 13 kHz with a Butterworth �lter of order 6, but thedynami
al 
ontent of the surfa
e height �u
tuations is also �ltered at lower frequen
ies (fdiss ∼100Hz) by the dissipation of small s
ale waves at the menis
us, whi
h is of typi
al size of 2 mm. Forour working dynami
al range, this measuring te
hnique was previously 
he
ked with measurementsperformed with eddy 
urrent displa
ement transdu
ers or with an opti
al determination of the lo
alslope of the surfa
e[14℄. The temporal 
apa
itan
e �u
tuations are not polluted by the water menis
usmotion formed at the lo
al wire gauge.In
reasing the for
ing amplitude a above a threshold value ac, the �at surfa
e is no longer stable tosmall pertubations and a square pattern of standing waves appear through the Faraday instability[1℄.The temporal response to the sinusoidal gravity modulation at ex
itation frequen
y f of these wavesis subharmoni
. The surfa
e waves make a pattern of squares with a wavelength λ of 4 mm at
f=60 Hz. This is 
on�rmed by opti
al observation with a strobos
opi
 light driven at f/2. At thisfrequen
y, no e�e
t of the menis
us on the internal dynami
s of the pattern was observed.Taking the output of the 
apa
itan
e meter, we have demodulated the lo
al wave amplitude h(t)at the subharmoni
 frequen
y as

h(t) = A(t)ei ω
2

t + A(t)e−i ω
2

t + r(t),where ω = 2πf , A is the 
omplex amplitude envelope and A its 
omplex 
onjugate and r(t) arehigher frequen
y 
omponents. The higher harmoni
s in r(t) are at least two orders of magnitudesmaller than the main subharmoni
 response when the pattern is fully developed. To extra
t theslow dynami
s of the envelope A we have used a phase-sensitive dete
tion devi
e (SR 830) driven bya 
arrier signal at frequen
y f/2. The 
arrier signal is taken from the se
ond output of the frequen
y1Values taken from http://www.asiinstruments.
om/te
hni
al/Diele
tri
%20Constants.htm70



synthesizer to avoid spurious detunning between the harmoni
 and subharmoni
 modulations. In thedemodulation pro
ess, the 
arrier and lo
al wave amplitude signals are analogi
ally multiplied. Theprodu
t of both signals is low-pass �ltered with a Butterworth �lter of order 8 and a time 
onstantof 100 ms and ampli�ed. The resulting 
omplex amplitude is separated in real and imaginary part.The sampling frequen
y used to a
quire the slow amplitude �u
tuations is set at 1 kHz (unlessstated di�erently, as shown below), to ensure a good resolution of the amplitude singularities. Weshow in Fig. (5.2) typi
al temporal tra
es of the real and the imaginary part (Re(A), Im(A)) of the
omplex amplitude envelope A in the dynami
al regime of interest where large �u
tuations in thewave pattern o

ur, making possible the rough 
an
ellation of both Re(A) and Im(A), i.e., forming adefe
t. In this experimental 
on�guration, defe
ts are lines dividing two regions where the amplitudein one region is in phase opposition from the other. In terms of the lo
al wave amplitude a defe
tis a line where the envelope passes through zero, i.e. A = 0, whi
h means both the imaginary andreal part of the 
omplex amplitude are zero. These separation lines 
ross the 
ontainer from onewall to the other along the pattern in every dire
tion: from the upper to lower wall, from left toright or running through the diagonals of the 
ontainer. The passage of these phase jumps alongthe separation line is measured pun
tually by the 
apa
itive gauge. The resolution of the 
apa
itivegauge is of the order of 0.1 mm.5.2.2 Experimental resultsNow, we des
ribe the appearen
e of defe
ts in the pattern of standing waves. Fixing the ex
itationfrequen
y f at 60 Hz and in
reasing the redu
ed 
ontrol parameter ǫ = (a − ac)/ac from negativeto positive value, the �rst instability of the system o

urs, where the standing parametri
 wavesappear, os
illating at half the frequen
y of the for
ing. At the threshold ǫ = 0, only the subharmoni

omponent in the wave system appears with a de�ned wave number kc = 2π/λ (λ ∼2 mm) givenby the dispersion relation ωc = ω(kc) = πf . At this frequen
y, there is no observable detunningbetween the eigenfrequen
y ωc and πf [15℄. This means that no slow modulation of the 
omplexamplitude appears. Hen
e, demodulating the lo
al wave amplitude response provides the 
onstantamplitude of the envelope of the pattern. In
reasing ǫ further, se
ondary instabilities develop, asdes
ribed in the pre
eeding se
tion, either at zero wave number (the so 
alled drift instability wherethe pattern "drifts" in a given dire
tion at 
onstant speed) or at �nite wave number. This laterse
ondary instability is known as an os
illatory instability, and it o

urs at nonzero wave number
kc. In our experimental set-up, due to the boundary 
onditions of the 
ell, it is this later type ofse
ondary instability that appears, at a very low frequen
y δf ∼ 1 Hz (in this 
ase 30 or 40 times theperiod of the basi
 pattern). δf is of the same order of magnitude of the frequen
y asso
iated to thebandwith ∆k related to the �nite size L=100 mm of the 
ontainer ∆k ∼ 2π/L. These low-frequen
yos
illations appear one after the other as higher harmoni
s of δf when ǫ is 
onstinously in
reased.There is a strong hysteresis in the 
ontrol parameter in the os
illatory regime. For instan
e, the �rsthystereti
 loop (in between os
illations at δf and 2δf) ranges from ǫ =0.7 to 0.9. In the pro
essfrom the stationary amplitude regime where A is 
onstant to the slowly os
illating one, no phaseturbulen
e is observed. This is 
on�rmed by extra
ting the lo
al phase dynami
s φ of the 
omplexamplitude envelope A (φ = arg(A)). No abrupt �u
tuations in its time derivative φ̇ are found, asit should be in the 
ase of a phase-turbulent regime[16℄. This is due to the fa
t that parametri
instabilities have a strong phase-lo
king between the for
ing modulation and the system response.For larger values of ǫ, the regime where se
ondary instabilites dominate, defe
ts appear in the wavepattern, as des
ribed above. We measure the lo
al passage of a defe
t over the 
apa
itive gauge bymeasuring in the temporal tra
e these singular points where A vanishes. A typi
al tra
e of a defe
t71



pro�le in the wave pattern is shown in Fig. (5.4).
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Figure 5.4: a) Temporal tra
es of the real and imaginary part of A(t) showing the passage of a defe
t(Re(A) = Im(A) = 0). b) Temporal tra
e of |A(t)|, and the 
orresponding modulus of the phasederivative |φ̇(t)|. In this plot, |φ̇(t)| has been multiplied by 0.05 to make it visible in the same s
aleas the amplitude �u
tuations.The points where Re(A) = Im(A) = 0 are the points where the phase φ is ill-de�ned and adis
ontinuity appears. This singularity is removed when it rea
hes the boundaries of the 
ell or whenit 
ollides with another one, therefore a
ting as a dynami
al me
hanism to eliminate �u
tuationsfrom the system. There is a strong 
orrelation between the extrema of the phase derivative φ̇(t)and the points where |A(t)| rea
hes its minima. The pro�le of a defe
t determined with this lo
almeasurement te
hnique is asymmetri
, due to the intrinsi
 dynami
s of the defe
t: it passes throughthe 
apa
itive gauge at non-zero speed, and through its propagation 
hanges the wave pattern bymoving the singularity in the phase till it will rea
h one of the boundaries of the 
ell or anotherdislo
ation, thus vanishing. At this ex
itation frequen
y (f = 60 Hz), the passage time τ of a defe
t,i.e., the amount of time the amplitude |A| takes to go from its mean value to zero and ba
k, is of theorder of 0.1 s, an order of magnitude smaller than the os
illation period of the amplitude modulationdes
ribed above (1/δf ∼ 1 s). In this regime, several defe
ts 
an go through the 
apa
itive gauge,ea
h one with a di�erent velo
ity arriving from di�erent sides of the 
ontainer.The nu
leation of a defe
t is a random event, happening at di�erent pla
es over the pattern. Aswe in
rease the 
ontrol parameter, the time it takes to generate a defe
t that 
rosses the 
apa
itivegauge de
reases. In this state, we 
an study the statisti
al properties of the wave amplitude whenthis type of singularities 
ontrol its dynami
al evolution.We show in Fig.(5.5) the probability distribution fun
tion (PDF) of the normalized amplitude
|A| / 〈|A|〉 . Close to zero the PDF shuts steeply to zero. This shows that the time of passage of defe
tsis very small, and that they are isolated and singular events. It presents a maximum 
lose to 〈A〉 /272
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Figure 5.5: PDF of the normalized amplitude �u
tuations |A| / 〈|A|〉 for ǫ = 1.41 (stars) and anexponential �t (dashed line). Inset: PDF of the normalized real (blue) and imaginary (red) parts of
A for ǫ = 1.41. Normalized normal �t in dashed bla
k line as an eye guide. Here, 〈A〉 = 0.15 mm.and an exponential tail for amplitude �u
tuations 
lose to 〈A〉. For large �u
tuations (|A| / 〈|A|〉 > 2)the PDF goes to zero abruptly, due to the fa
t that no 
usps, burst or eje
tion of dropplets are seen inthe experimental set-up: the wave pattern has still �nite amplitude �u
tuations. This is in 
ontrastto the statisti
s of large amplitude events in the 
omplex Ginzburg Landau equation with parametri
for
ing used to des
ribe parametri
 waves [5, 6℄. The theoreti
ally predi
ted PDF is long-tailedand extreme �u
tuations related to bursts or pulses are possible. Here, the wave pattern 
annotexplore large ampltiude events without wave breaking through dropplet eje
tion, whi
h we avoided.Cusps 
annot o

ur be
ause the wavelength of the basi
 pattern is smaller than the 
apillary length√
γ/ρg ∼ 2 mm, whi
h prevents the formation of blow-up singularities [17℄.The probability distribution fun
tions of both the normalized realRe(A)/σ(Re(A)) and imaginary

Im(A)/σ(Im(A)) parts of the 
omplex amplitude do not present exponential tails, as we show in theinset in Fig. (5.5). Here σ(x) stands for the standard deviation or rms �u
tuations of the �u
tuatingvariable x. The kurtosis of both variables is 
lose to 2, and a small degree of negative (positive)skweness appears for the real (imaginary) part. Furthermore, the real and imaginary 
omponents of
A 
annot be regarded as independent variables either be
ause the 
omputed 
orrelation 
oe�
ient
< Re(A)Im(A) > /σ(Re(A))σ(Im(A)) is 
lose to -0.9. This means that a distribution for waveamplitudes su
h as the Rayleigh distribution∼ |A|e−|A|2/2 [18℄, that takes into a

ount the probabilitydensity fun
tion of the modulus of a gaussian variable, 
annot �t the experimental PDF of |A|, evenif the PDF of Re(A) and Im(A) where gaussian due to the large 
orrelation between Re(A) and
Im(A).We fo
us now on the dynami
al des
ription of the �u
tuating wave amplitude. The appearen
eof defe
ts 
hanges the dynami
al behavior of the wave pattern amplitude, as we 
an see from its73
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Figure 5.6: PSD of the lo
al wave amplitude |A| for ǫ = 1.41. The slope (in red dashed line) is 
loseto −5.0. Inset: PSD of the lo
al wave amplitude |A| for ǫ = 0.84. The �rst harmoni
 peak is at
δf =0.87 Hz. Here, the ex
itation frequen
y �xed at 60 Hz, the pattern is os
illating at 30 Hz and
δf ∼ 1 Hz.power spe
tral density (PSD) in Fig.(5.6). In the regime dominated by the se
ondary os
illatoryinstabilities (in this 
ase os
illatory instabilities related to the box size), the PSD of the amplitude�u
tuations is peaked at δf and its harmoni
s (see inset of Fig. (5.6)). As ǫ is in
reased, defe
ts are
reated in the system and a power-law type of power spe
tral density for |A| over one de
ade appearsfor frequen
ies larger than δf . The frequen
y band where this spe
trum is observed is larger than
1/τ ∼ 10 Hz. Therefore, the dynami
s of the 
omplex amplitude in presen
e of defe
ts is responsiblefor the s
ale-invariant spe
tral �u
tuations. The 
omputed slope is 
lose to -5.For smaller frequen
ies than δf the spe
trum displays a power-law behavior ∼ f−1, related toslow modulations of the large s
ale wave amplitude. Large a
quisitions of the order of a day havebeen made for this matter in order to resolve up to the mHz. At large frequen
ies 
ompared to δf apeak at f/2 appears with a bandwidth of the order of 10 Hz. It is the harmoni
 
omponent of thebasi
 pattern that os
illates at f , shifted to f/2 due to the phase-sensitive dete
tion. This takes ina

ount the mode 
oupling between the harmoni
 and subharmoni
 
omponents, mediated by theappearen
e of the imperfe
tions in the wave pattern.The power-law spe
trum does not result from the �ltering te
hnique. To test this fa
t we have
hanged the order of the Butterworth �lter and the time 
onstant of the phase sensitive dete
tiondevi
e, but maintainig the dynami
al range in order to resolve the power-law spe
tum. No qualitativenor quantitative 
hange was observed. Also, the PSD 
annot be dedu
ed from just the singularitiesof the derivative of |A| when it aproa
hes zero. In that 
ase its PSD would be the one of lo
alderivative dis
ontinuities, i.e., f−4. Kuznetzov [19℄ has proposed several power-law spe
tra to takeinto a

ount singularities in surfa
e waves, depending if there are point or line singularities, or if they74



propagate at a given velo
ity. He predi
ts a power-law spe
trum f−5 when line singularities (A = 0)propagate at 
onstant speed, but in our 
ase the dynami
al variable is the modulus of the envelopeamplitude |A|. Therefore no simple relationship 
an be made between the experimental result andthe theoreti
al predi
tion. To wit, we have 
hanged the sampling frequen
y from 1 to 5 kHz. Nosubstantial di�eren
e in the slope has been observed. The resolution of the defe
t 
ore does not a�e
tthe slope of the spe
trum either. This is 
on�rmed when the ex
itation frequen
y is 
hanged from60 to 120 Hz to make the wavelength smaller.These two separate statisti
al indi
ators, the PDF and the PSD of the lo
al wave amplitude,show the qualitative 
hange in the behavior of the parametri
ally ex
ited surfa
e waves when defe
tsdominate their dynami
s in a stationary out-of-equilibrium state. Their intera
tion with the wavepattern mediate the propagation of wave amplitude �u
tuations from one pla
e of the 
ontainer tothe other. When ǫ grows larger and larger, more defe
ts will randomly appear over the wave pattern,speeding the propagation of these �u
tuations. This out-of-equilibrium stationary state is termeddefe
t-mediated turbulen
e.We have shown in this se
tion that when a large number of modes in the wave number band
kc ± ∆k are parametri
ally ex
ited, �u
tuations of the lo
al wave amplitude are strong enough tobreak lo
ally the wave pattern and for
e the wave amplitude to vanish, forming a defe
t. In thisout-of-equilibrium state of the wave system, no 
ontrol over the wave amplitude �u
tuations 
an bea
hieved. To study the 
ase where �u
tuations of the the parametri
 surfa
e waves 
an be 
ontrolled,we present the next experimental study.5.3 Spatio-temporal noise in parametri
ally ex
ited surfa
ewavesThe 
al
ulations on the �rst se
tion 
onsider the 
ase of the deterministi
 growth of the nonlinearlysaturated amplitude when the for
ing amplitude is 
lose to its threshold value and no �u
tuationsare taken into a

ount. A problem of both theoreti
al and pra
ti
al interest is how parametri
resonan
e is modi�ed when the pump, i.e., the spatial or temporal modulation, is noisy. Only ahandful of experiments have been performed [20, 21, 22, 15℄ to study su
h an e�e
t and in ea
h 
asethe �u
tuations of the pumping me
hanism are temporal. To gain insight on the e�e
t of spatio-temporal �u
tuations on these parametri
ally ampli�ed surfa
e waves, we have developed a sour
e ofspatio-temporal noise by means of a periodi
 Lorentz for
e [23℄. This for
e, a
ting on a 
ondu
ting�uid (in this 
ase, mer
ury) 
reates an underlying vortex �ow that intera
ts with the parametri
allyampli�ed surfa
e waves.
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Figure 5.7: Se
ond experimental set-up. Waves at the surfa
e of a mer
ury layer are parametri-
ally ampli�ed by periodi
 modulation of gravity whi
h is measured by means of a piezoele
tri
a

elerometer. The lo
al wave amplitude and velo
ity �elds are measured by indu
tive sensors andpotential-di�eren
e probes. A 
onstant DC 
urrent is imposed to the mer
ury layer through two
opper ele
trodes whi
h generates a Lorentz for
e FL due to a periodi
 magneti
 �eld generated byan hexagonal array of magnets of alternating verti
al polarity.
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Figure 5.8: Se
ond experimental set-up. Up: Bottom of the 
ontainer, where an array of periodi
allyalternating polarity magnets are positioned in an hexagonal array. On opposite sides of the 
ell two
opper ele
trodes are used to drive a DC 
urrent in the mer
ury layer. Bottom: Mounted 
ontaineron the ele
tromagneti
 shaker, showing the sensors (1) Vivès probes, (2) piezoele
tri
 a

elerometer,(3) indu
tive sensors and (4) 
apa
itive wire gauges.
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5.3.1 Experimental set-up and measuring te
hniquesWe des
ribe the se
ond experimental set-up in this se
tion. A s
hemati
al pi
ture of the experimenalset-up is displayed in Fig. (5.7). A Plexiglass 
ontainer of 70 x 70 mm2 is �lled with mer
ury (density
ρ = 13.6 x 104 kg/m3, kinemati
 vis
osity ν= 1.2 x 10−7 m2/s and surfa
e tension σ= 0.4 N/m)up to a height of 5 mm. At the bottom of the 
ell, alternating verti
al polarity magnets (5 mm indiameter) were pla
ed with a 1 mm gap between them on an hexagonal array (6 mm in wavelength),as depi
ted in Fig. (5.8). The magneti
 �eld strength at the surfa
e of the �uid on top of a magnetis 500 G. Two ni
kel-barnished 
opper ele
trodes were glued at opposite sides of the 
ell, to be in
onta
t with the mer
ury layer. A �ne layer of ni
kel was deposited over them to ensure no 
hemi
alrea
tion between mer
ury and 
opper. The surfa
e stayed 
lean of impurities (amalgams of Ni andHg) for as long as two months. To avoid oxide formation, the surfa
e is kept 
lean by maintainingthe �uid in a nitrogen-�lled atmosphere. Through the 
opper ele
trodes, a DC 
urrent I generatedby a power-supply (Agilent E3336A 20 V - 7 A), is applied to the 
ondu
ting �uid. This givesrise to 
urrent density j, and therefore a Lorentz for
e FL = j × B. The 
ontainer is temperature-regulated by 
ir
ulating water 20.0 ± 0.1°C by means of a thermal bath (Lauda RC6 Chiller). Asin the previous experimental devi
e, an ele
tromagneti
 vibration ex
iter (B & K 4809) driven bya frequen
y syntheziser (HP 8904 A), provides a 
lean verti
al sinusoidal a

eleration (horizontala

eleration less than 1 % of the verti
al one). The e�e
tive gravity in the referen
e frame of the
ontainer is then g+acos(2πft), where g is the a

eleration of gravity, a is proportional to the appliedtension V and f is the ex
itation frequen
y. The verti
al modulation of the a

eleration is measuredby a piezoele
tri
 a

elerometer (B & K 4803) �xed to the vibrating 
ontainer and a 
harge ampli�er(B & K 2635).The surfa
e wave amplitude is measured by two indu
tive sensors (eddy-
urrent linear displa
e-ment gauge, Ele
tro 4953 sensors with EMD1053 DC power supply). Both sensors, 3 mm in diameter,are s
rewed in the Plexiglas plate perpendi
ularly to the �uid surfa
e at rest. They are put 0.7 mmabove the surfa
e. The sensors are lo
ated on one of the diagonals of the 
ontainer, 30 mm awayfrom ea
h other about the 
enter. The measuring me
hanism of the eddy (
ir
ular)-
urrent lineardispla
ement gauge used to measure the position or displa
ement of a 
ondu
ting metal at a distan
e
x relies on ele
tromagneti
 indu
tion [24℄. Two 
oils, 
alled primary (or referen
e) 
oil and se
-ondary (or sensing) 
oil, are positioned one over the other without tou
hing. An alternating tensionis imposed over the primary at high frequen
y (the operating range is in between 50 kHz up to 10MHz). The eddy or 
ir
ular 
urrents indu
ed in the 
ondu
ting material produ
e a magneti
 �eldwhi
h opposes the one on the sensing 
oil. This e�e
t is larger the 
loser the 
ondu
ting material isto the sensing 
oil, due to the fa
t that the 
hange in the magneti
 impedan
e is larger. Althoughgenerally the relationship between the 
oil impedan
e and the distan
e x to the 
ondu
ting materialis nonlinear, for the sensors used in this experiment, the sensing range is linear in very small rangeof x. The type of indu
tive sensors used in this experiment is of the shielded type, allowing it to beembedded in a metal so
ket, as shown in Figs. (5.8) and (5.9). The linear response of these indu
tivesensors in the 
ase of a wavy liquid metal surfa
e has been 
he
ked in a previous study [25℄. Thelinear sensing range of the sensors allows distan
e measurements from the sensor head to the �uidsurfa
e up to 1.27 mm with a 7.9 V/mm sensitivity. A 
apa
itive measurement 
an be also made,but the sensitiviy of the 
apa
itive wire gauge is orders of magnitudes smaller than the one of theindu
tive sensors. The greatest advantage of indu
tive sensors is that they are not perturbative asthe 
apa
itive wire gauges. In 
ontrast, the main disadvantage is that indu
tive sensors average thelo
al �u
tuations over 3 mm, whi
h means that �u
tuations with length s
ales that are smaller than3 mm 
annot be resolved. This is the reason why we have 
hosen the wavelengths in the experimental78



set-up larger than 3 mm.
B

l
v

∆V

Figure 5.9: Left: S
hemati
 view of an indu
tive sensor. A Ele
tromagneti
 proximity sensor. BShielded and C Unshielded sensor. Figure taken from Fraden[24℄, p.279. Right: S
hemati
 view ofa Vivès probe, where the potential di�eren
e ∆V averaged over the distan
e l is proportional to theaveraged ele
tri
 �eld ∫
l
v × B · dl.In addition, the lo
al velo
ity �u
tuations of the �ow 
an also be studied in this experimental
on�guration. They are measured in two points 20 mm from the 
losest wall, 35 mm the farthestone and 50 mm away from ea
h other by means of Vivès probes [26℄. As shown in Fig. (5.9), theseprobes are made by two ele
trodes made of 
opper and separated by a distan
e l=3 mm, that plunge2 mm into the �uid and are isolated 
ompletely from the liquid metal, ex
ept at the end, where theele
tri
al 
onta
t is made. A small 
ylindri
al magnet (5 mm in diameter) is pla
ed 5 mm above theele
trodes, generating a magneti
 �eld strength of 500 G at the ele
tri
al 
onta
t point. The wholesystem is integrated into a 
ylindri
al rod that is s
rewed to the Plexiglass plate. The measuringprin
iple relies on Faraday's law of indu
tion. When an element of 
ondu
ting �uid in presen
e of amagneti
 �eld B passes with velo
ity v in between the wire ele
trodes, an ele
tri
 �eld e is generatedfollowing ∫

l

e · dl =

∫

l

v × B · dl,whi
h in turn 
reates a small tension di�eren
e at the end of the wire ele
trodes. The magneti
 �eldof the magnet in the Viveès probe does not a�e
t the qualitative behavior of the velo
ity �u
tuationsof the �ow. In this approximation we have not taken into a

ount neither the 
onstant nor theindu
ed 
urrents in the 
ondu
ting �uid, whi
h 
an generate also an ele
tri
 �eld. The explanationis as follows: the DC 
omponent is eliminated by high-pass �ltering the potential di�eren
e andthe indu
ed 
urrents are negligible given the low speed of the vortex �ow (low magneti
 Reynoldsnumber Rm). For velo
ity �u
tuations of length s
ales larger than l, the voltage di�eren
e measuredbetween the ele
trodes is proportional to the velo
ity �u
tuations v1 whi
h are orthogonal to theverti
al magneti
 �eld B0 [27℄. A small tension proportional to v1B0l of the order of a few mi
rovoltsis ampli�ed by a fa
tor 105 and a
quired with the amplitude �u
tuations and the a

eleration signals.The DC 
omponent of the signals are �ltered out in the a
quisition. This �ltering eliminates theproblem of 
onstant eddy 
urrents in the indu
tive sensors and the large DC 
omponent in the Vivèsprobes. To resolve statisti
ally the temporal �u
tuations of the measured quantities, the sampling79



frequen
y is �xed at 500 Hz and the a
quisition time is set 800 s, mu
h larger than the typi
al times
ales of the a
quired signals.5.3.2 Experimental resultsWe present in the following se
tion the experimental results of the e�e
t of the spatio-temporal�u
tuations due to the underlying vortex �ow on the standing surfa
e waves. To do so, we startby des
ribing both 
ellular �ows separately. We start by des
ribing the properties of the lo
al waveamplitude and velo
ity pro�le of the parametri
ally ampli�ed surfa
e waves.Parametri
ally ampli�ed surfa
e wavesSubje
ting the 
ontainer to a periodi
al modulation of gravity, surfa
e waves 
an be ampli�ed para-metri
ally. These parametri
 waves respond subharmoni
ally to the modulation. In this experimental
on�guration the modulation frequen
y f is �xed and the modulation amplitude a is 
hanged. At agiven threshold amplitude ac, the �at surfa
e be
omes unstable to small perturbations and stationarysurfa
e waves appear. We observe a square pattern of standing waves without defe
ts.The 
hoi
e of the ex
itation frequen
y f =23.8 Hz is two-fold: to have no time-dependent ampli-tude (an eigenmode of the 
ontainer) and a 
omparable wavelength to the one of the magneti
 �eld
B (λ = 6 mm), larger than the diameter of the indu
tive sensor, whi
h is 3 mm. We have exploreda frequen
y range (20 < f < 30 Hz) in whi
h the wavelength of the pattern and the one of theperiodi
 Lorentz for
e are similar. The wavelength of the parametri
ally ampli�ed waves is roughly8 to 10 times smaller that the size of the 
ontainer. The frequen
y di�eren
e between two su

essiveresonan
e tongues is about 1 Hz. By tuning the ex
itation frequen
y within a 1 Hz interval, it iseasy to work in the vi
inity of the minimum of a resonan
e tongue, without detunning between theex
itation frequen
y and the natural os
illation frequen
y of the surfa
e waves. We show in Fig.(5.10) the bifur
ation diagram of the wave amplitude 〈h1〉 of the parametri
ally ampli�ed surfa
ewaves. Its dependen
e on the redu
ed 
ontrol parameter ǫ = (a− ac)/ac is

〈h1〉 ∼ ǫ1/4,as reported elsewhere [15℄.Given the fa
t that the surfa
e deformations are generated by the 
ellular �ow in the bulk ofthe �uid, the velo
ity �eld also saturates nonlinearly and 
an be used to study the threshold of theparametri
ally ampli�ed waves. To our knowledge, this is the �rst measurement of the lo
al velo
ity�eld in parametri
ally ex
ited surfa
e waves. The bifur
ation diagram of this signal is shown inFig.(5.11). The nonlinearly saturated velo
ity �eld grows as
〈v1〉 ∼ ǫ1/2,in 
ontrast to the lo
al amplitude dependen
e.Both the lo
al wave amplitude and velo
ity �eld present the same threshold value for ac, showingthe growth of one single mode over the 
ontainer and no distinguishable hysteresis loop is found inthe bifur
ation diagrams for h1 and v1. In
reasing ǫ further, more modes are ex
ited. For large ǫ,

ǫ > 0.5, the unstable mode is no longer stationary and low-frequen
y (large-s
ale) modulations ofboth �elds appear due to se
ondary instabilites as explained in the previous se
tion.This 
omplexregime was not studied here. To 
ompute the bifur
ation diagram of ea
h variable X(t) we have used80
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Figure 5.10: (a) Bifur
ation diagram for the wave amplitude 〈h1〉 as a fun
tion of a. (b) Bifur
ationdiagram for 〈h1〉4 as a fun
tion of ǫ = (a− ac)/ac.the Fourier 
oe�
ients at f/2 of the signals, by taking
X̂(ω = πf) = lim

T→∞

∣∣∣∣
1

2

∫ T

−T

X(t)eπiftdt

∣∣∣∣ ,where T is the a
quisition time, mu
h larger than the os
illation period π/f (Tf ∼ 104). Thispro

edure is simply a phase-sensitive dete
tion of the Fourier 
omponent at the os
illation frequen
y
f/2.This weakly nonlinear regime, with a stationary nonlinearly saturated standing wave, will bestudied when �u
tuations in spa
e and time are added to the wave system, through an underlyingvortex �ow.Vortex �owWe investigate now the e�e
t of the periodi
 Lorentz for
e FL on the surfa
e and in-bulk �elds. Theme
hanism of the formation of the �ow is the following: when a 
onstant 
urrent I is applied throughthe liquid metal in the presen
e of a periodi
 magneti
 �eld B, a periodi
 Lorentz for
e FL = j× Bsets the �uid in motion. In this experimental setup up, given the fa
t that the waves at the interfa
ehave very small amplitude with respe
t to the depth of the mer
ury layer, the density 
urrent j 
anbe estimated as j = (I/S)e, where S=3.5 
m2 is the surfa
e 
rossed by the 
urrent and e is a unitaryve
tor pointing normally from one ele
trode (the 
athode) to the other one (the anode).The velo
ity �eld v of the �ow 
an be estimated balan
ing the Lorentz for
e FL that works asthe motor of the motion of the �uid and the 
onve
tive a

eleration ρ(v · ▽)v in the Navier-Stokes81
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Figure 5.11: (a) Bifur
ation diagram for the velo
ity �eld 〈v1〉 as a fun
tion of a. (b) Bifur
ationdiagram for 〈v1〉2 as a fun
tion of ǫ = (a− ac)/ac.equation
ρ

(
∂v

∂t
+ (v · ▽)v

)
= −▽ p+ ρν △ v + FL,where ρ is the �uid density and ν its kinemati
 vis
osity. The order of magnitude for su
h velo
ity�u
tuations at the for
ing s
ale (the magneti
 �eld wavelength λ) for a typi
al DC 
urrent I ∼ 1A is 5 
m/s and the Reynolds Number Re is of the order of 100. Even at low Re, the velo
ity�eld 
reates deformations on the free surfa
e. Both surfa
e and in-bulk �u
tuations present largeamplitude events and low-frequen
y �u
tuations, as it is shown in Fig. (5.12). We study in the nextparagraphs their statisti
al properties.Probability density fun
tions : To study the statisti
al properties of the lo
al response of the�uid to the periodi
 Lorentz for
e, we 
ompute the probability density fun
tion (PDF) of both thelo
al surfa
e amplitude given by one of the indu
tive sensors h1 and the velo
ity �eld �u
tuationsgiven by one of the Vivès probes v1. The other two sensors display similar behaviors. For the a
quiredsignals, at a given value of the DC 
urrent I, we show their 
omputed PDFs in Figs. (5.13) and(5.14). In
reasing the value of I, larger and larger events in lo
al height and velo
ity o

ur. Thestandard deviation or rms value of lo
al surfa
e �u
tuations σ(h1) in
reases with in
reasing 
urrent,as do the rms of the velo
ity �u
tuations σ(v1). The growth rate is linear in I for the latter and asmall departure from linearity is measured in the former (left inset in Figs. (5.13) and (5.14)).When plotted in the res
aled variables h1/σ(h1) and v1/σ(v1), all the PDFs 
ollapse on one 
urve(see right inset in Figs. (5.13) and (5.14)). No 
lear asymmetry is found in the normalized PDFsof both variables. A slight departure from the statisti
s of a normal variable was observed in both82
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Figure 5.12: Typi
al tra
es of the the normalized lo
al amplitude (h1/σ(h1) and h2σ(h2)) and velo
ity(v1σ(v1) and v2/σ(v2)) for I=5 A. Here σ(h1) =0.04 mm and σ(v1) =8 
m/ssignals (the 
omputed kurtosis is 3.2), but not large enough to dis
ard gaussianity.Contrary to the 
ase of a nonlinearly saturated amplitude, these �u
tuations are statisti
allyindependent. We 
an 
orroborate this fa
t by measuring their normalized 
ovarian
e
ρh1v1

= 〈h1v1〉 /
√

〈h2
1〉 〈v2

1〉,where 〈〉 stands for time average. This 
oe�
ient relates the degree of statisti
al independen
e of onevariable to the other. We show in Fig. (5.15) the evolution of this statisti
al indi
ator as a fun
tionof I for di�erent pairs of observables. In
reasing I, in
reases the normalized 
ovarian
e of the lo
alwave amplitude measured at two di�erent points (h1 and h2) from 0.1 at 1 A till 0.25 at 8 A. In
ontrast, the normalized 
ovarian
e for v1 and v2 �u
tuates slighlty arround 0.1 for any value of I, asit is also observed for the pair v1 and h1. In that sense, the vortex �ow 
reates lo
ally independentsurfa
e and in-bulk �u
tuations over the 
ontainer.Power spe
tral densities : As I is in
reased, low-frequen
y �u
tuations dominate the responseof the �uid motion due to the Lorentz for
e. This 
an be seen in the power spe
tral densities (PSD)of both the lo
al amplitude h1 and velo
ity �eld v1, as shown in Fig. 5.16. For the amplitude�u
tuations, the spe
tra display an exponential behavior and no power-laws for the PSD are found,even for large values of I. In the 
ase of the velo
ity �eld, the spe
tra are not exponential and itfollows a power-law 
lose to -5/3. This 
orroborates the fa
t that even at the low Re values a
hievedin this experimental set-up, the �ow remains highly �u
tuating and 
haoti
.When I is less than 1 A, there are 
lear peaks related to the lower normal modes of the 
ontainer,a
ting as 
avity modes for the ex
ited surfa
e waves generated by large amplitude �u
tuations. At83
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Figure 5.13: Probability density fun
tions of the lo
al amplitude �u
tuations h1 for di�erent valuesof the 
urrent intensity I between 1 and 10 A. The arrow shows the sense of in
reasing 
urrent. LeftInset: Loglog plot σ(h1) as a fun
tion of the 
urrent intensity I. Best �t slope is 1.2. Right Inset:Probability density fun
tions of the res
aled lo
al amplitude �u
tuations h1/σ(h1) for di�erent valuesof the 
urrent intensity I between 1 and 10 A. In dashed, Gaussian �t.higher values of I, this 
oherent response is lost. Res
aling the frequen
y by the typi
al turn-overtime of the vortex λ/σ(v1) ∼ 0.1 s and the PSDs of the normalized variables h1/σ(h1) and v1/σ(v1)by its inverse frequen
y, we 
an try to 
ollapse all data on one single 
urve, as shown in Fig.(5.17).For the lo
al wave amplitude �u
tuations, in the explored 
urrent range (1 A < I < 10 A), there isa large dispersion for small values of I, due to the strong persistan
e of the 
avity modes. As statedabove, this 
oherent response is lost on
e the for
ing is large enough (I ∼ 5A). On the other hand,all data for the velo
ity spe
tra 
an be 
ollapsed on one single 
urve.Parametri
 surfa
e waves in the presen
e of spatio-temporal noise: vortex �ow e�e
tLet us now study the e�e
t of the periodi
 Lorentz for
e FL on the growth, saturation and statisti
sof parametri
ally for
ed surfa
e waves. The wavelength of the standing wave pattern is 
hosen tobe of the same order of magnitude as the one of periodi
 vortex �ow, for
ed at wavelength λ =6mm. This is done to maximize the e�e
t of the vortex �ow �u
tuations over the global stationarymode. Therefore, for moderate values of I, the ele
tromagneti
ally for
ed vortex �ow 
an be seenas a sour
e of spatio-temporal noise on the standing surfa
e waves. In presen
e of the vortex �ow,the lo
al wave amplitude and velo
ity �eld of the surfa
e waves �u
tuate strongly as shown in Fig.(5.18). The subharmoni
 response of both �elds de
reases as I is in
reased, till it is lost 
ompletely,as we will show below.The low-frequen
y and large amplitude �u
tuations related to the vortex �ow des
ribed abovepersist when the modulation of the gravity is swit
hed on and intera
t with the small s
ale 
ellular84
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Figure 5.14: Probability density fun
tions of the lo
al velo
ity �u
tuations vp for di�erent valuesof the 
urrent intensity I between 1 and 10 A. The arrow shows the sense of in
reasing 
urrent.Left Inset: Loglogσ(v1) as a fun
tion of the 
urrent intensity I. Best �t slope is 1.0. Right Inset:Probability density fun
tions of the res
aled lo
al velo
ity �u
tuations v1/σ(v1) for di�erent valuesof the 
urrent intensity I between 1 and 10 A. In dashed, Gaussian �t.�ow of the Faraday waves, as we 
an see from the PSDs of the variables h1 and v1 shown in Figs.(5.19)and (5.20), respe
tively. As the for
ing in
reases, the low fre
uen
ies of the spe
tra dominate andthe subharmoni
 response de
reases. This intera
tion between the parametri
ally ex
ited waves andthe vortex �ow also modulates the amplitude of the subharmoni
 response, in
reasing the growthof the bandwidth around f/2, as shown in the insets of Figs.(5.19) and (5.20), till the subharmoni
response dissapears under the noise level of the �u
tutations generated by the Lorentz for
e.
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Figure 5.15: Normalized 
ovarian
e ρxy as a fun
tion of I for h1, h2 (◦), v1, v2 (�) and h1, v1 (⋄).
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Figure 5.16: (a) Power spe
tral density (PSD) of the lo
al wave amplitude �u
tuations h1 for di�erentvalues of the 
urrent intensity I between 1 and 10 A as a fun
tion of the frequen
y F . (b) Powerspe
tral density the lo
al velo
ity �eld �u
tuations v1 for di�erent values of the 
urrent intensity Ibetween 1 and 10 A as a fun
tion of the frequen
y F .86
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Figure 5.17: (a) Power spe
tral density (PSD) res
aled by a time 
onstant σ(v1)/λ of the normalizedlo
al wave amplitude �u
tuations h1/σ(h1) for di�erent values of the 
urrent intensity I between 1and 10 A as a fun
tion of the normalized frequen
y Fλ/σ(v1). (b) Power spe
tral density res
aled bya time 
onstant σ(v1)/λ of the normalized lo
al velo
ity �eld �u
tuations v1/σ(v1) for di�erent valuesof the 
urrent intensity I between 1 and 10 A as a fun
tion of the normalized frequen
y Fλ/σ(v1).
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Figure 5.18: Typi
al tra
es of the the lo
al amplitude h1 and velo
ity v1 when the subharmoni
response is set to I=1 A. We observe the subharmoni
 os
illation and a superimposed large low-frequen
y �u
tuation in both �elds. The ex
itation frequen
y is 23.8 Hz.87
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Figure 5.19: Power spe
tral density (PSD) of the normalized lo
al wave amplitude �u
tuations
h1/σ(h1) for di�erent values of the 
urrent intensity I = 0 to 2 A as a fun
tion of the normalizedfrequen
y 2F/f for a given value of a > ac. Inset: Frequen
y window fo
used on the resonan
e peakof the parametri
ally ex
ited response for I = 0.0 (◦), 0.5 (�), 1.0 (∗), 1.5 (⋄) and 2.0 (⋆) A. Theex
itation frequen
y is 23.8 Hz.
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Figure 5.20: Power spe
tral density PSD the normalized lo
al velo
ity �eld �u
tuations v1/σ(v1)for di�erent values of the 
urrent intensity I = 0 to 2 A as a fun
tion of the normalized frequen
y
2F/f for a given value of a > ac. Inset: Frequen
y window fo
used on the resonan
e peak of theparametri
ally ex
ited response for I = 0.0 (◦), 0.5 (�), 1.0 (∗), 1.5 (⋄) and 2.0 (⋆) A. The ex
itationfrequen
y is 23.8 Hz.When the 
urrent I is in
reased, the 
riti
al a

eleration threshold ac(I) of the subharmoni
response, shifts to higher values as shown in the bifur
ation diagram of lo
al wave amplitude (Fig.(5.21)) and velo
ity (Fig.(5.22)) �u
tuations. As done before, we use the Fourier 
oe�
ients at f/2to 
ompute the bifur
ation diagrams. No distinguishable hysteresis loop is found in the bifur
ationdiagrams for both �elds. The 
orresponding 
riti
al value of ac(I) is the same for both the sub-harmoni
 lo
al wave amplitude and velo
ity responses, showing that the parametri
ally ampli�edwaves develope over the whole 
ontainer. At a given value of ǫ(I) = (a − ac(I))/ac(I), the lo
alwave amplitude in
reases with the 
urrent. This is due to the large values of ac(I)/ac(0). Lo
ally,�u
tuations of the vortex �ow 
an be small enough to let the surfa
e waves explore large amplitudeevents. This is not the 
ase of the lo
al velo
ity �u
tuations, where the nonlinealy saturated velo
ity�eld remains of the same order as before. The dependen
e on the dimensionless parameter ǫ(I) forthe nonlinearly saturated �elds 
ontinues to hold on average: (ǫ(I)1/4 for the lo
al wave amplitudeand ǫ(I)1/2 for the velo
ity �eld), although there is a large dispersion on the res
aled bifur
ationdiagram.Now, we des
ribe from these measurements the e�e
t of the underlying vortex �ow on the growthof the parametri
ally ampli�ed surfa
e waves. One 
lear e�e
t is that the lo
al pattern losses its
oheren
e when we in
rease the �ow intensity. We show in Fig. (5.23)a the normalized 
ovarian
efor the subharmoni
 response of the wave amplitude and velo
ity �elds. In
reasing I for a givenvalue of a > ac(0), (the parametri
 waves are indeed present) de
reases the normalized 
ovarian
e ofthe subharmoni
 response, de
orrelating the �elds at di�erent pla
es in the 
ontainer. This e�e
t isstronger between the lo
al amplitude and the velo
ity �elds. In that sense, the vortex �ow breakslo
ally the pattern stru
ture. 89
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Figure 5.21: Bifur
ation diagram of the lo
al wave amplitude of the subharmoni
 response for I =0.0 (◦), 0.5 (�), 1.0 (∗), 1.5 (⋄) and 2.0 (⋆) A. the ex
itation frequen
y 23.8 Hz.To further prove this point, we 
al
ulate the spe
tral 
oheren
e magnitude
Cx̂ŷ(f) = | 〈x̂(f)ŷ(f)〉 |/

√
|x̂(f)|2|ŷ(f)|2,where x̂(f) and ŷ(f) stand for the Fourier transforms of x and y at frequen
y f . This 
oe�
ientrelates the possibility of two waves to produ
e interferen
e between them at a given frequen
y. In this
ase we 
hoose that frequen
y to be the one of the subharmoni
 response. We show its dependen
eon I in Fig. 5.23b. As in the 
ase of the normalized 
ovarian
e, in
reasing I for a given value of

a > ac(0) de
reases the spe
tral 
oheren
e of the subharmoni
 response till it rea
hes zero. In thatsense, the vortex �ow prevents the wave to maintain its stru
ture over the whole 
ontainer.These two indi
ators relate the degree of statisti
al dependen
e of two �u
tuating quantities (inthis 
ase lo
al amplitude and velo
ity �u
tuations). Taking into a

ount the previous measurementsand the fa
t that both the normalized 
ovarian
e and spe
tral 
oheren
e magnitude are de
reasedwhen the vortex �ow intensity is in
reased, we 
an think of this type of for
ing as a spatio-temporalnoise on the set of parametri
ally ex
ited surfa
e waves.The last part of this experimental study is devoted to the e�e
t of these spatio-temporal �u
tua-tions on the instability threshold value. From the bifur
ation diagrams of the lo
al wave amplitudeand velo
ity �eld, we 
ompute the threshold value ac(I) as a fun
tion of I in the range [0,2℄ A, asshown in Fig. (5.24). The variable (ac(I) − ac(0))/ac(0) in
reases roughly linearly with I. Fromthis 
urve we 
an see that the threshold value of the subharmoni
 waves 
an be shifted by 20 % for
I =2 A, with a rather small value of the vortex �ow intensity (σ(v1) ∼ 5 
m/s). This large 
hangein the instability onset means that we 
annot see the 
hange of the threshold value just as a renor-malization of the eigenfrequen
y of the waves due to noise e�e
ts solely, but also as the appearen
eof an e�e
tive vis
osity that grows with I as the underlying �ow in
reases. We do not attempt to90
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Figure 5.22: (a) Bifur
ation diagram of the lo
al velo
ity �eld of the subharmoni
 response for I =0.0 (◦), 0.5 (�), 1.0 (∗), 1.5 (⋄) and 2.0 (⋆) A. (b) (a) Bifur
ation diagram of the square of the lo
alvelo
ity �eld of the subharmoni
 response for I = 0.0 (◦), 0.5 (�), 1.0 (∗), 1.5 (⋄) and 2.0 (⋆) A.The ex
itation frequen
y is 23.8 Hz.in
rease farther the value of I. This will make the vortex �ow �u
tuations 
omparable to the largestpeak value of the Fourier amplitude of the subharmoni
 response, i.e., it 
annot be viewed as noisyspatio-temporal �u
tuation of the 
ellular �ow, as we 
an see from the insets of Figs. (5.19) and(5.20). This restri
tion avoids the exploration of larger values of I.5.4 Con
lusionsIn this 
hapter we have presented two separate experimental studies of out-of-equilibrium states wherestationary surfa
e waves non-linearly intera
t among themselves or with a vortex �ow. In the �rstexperiment, a defe
t-mediated turbulent regime has been studied. The statisti
al properties of thelo
al amplitude of the stationary parametri
 waves through their PDF and PSD have been studied.The probability density fun
tion of the lo
al wave amplitude reveals no long-tailed distribution forlarge �u
tuations. It de
reases strongly to zero for |A| > 2 〈|A|〉, showing the �nite 
hara
ter ofthe amplitude �u
tuations. The power spe
tral density of these �u
tuations displays a power-lawwith an exponent 
lose to -5 for frequen
ies in between δf (the se
ondary os
illatory instabilityfrequen
y) and f/2 (the basi
 pattern os
illation frequen
y) over one de
ade. This s
ale-invariantbehavior is interpreted as the signature of defe
t-mediated turbulen
e in the wave system when thesesingularities start to dominate the amplitude dynami
s. Although 
orroboration of this fa
t wasmade by mere opti
al observation with a strobos
opi
 light driven at f/2, spatial Fourier analysisshould be performed in order to study experimentally the long-range intera
tion of defe
ts in this91
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Figure 5.23: (a) Normalized 
ovarian
e ρxy as a fun
tion of I for h1, h2 (◦) and h1, v1 (�). (b)Spe
tral 
oheren
e magnitude Cxy as a fun
tion of I for h1, h2 (◦) and h1, v1 (�).type of systems.In the se
ond experiment, we have studied the e�e
t of a vortex �ow on the �u
tuations ofthe lo
al wave amplitude and velo
ity �eld of a set of parametri
ally ex
ited surfa
e waves at a�uid surfa
e. The vortex �ow is generated by a periodi
 Lorentz for
e FL = j× B in the bulkof a liquid metal (mer
ury). When the sole ex
itation is the parametri
 pumping, the standingwave pattern developes and stationary surfa
e waves appear over the �uid surfa
e. When the soleex
itation of the �uid motion is the vortex �ow, the statisti
al properties of the surfa
e waves werestudied separatetly. The PDFs of lo
al wave amplitude h1 and velo
ity �eld v1 are roughly normalwith their standard deviations growing linearly with the strength of the �ow. The PSDs of thetemporal �u
tuations of the wave amplitude are found to be exponential and the PSD of the velo
ity�u
tuations display a power-law. Also, the normalized 
ovarian
e between the a
quired signals was
omputed as a fun
tion of I, staying always below 0.2. This means that the 
orrelation length ofthe for
ing (vortex �ow) is mu
h smaller than the size of the 
ontainer (whi
h is 
omparable to the
orrelation length of the pattern stru
ture). As a remark, these measurements indi
ate that thistype of for
ing 
annot generate 
oherent waves and therefore phenomena su
h as propagation ofwave trains or wave turbulen
e may not be displayed in the presen
e of an underlying �ow.Later, we have shown experimentally that the vortex �ow 
an a
t as a sour
e of spatio-temporalnoise on a parametri
ally ex
ited set of waves at a �uid surfa
e. Its presen
e de
orrelates the surfa
ewaves over the 
ontainer. Indeed, the normalized 
ovarian
e ρxy and spe
tral 
oheren
e magnitude
Cxy at the subhamoni
 frequen
y f/2 de
rease strongly in presen
e of the underlying �ow as I isin
reased. The main e�e
t of the vortex-wave intera
tion is the growth of the threshold of theparametri
 instability. The large growth of parametri
 instability onset 
annot be a

ounted solelyby the nonlinear 
hange in the eigenfrequen
y of the standing pattern due to the nonlinear 
oupling92
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Chapter 6Flu
tuations in Capillary Wave Turbulen
eThis last 
hapter is devoted to wave turbulen
e. In this state, a set or weakly nonlinear surfa
ewaves intera
t randomly between themselves, developing a stationary state where �u
tuations inwave amplitude o

ur that 
annot be des
ribed by equilibrium distributions. We will fo
us mainlyon experimental studies on wave turbulen
e at air-�uid (or �uid-�uid) interfa
e when the e�e
t ofsurfa
e tension is important.In the �rst se
tion, we give a short overview of the theoreti
al ba
kground of wave turbulen
eand the handful of experimental studies made so far on the subje
t, parti
ularly on a set of studiesof gravito-
apillary wave turbulen
e performed in laboratory experiments. Later, we des
ribe ourexperimental devi
es used to study 
apillary wave turbulen
e. Then, we present the experimentalresults.6.1 Wave Turbulen
eIt was established 40 years ago that a set of weakly 
oupled dispersive waves 
an develope an out-of-equilibrium steady state 
alled wave turbulen
e[1℄. In this state, the wave amplitude Ak(t) of themode with wave number k, �u
tuates due to the weakly nonlinear intera
tions with other waves anda statisti
al des
ription of the wave system properties (su
h as the �u
tuations of energy, momentumand other 
onserved quantities for the wave system) must be used. The equations of motion aretypi
ally of the form
dAs

k

dt
+ isωkA

s
k =

∑

si

∫
Lss1s2s3...sN

kk1k2k3...kN
As1

k1
As2

k2
As3

k3
...AsN

kN
δ(k1 + k2 + k3 + ...− k)dk123...N (6.1)where the si are equal to ± in su
h a way that A+

k = Ak and A−
k = A∗

k. This equation has two main
ontributions to the evolution of Ak: the os
illation related to the typi
al pulsation frequen
y of thewaves (isωkA
s
k) and the nonlinear intera
tion term, whi
h relates the lo
al intera
tion of a number

N of waves with wave number ki and amplitudes Asi

ki
through a s
attering matrix Lss1s2s3...sN

kk1k2k3...kN
whi
honly takes into a

ount the wave ve
tors whi
h satisfy the resonan
e k1 + k2 + k3 + ... + kN = k.Theoreti
ally, the equations of evolution of the amplitudes Ak 
ome from a Hamiltonian, whi
h isnonlinear in Ak. There is no dissipation taken into a

ount in the theory, at least in a transparen
ywindow in between the inje
tion s
ale (usually set at k =0 or at the s
ale of the system) and thedissipation s
ale. In wave turbulen
e theory, the dissipation s
ale is usually set at k → ∞. In thededu
tion of this type of equations, 
ertain hypothesis have been used, namely the homogeneity andisotropy of spa
e, lo
ality of the intera
tions (whi
h means that the wave ve
tors that 
an intera
t to96




ontribute to the evolution of Ak are the ones that satisfy the resonan
e 
ondition des
ribed abovein the so 
alled resonant manifold) and a 
ertain degree of ergodi
ity in order to take averages inspa
e and relate them to the temporal averages.The strength of the theory 
omes from the possibility of des
ribing the evolution of the waveamplitude in terms of the density distribution of wave numbers nk, whi
h is related dire
tly to these
ond moment 〈AkA
∗
k′〉 = nkδ(k − k′) of the �u
tuating wave amplitude Ak. It is important tonoti
e that higher moments of the wave amplitude 〈As1

k1
As2

k2
As3

k3
...〉 
an be written as a fun
tion of nkonly, be
ause there exist an asymptoti
 
losure for the problem [3℄.The distribution nk displays a slow dynami
al evolution (the pulsation frequen
y is eliminatedfrom the e�e
tive dynami
s and enters as a 
ondition of resonan
e of the wave set), given by thesmall nonlinear intera
tion between waves of di�erent wave numbers, at slow time s
ales with respe
tto the fast dynami
s of the dispersive wave system. The separation between the fast (linear) andslow (nonlinear) time s
ales makes possible to des
ribe the evolution of the wave system to an out-of-equilibrium state by a means of a kineti
 equation for nk. The kineti
 equation has the form

∂tnk = π
∑

ki

∫
(|Lss1s2

kk1k2
|2δ(k − k1 − k2)(nk1

nk2
− nk(nk1

+ nk2
))

− 2|Ls1ss2

k1kk2
|2δ(k − k1 − k2)(nknk1

− nk1
(nk + nk2

)))δ(ωk − ωk1
− ωk2

)dk12, (6.2)for 3 intera
ting waves, for instan
e [1℄. It takes into a

ount only the se
ond moment of the waveamplitude. The higher moments of the amplitude are 
omputed as a fun
tion of nk, and that is usedto 
ompute the kineti
 equation.The density distribution evolves by a resonan
e pro
esses between waves to a stationary state.The number of intera
ting waves depends on both the dispersion relation ωk = ω(k) = ω(k) and theorder of nonlinearity of the expansion of the intera
tion terms between waves. The kineti
 equationin wave turbulen
e posseses, very mu
h like the Boltzmann equation for a diluted gas, an H theoremthat drives the system in an irreversible way to the thermodynami
 equilibrium (
hara
terized bythe Rayleigh-Jeans distribution). An important point of this theoreti
al developement is the fa
tthat the kineti
 equation 
an support non trivial solutions, di�erent from those of thermodynam-i
s equilibrium. Zakharov [2℄ proved that there are out-of-equilibrium solutions that des
ribe thetransport of 
onserved quantities like energy from the large s
ale of the inje
tion of energy to thesmall s
ale, where energy is dissipated. Within this inertial bandwidth of wave numbers a power-lawdensity distribution is a solution: nk ∼ k−α, with α > 0 the Kolmogorov-Zakharov exponent whi
hdepends on the type of dispersion relation and the number of nonlinear intera
tions. By analogywith the energy 
as
ade in fully developed hydrodynami
 turbulen
e [4℄ these solutions are namedKolmogorov-Zakharov's spe
tra (KZ). KZ spe
tra have been theoreti
ally predi
ted for gravity and
apillary surfa
e waves [5, 6℄, Alfvèn waves in astrophysi
al plasmas [7℄, ion waves in plasmas [8℄,nonlinear opti
s [9℄, bending waves in thin elasti
 sheets [10℄ and so forth. Moreover, numeri
alsimulations show the realisation of wave turbulen
e regimes with KZ power-law spe
tra in gravity[11℄ and 
apillary [12℄ wave turbulen
e.Even though wave turbulen
e has been theoreti
ally and numeri
ally studied in several physi
alsystems, experimental eviden
es of the appearen
e of this out-of-equilibrium state are s
ar
e. KZspe
tra have been observed in atmospheri
 s
ien
e [13℄, surfa
e 
apillary waves [14, 15, 16℄, internalwaves in the o
ean [17℄ and spin waves in solids [18℄. In all these experimental studies, there was no
ontrol of the inje
tion me
hanism nor on its e�e
t on the nonlinear intera
tions between waves.Re
ently, a new set of experimental studies have been 
ondu
ted on the subje
t of gravito-
apillarywave turbulen
e in laboratory [19, 20℄. In these experien
es, a 
apa
itive wire gauge re
orded the97



lo
al wave amplitude �u
tuations η(t) of random waves for
ed at the surfa
e of a �uid. To re
ordthe lo
al wave amplitude, we will use the same prin
iple of 
apa
itive measurement of [19, 20℄ in ourexperimental study.
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Figure 6.1: Laboratory gravito-
apillary wave turbulen
e experimental set-up and a typi
al timere
ording of the surfa
e wave height, η(t) at a given lo
ation during 50 s. (Taken from [19℄).6.2 Gravito-
apillary wave turbulen
e in laboratory experi-mentsTo introdu
e the subje
t, we des
ribe the experiment used in [19, 20℄ to study gravito-
apillary waveturbulen
e, as it is s
hemati
ally shown in Fig.(6.1). Contrary to the 
ase of parametri
 ex
itationdes
ribed in Chapter 5, surfa
e waves are generated here by the horizontal motion of two re
tangular(10 x 3.5 
m2) plunging Plexiglas wave makers driven by two ele
tromagneti
 vibration ex
iters (B
& K 4809) via a power supply (Kep
o Bop50-4A). The wave makers are driven with random noiseex
itation, supplied by a fun
tion generator (SR-DS345), and sele
ted in a frequen
y range 0-fdrivwith fdriv in the range 4 to 6 Hz by a low-pass �lter (SR 640). This 
orresponds to wavelengthsof surfa
e waves larger than 4 
m. This is in 
ontrast with most previous experiments on 
apillarywave turbulen
e driven by a mono
hromati
al ex
itation frequen
y (mainly parametri
 ampli�
ation[14, 15, 16℄). Surfa
e waves are generated 2.2 
m inward from two adja
ent vessel walls and thelo
al displa
ement of the �uid in response to these ex
itations is measured 7 
m away from the wavemakers. The size of the 
ontainer is 200 x 200 mm2 �lled with �uid up to 20 mm.From the a
quired lo
al wave amplitude �u
tuations of η the probability density fun
tion (PDF)and power spe
tral density (PSD) were 
omputed, as shown in Fig.(6.2). For large for
ing amplitudes,when gravito-
apillary turbulen
e is developed over the surfa
e, the PDF of η is asymmetri
. The98
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Figure 6.2: Left: Probability density fun
tion of the lo
al wave amplitude η for 6 di�erent valuesof the �uid depth, from h = 18, 35, 55, 80, 110, to 140 mm (see the arrow). The frequen
y bandis 0≤ f ≤ 6 Hz. Inset: Same PDFs displayed using the redu
ed variable η/√〈η2〉. Gaussian �twith zero mean and unit standard deviation (dashed line). Right: Power spe
tra of the lo
al waveamplitude η for two di�erent driving amplitudes. The frequen
y band is 0≤ f ≤ 6 Hz. Dashed lineshave slopes -4.3 and -3.2. Inset: The frequen
y band is 0≤ f ≤ 4 Hz. Dashed lines had slopes of-6.1 and -2.8. (Both �gures are taken from [19℄).high 
rests (positive events) are more probable than the deep troughs (negative events). The meanlevel of lo
al wave amplitudes 〈η〉 ≃ 0. In the res
aled variable η/√〈η2〉, all the PDFs 
ollapse onthe same 
urve. This behavior does not 
hange when the �uid depth is in
reased.The power spe
trum of the surfa
e wave amplitude is re
orded from 4 Hz up to 200 Hz duringa time period (∼ 2000 s), large with respe
t to the smallest resolved frequen
y, in this 
ase, 4 Hz.When the for
ing is small, peaks related to the for
ing and its harmoni
s are visible in the lowfrequen
y part of the spe
trum, as it is displayed in Fig.(6.2) (left, lower 
urve). When the for
ing isin
reased, the peaks related to the for
ing and its harmoni
s are smeared out. A power law type ofspe
trum developes in a small band of frequen
ies. At higher frequen
ies, larger than 30 Hz, anotherpower law 
an be �tted with a di�erent slope. This frequen
y fc 
orresponds to the transition fromgravity-driven waves to 
apillarity-driven waves and is related dire
tly to the 
apillary length lc. Atthis length both restitution for
es have the 
omparable e�e
t in the dispersion relation
ω(k)2 = gk +

σ

ρ
k3,for a deep layer of �uid of density ρ and surfa
e tension σ (see Chapter 4). From this relation, the
apillarity length is 
omputed as lc =

√
σ/gρ, giving a 
ross-over frequen
y fc =

√
g/2π2lc. For theworking �uid, mer
ury, lc ∼ 1.74 mm and fc ∼ 17 Hz. These parameters keep the same order ofmagnitude when the �uid is 
hanged for water. The 
apillary length 
annot be signi�
antly 
hangedusing other interfa
es between simple liquids and air. It is at an intermediate s
ale between the sizeof the experiment and the dissipative length. The theoreti
al value fc is in good agreement withthe experiment (see inset in Fig. (6.2)) for a low-frequen
y broad band for
ing. At higher for
ing,there is a shift (see main Fig.(6.2)) whi
h 
an be due to nonlinear intera
tions between gravity and
apillary waves, but that deserves to be experimentally and theoreti
ally studied. At even largerfrequen
ies, larger than 100 Hz, the dissipation of surfa
e waves takes pla
e at the 
apa
itive wiremenis
us. 99



The experimental spe
trum density was 
ompared to the theoreti
ally predi
ted KZ power spe
-tral density Sη(f) whi
h follows a power law depending on the resitution for
e a
ting on the wavesystem. For surfa
e wave turbulen
e, the predi
ted spe
tra [1℄ are
Sη(f) ∼ ǫ1/3gf−4 for gravity waves,
Sη(f) ∼ ǫ1/2

(
σ

ρ

)1/6

f−17/6 for 
apillary waves, (6.3)where ǫ is the mean inje
ted energy �ux per unit of mass into the system. The exponent in thespe
tra is related dire
tly to the number of waves whi
h take part in the s
attering matrix L and thedispersion relationship. For gravity waves, 4 waves intera
t in the resonant pro
ess, and for 
apillarywave turbulen
e, 3 waves intera
t (unless 
ertain symmetries are impossed to the system).These spe
tra 
an be also found by dimensional analysis [21℄. To do so, one 
an use
∫ ∞

−∞

Sη(f)df = 〈η2〉,whi
h has units of (distan
e)2, that we will write as L2. As df has units of inverse of time T−1,
Sη(f) ∼ L2T 1. The other parameters of the system have the following units g ∼ LT−2, (σ/ρ) ∼
L3T−2, f ∼ T−1 and ǫ ∼ L3T−3. Using dimensional analysis, we assume that we 
an write the powerspe
trum density as a polynomial fun
tion Ψ of the adimensional parameters of the problem 
alled
Πi. The number of independent Πi is given by the number of dimensional quantities of the problem(in this 
ase 5) minus their dimensional units (in this 
ase distan
e L and time T , i.e. 2)) [22℄. Then
Ψ 
an be written as

Π1 ≡
Sη(f)

ǫ2/3f−3
= Ψ(Π2 ≡

σf

ǫρ
,Π3 ≡

g3f−3

ǫ
). (6.4)In the wave turbulen
e regime, where the for
ing applied at large s
ale is dis
arded (f/fc ≪1),the surfa
e wave turbulen
e spe
trum of lo
al wave amplitude Sη(f) 
an be either driven by gravity

lim
Π2→0

Ψ(Π2,Π3) → Ψgrav(
g3f−3

ǫ
),or surfa
e tension

lim
Π3→0

Ψ(Π2,Π3) → Ψcap(
σf

ǫρ
).At this point, we 
annot 
on
lude on the behavior of the fun
tion Ψ, and 
ertain assumptions have tobe made. We mainly assume that the the number of intera
ting waves will �x the power-law behaviorof Ψ though the energy �ux ǫ: for N resonant wave pro
ess, the spe
trum Sη(f) dependen
e on theenergy �ux goes as ǫ 1

N−1 . For gravity waves, the number of waves intera
ting in the gravity regime is4 [21℄, the exponent of the mean inje
ted power must be 1/3. Therefore Ψgrav(x) ∼ x1/3 and we get
Sη(f) ∼ ǫ1/3gf−4. For 
apillary wave turbulen
e, the number of intera
ting waves is 3 [21℄, therefore
Ψcap(x) ∼ x1/6 and we get Sη(f) ∼ ǫ1/2(σ

ρ
)1/6f−17/6.An important result of the experimental study is the strong dependen
e of gravity wave turbulen
eon the for
ing amplitude: the smaller the amplitude of the for
ing, the steeper the slope of the
omputed power-law spe
trum. The experimental value varies from -4 for large for
ing amplitudeand small driving frequen
y band (fdriv=4 Hz) to almost -7 for small for
ing amplitude and largedriving frequen
y (fdriv=6 Hz). When the for
ing is not strong enough, harmoni
s of the for
ing still100



appear over the experimental spe
trum [19℄. The transition from the for
ing peak resonan
e to thedeveloped gravity wave turbulent state deserves further study.For 
apillary wave turbulen
e, the situation is di�erent. The experimental slope of 
apillaryspe
tra are 
lose to the theoreti
ally predi
ted one Sη(f) ∼ f−17/6. It is found to be independent ofthe for
ing [19℄. We will further study this regime in this Chapter.Comment on the relation between frequen
y (lo
al) and wave number (spatial) mea-surements: The experimental power spe
trum density dis
ussed in the previous se
tion is dedu
edfrom the re
orded wave amplitude �u
tuations of a lo
al measurement. This spe
trum, when waveturbulen
e is developed in the surfa
e wave system, displays two distin
t frequen
y windows wherea power-law type of spe
trum developes: at low frequen
y (in between fdriv and fc) a gravity waveregime, and at high frequen
y (in between fc and fdis), a 
apillary one. For ea
h regime, a 
ompari-son between experiment and theory was made [19℄. The point we would like to dis
uss brie�y hereis the fa
t that the theoreti
al 
al
ulations of the power spe
trum density are made on wave numberspa
e [1℄ and not in frequen
y domain. As we are 
onsidering a statisti
ally homogenous system inspa
e, it is natural to 
ompute the moments and statisti
al properties of the wave �u
tuations bytaking spa
e averages. Nevertheless, from the experimental point of view, taking spa
e averages isquite a di�
ult task. On the 
ontrary, time averages of lo
al wave amplitudes are mu
h a

essible.It is possible to relate both for stationary solutions in the linear regime as follows:
nT (ω) ∝ kd−1 dk

dω
n(k)where nT (ω) is the time averaged density distribution, now written in frequen
y domain, and d isthe dimension of the spa
e where waves propagate (in this 
ase d = 2). This is done by assumingthe validity of the linear dispersion relation ωk = ω(k), where dω(k)

dk
is well de�ned. The ful�llment ofthe dispersion relation in the weakly nonlinear regime is taken as a fa
t for the 
omparison betweentheoreti
ally and experimentally 
omputed power spe
trum densities. In what rests, we will assumethat the dispersion relation is valid.6.3 Capillary wave turbulen
eCapillary waves are ubiquitous in nature. They appear whenever the interfa
e between two �uids isperturbed. In the presen
e of another restitution for
e that 
an sustain surfa
e waves (su
h as gravityor a magneti
 �eld), a 
ompetition between both will o

ur, generating naturally a 
rossover length(in the 
ase of gravito-
apillary waves, it is the 
apillary length lc). When for
ed out-of-equilibrium,their nonlinear intera
tion 
an produ
e a turbulent-like regime termed 
apillary wave turbulen
e.Capillary wave turbulen
e is the assymptoti
 regime where dispersive 
apillary waves at the interfa
ebetween two �uids intera
t randomly through weak nonlinearities. This intera
tion generates anout-of-equilibrium stationary state where the density distribution nk displays a power-law behavioras a fun
tion of the wave-number k. In this subje
t, theoreti
al, numeri
al and experimental studiesagree in showing the appearan
e of a s
ale-invariant KZ spetrum. Even so, there are several aspe
tsof 
apillary wave turbulen
e that have not been properly addressed or 
ompared between theory,experiments and numeri
al simulations, for instan
e, the non-gaussianity of the wave amplitudes[23℄, the nature and existen
e of intermiten
y in a wave system [20, 24℄ or the role of symmetriesand dissipation in the wave intera
tions [25, 26℄. From the experimental point of view, gravity waveshave always been present in the former experiments [14, 15, 16℄, and their nonlinear intera
tions with
apillary waves has not been taken into a

ount theoreti
ally nor experimentally.101



To adress these points, pure 
apillary wave turbulen
e must be studied. The main issue in groundexperiments in surfa
e wave turbulen
e is the intera
tion between diferent types of waves a
ting in thesame system, su
h as the 
ase of gravito-
apillary wave turbulen
e. Through the 
hara
teristi
 s
alesof ea
h 
as
ade, energy and other 
onserved quantities must be transported. This is done throughdi�erent pro
esses, envolving di�erent me
hanisms. Therefore, to properly study pure 
apillary waveturbulen
e, surfa
e gravity waves must be either negligible or eliminated. In the following se
tion,we present two experimental 
on�gurations where this 
an be a
hieved.6.3.1 Experimental set-up and measuring te
hniquesWe present now the experimental devi
es used to study the statisti
al properties of the lo
al waveamplitude �u
tuations in pure 
apillary wave turbulen
e at the interfa
e between two �uids. To beable to negle
t gravity e�e
ts as spureous 
ontamination of the 
apillary regime we designed twodi�erent set-ups. The �rst experiment, realized in a low-gravity environment, allowed us to probethe lo
al wave amplitude �u
tuations in a 
apillary wave turbulen
e regime and also parametri
allyampli�ed surfa
e waves in a spheri
al 
ontainer. It is the �rst experimental report on low frequen
y(large s
ale) 
apillary wave turbulen
e. The se
ond laboratory experiment was performed using agravity-mat
hing te
hnique, where two inmis
ible �uids of similar densities where superposed, elim-inating the a

eleration of gravity from the surfa
e wave dynami
s. In this 
on�guration, 
apillarywaves in deep �uids display a symmetri
 distribution of amplitudes with respe
t to the equilibriumlevel, in 
ontrast to the gravito-
apillary wave turbulen
e distribution of wave amplitudes.Mi
rogravity experimentBefore des
ribing the experimental set-up, we �rst explain the pro
edure and the ne
essary 
onsid-erations to perform an experimental study in a low-gravity enviroment. Low-gravity enviroment isa
hieved by �ying with the spe
ially modi�ed Airbus A300 Zero-G air
raft (operated by Novespa
efor the Centre National d'Etudes Spatiales [27℄ at Bordeaux, Merigna
), through a series of paraboli
traje
tories (∼ 90) whi
h result in low-gravity periods, ea
h one of 20 ± 2 s. Two 
ampaigns whereperformed, separated by 6 months. In the �rst (last) se
ond of the paraboli
 �ight, the a

elerationof gravity de
reases (in
reases) and transient e�e
ts 
an polute the experimental measurements. Dueto this fa
t they are not taken into a

ount in the a
quisition of data, and only 18 s are a
quired.The e�e
tive gravity geff in a typi
al traje
tory is low with respe
t to the a

eleration of gravity gon ground geff/g ∼ 5 x 10−2. Although small, �u
tuations in geff o

ur, 
alled g-jitters.Experimental devi
e: The dynami
al part of the experimental set-up is depi
ted s
hemati
allyin Fig. (6.3). An inner 
ontainer is partially �lled with a �uid. The 
ontainer geometry is eitherspheri
al (15 
m in diameter) or 
ylindri
al (15 
m in diameter, 18 
m in length). Ea
h 
ontainer ismade of a wetting material (Plexiglas 
ylinder or glass sphere) to avoid that the �uid loses 
onta
twith the internal wall of the 
ontainer during the mi
rogravity phases. A

ording to its geometry, the
ontainer is �lled with 20 or 30 
l of �uid. This 
orresponds to an uniform �uid layer of roughly 5 mmdepth 
overing all the internal surfa
e of the 
ontainer during the mi
rogravity phases. The inner
ontainer is �xed inside an outer 
ontainer whi
h is made of poly
arbonate (Lexan) and is air-tightto avoid �uid leaks. Se
urity standards have to be respe
ted in order to performed experiments inlow gravity. As it is shown in Figs. (6.3) and (6.4), the whole system is put down on a rail and issubmitted to vibrations by means of an ele
tromagneti
 ex
iter (BK 4809) via a power supplied (BK102



Figure 6.3: First Experimental set-up: Mi
rogravity experiment. A spheri
al or 
ylindri
al 
ell is�lled with a �uid. The waves at the surfa
e of the �uid are ex
ited by a low-frequen
y (large s
ale)for
ing performed by an ele
tromagneti
 shaker. Lo
al wave amplitude �u
tuations are measured bymeans of a 
apa
itive wire gauge. A

eleration measurements were done by means of a piezoele
tri
a

elerometer and a 
harge ampli�er. The �uid motion and lo
al wave patterns are also re
orded bymeans of a 
amera and a video
amera.2706). We have used two type of for
ings: sinusoidal to study parametri
 instabilities and randomto study wave turbulen
e.� In the wave turbulen
e 
ase, the 
ontainer is driven with random noise, supplied by the sour
eof a dynami
al analyzer (Agilent 35 670A), and low-pass �ltered in the frequen
y range 0 - 6Hz by a low pass �lter (SR 650). This 
orresponds to wavelengths of surfa
e waves larger than1 
m in zero gravity.� In the 
ase of wave patterns, the 
ontainer is driven with a sinusoidal for
ing at frequen
y f0in the range 10 ≤ f0 ≤ 70 Hz, for
ing amplitude d0 of few mm 
orresponding to a 
ontainera

eleration 0.1 g ≤ a0 ≤ 30 g.In this 
hapter, we will fo
us mainly on random for
ing. Further investigations of the dynami
alproperties of parametri
ally ex
ited surfa
e waves are presented in the publi
ation on the subje
t inthe Appendix. The lo
al a

eleration of the 
ontainer is measured with a piezoele
tri
 a

elerometer(B & K 4803), whi
h is s
rewed on the 
ontainer, and a 
harge ampli�er (B & K 2635). The �uidused is either ethanol or water. The lo
al displa
ement of the �uid is measured with two 
apa
itivewire gauges, plunging perpendi
ularly to the working �uid in two di�erent pla
es. At the beginningof ea
h re
ording, great 
are was taken to have one wire gauge always plunging into the �uid in orderto avoid voltage jumps if the water dewets lo
ally the wire. The sensor working me
hanism, lineardynami
al range and response time were des
ribed in the previous 
hapter. In the �rst 
ampain,a dynami
al signal analyzer (Agilent 35670A) is used to re
ord the power spe
trum of the surfa
ewave amplitude and the a

eleration of the 
ontainer during ea
h mi
rogravity phase. In the se
ond
ampaign, both type of signals are low-pass �ltered with an ele
troni
 �lter (SR650) at 4 kHz to avoidaliasing and re
orded simultaneously at 10 kHz using an a
quisition 
ard (National Instruments PCI6052E) inserted into a PC. The �uid surfa
e is visualized with a Nikon 
amera and re
orded with103



Figure 6.4: Left: Outer 
ontainer in the low-gravity set-up with inner spheri
al 
ontainer.Center:Experimental set-up mounted on aluminium ra
k on Airbus A300 Zero-G. Right: Outer 
ontainerin the low-gravity set-up with inner 
ylindri
al 
ontainer. (Photos taken with gravity (�uid is at thebottom of the 
ontainer).a Sony video 
amera. The whole a
quisition system and dynami
al set-up is s
rewed into a ra
k(136 
m x 76 
m x 143 
m) whi
h is in turn s
rewed tight to the plane (see Fig. (6.4)). Duringmi
rogravity experiments and when no vibration is applied, we observe that the �uid 
rawls up thesides of the 
ontainer. The �uid then 
overs all the internal surfa
e of the inner 
ontainer due to the
apillary for
es. Contrary to the 
ommon sense, no formation of a single sphere of �uid is observedin the middle of the tank, due to these 
apillary e�e
ts and the relative small amount of �uid. Aroughly homogeneous �uid layer is then formed on the internal surfa
e of the 
ontainer, 
on�ning airin its 
enter. Over the homogeneous layer, 
apillary waves form and �u
tuations o

ur.Gravity-mat
hing experimentThe se
ond way to elimate gravity waves is to design a set-up where two superposed �uids with thesame (or almost the same) density ρ. In this 
on�guration, 
omplete (or almost 
omplete) buoyan
yis a
hieved and the e�e
tive gravity of the system be
omes negligible. In this 
on�guration, thesurfa
e waves have no prefered orientation with respe
t to the verti
al and pure 
apillary wavesdominate. The e�e
tive gravity 
an be 
ontroled by means of the density di�eren
e related to theAtwood number A = (ρ1 − ρ2)/(ρ1 + ρ2) whi
h a
s in the dispersion relation of the surfa
e waves indeep �uid layers as
ω2(k) =

ρ1 − ρ2

ρ1 + ρ2

gk +
σ

ρ1 + ρ2

k3, (6.5)where ρ1 is the density of the upper �uid, ρ2 is the density of the lower �uid and σ is the surfa
etension. For A=0, the only restitution for
e is surfa
e tension and 
apillary wave turbulen
e 
andevelope on the interfa
e. In the 
ase of equal depth of the superimposed �uids, the number ofintera
ting waves in the s
attering matrix in
reases and therefore the theoreti
ally predi
ted 
apillarywave turbulen
e spe
trum shifts its slope (as it 
an be seen in the publi
ations in the Appendix).This 
an be understood by symmetry arguments: the intera
tion term has to take into a

ount the104
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Figure 6.5: Se
ond Experimental set-up: Gravity-mat
hing experiment: A 
losed 
ontainer is �lledwith an oil/water mixture. The waves at the interfa
e are ex
ited by a low-frequen
y random for
ingperformed by a plunging wavemaker driven by an ele
tromagneti
 shaker. Lo
al wave amplitude�u
tuations are measured by means of a 
apa
itive wire gauge.
z → −z invarian
e, and no odd-terms 
an appear, 
hanging the order of the nonlinearity of theintera
tion term. This imposed symmetry may as well 
hange the PDF of the lo
al wave amplitude,be
ause no di�eren
e 
an appear between 
rests and troughs. The slope and skewness 
hanges 
anbe 
he
ked experimentally. We present in the following se
tion the experimental devi
e we havedeveloped for this matter.Experimental devi
e: The experimental devi
e used to study 
apillary wave turbulen
e is shownin Fig. (6.5). A Plexiglass 
ontainer (height h=60 mm, length l=100 mm, depth d=80 mm) ishalf �lled with distilled water (density ρ1 =1.00 g/
m3, kinemati
 vis
osity ν1 =0.01 
m2/s) andhalf �lled with sili
on oil (PDMS from ABCR GmbH & Co., density ρ2 =0.96 g/
m3, kinemati
vis
osity ν2 =0.07 
m2/s). The surfa
e tension 
oe�
ient for the �uids interfa
e is σ ∼ 30 mN/m.This value depends on the 
hemi
al origins of the PDMS, but it 
annot be lower than 10 mN/m[28℄. The equilibrium interfa
e position is measured at 35 ± 2 mm. The 
apillary surfa
e waves areex
ited in �rst pla
e by a rotating Plexiglass wavemaker whose blade is plunging in between both�uids. The wave blade os
illated between to angles and its motion is 
ontrolled by a SSD motorfrom Parvex driven by a random gaussian noise 
oming from one of the outputs of a HP 8904Afrequen
y generator with 
ut-o� frequen
y fdriv = 3 Hz. At very low for
ing amplitude, the motionof the wave blade 
reates large bubbles. This is due to the wetting properties of the sili
on oil onthe wave blade. Any small motion, produ
es bubbles of water in oil that are adve
ted by the �owgenerated by the wavemaker os
illation. We thus dis
arded this method. The method that we usedafterwards is also based on a wave-maker that plunged into the upper �uid, os
illating verti
allywithout approa
hing the lower �uid. The wave-maker is driven by an ele
tromagneti
 vibration105



ex
iter (B & K 4809) via a power ampli�er. The random for
ing, supplied by the sour
e outputof a dynami
al spe
trum analyzer (HP 8904 A), is low-pass �ltered to a range between 0-3 Hz.We 
ontrol the for
ing amplitude su
h that no bubble is present in the 
ell. The ex
ited surfa
ewave amplitude η is lo
ally measured 4 
m away from the 
ontainer walls by means of a 
apa
itivegauge, 0.1 mm in diameter. The measured 
apa
itive �u
tuations are proportional to the lo
al waveamplitude ones. They are sampled at 500 Hz during 300 s. The 
alibration and linear response ofthis type of measurement is des
ribed elsewhere [19℄. We 
he
ked the 
onstant frequen
y responseof the wire probe for the water-oil boundary in a frequen
y band between 1 to 100 Hz by means ofan a

elerometer solidary to the probe and a 
harge ampli�er. The only noteworthy di�eren
es arethat in this 
ase both the diele
tri
s are liquids of similar densities and similar vis
osities. We usedthe fa
t that the linear response of this type of measurement depends on the diele
tri
 ratio of the�uids, in this 
ase εwater/εoil ∼ 40, giving good signal to noise ratio for this oil-water mixture.6.3.2 Experimental resultsWe present now the experimental results on 
apillary wave turbulen
e in the two 
on�gurationsdes
ribed above.Mi
rogravity experimentIn the low gravity phase, when the 
ontainer (either the 
ylindri
al or the spheri
al one) is ex
ited bya low-frequen
y random for
ing, surfa
e wave �u
tuations appear over the �uid layer. Even in some
ases these �u
tuations are ex
ited solely by the g-jitters. In this experimental 
on�guration, largeevents o

ur where the amplitude η �u
tuates strongly. From the a
quired signal η(t), we 
omputethe power spe
tral density of η, as shown in Fig.(6.6). One single power-law spe
trum is observedon two de
ades in frequen
y. Whatever the geometry of the tank (sphere or 
ylinder) and the larges
ale for
ing (random or sinusoidal), the exponent is found to be 
lose to -3. This spe
trum doesnot depend on the large-s
ale for
ing parameter. Wave turbulen
e theory predi
ts a f−17/6 s
alingof the surfa
e height spe
trum for pure 
apillary regime. This expe
ted exponent is 
lose to thevalue -3 reported here. Kolmogorov-like spe
trum of 
apillary wave turbulen
e is thus observed inFig. (6.6) over two de
ades in frequen
y. To our knowledge, this large range of frequen
ies has neverbeen rea
hed with ground experiments for su
h large s
ales. The power spe
trum in the presen
e ofgravity is shown for 
omparison in the inset of Fig. (6.6). It displays two power laws: f−5 and f−3
orresponding respe
tively to gravity and 
apillary wave turbulen
e regimes. The 
apillary range islimited at low frequen
ies f ≤ fc =
√
ρg/2π2lc ∼ 20 Hz. The 
apillary length lc being of order ofa few mm for usual �uids, the 
riti
al frequen
y fc is in rough agreement with the one observed inthe inset of Fig. (6.6). Su
h a 
riti
al frequen
y 
orresponds to a wavelength of the order of 1 
m.When g →0, the 
ross-over frequen
y between both regimes is then predi
ted to be pushed away tovery low frequen
y. For our mi
rogravity pre
ision, ±0.05 g, the 
apillary length then is expe
tedto be 
lose to 
m, and the 
ross-over frequen
y of the order of 1 Hz, 
orresponding to wavelength ofthe order of 10 
m. Thus, in mi
rogravity, for our frequen
y range (4 Hz up to 400 Hz), the powerspe
trum of surfa
e wave amplitude is not polluted by gravity waves. At high frequen
y, the powerspe
trum in the 
apillary range in mi
rogravity (Fig. (6.6)) is limited at frequen
y about 400 Hzdue to the low signal-to-noise ratio. Note that the high frequen
y limitation is lower in the presen
eof gravity (≥ 100 Hz) as it is shown in the inset of Fig. (6.6). This 
ut-o� frequen
y is relatedto the menis
us diameter on the 
apa
itive wire gauge that prevents the dete
tion of waves with asmaller wavelength. In mi
rogravity, this latter e�e
t vanishes sin
e the menis
us diameter be
omes106
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Figure 6.6: Power spe
trum density of the lo
al wave amplitude in 
apillary wave turbulen
e inmi
rogravity. Lower 
urve: Random for
ing 0 - 6 Hz. Upper 
urve: Sinusoidal for
ing at 3 Hz.Dashed lines with slopes of -3.1(lower) and -3.2 (upper). Cylindri
al 
ontainer �lled with 30 
lof ethanol. Inset: Power spe
trum density of the lo
al wave amplitude in gravito-
apillary waveturbulen
e. Slopes of dashed lines are -5 (upper) and -3 (lower) 
orresponding respe
tively to gravityand 
apillary wave turbulen
e regimes. Re
tangular 
ontainer �lled with a 20 mm ethanol depth.of the order of the size of the 
ontainer. When the 
ontainer is submitted to random for
ing, weobserve an invariant-s
ale power spe
trum of wave amplitude on two de
ades in frequen
y in roughlygood agreement with wave turbulen
e theory. An in
onvenient of the low-gravity measurementsis the small a
quisition time of the random wave amplitude �u
tuations: in an average paraboli
�ight, we have only ∼20 se
onds of dynami
al �u
tuations asso
iated with 
apillary wave turbulen
e.Statisti
al resolution is not su�
ient to resolve 
orre
tly the probability density fun
tion of the lo
alwave amplitude when large events are present. To bypass this problem, we have performed anotherset of experiments on ground using gravity-mat
hing �uids.Comment on parametri
ally ex
ited waves and wave turbulen
e: When the 
ontaineris submitted to periodi
 ex
itation, two-dimensional subharmoni
 patterns with a given symmetry(stripes or hexagons) develope on a spheri
al or 
ylindri
al �uid surfa
e for for
ing strong enough toparametri
ally ex
ite the surfa
e waves. In this periodi
 geometry, there are no boundary e�e
ts ofthe waves with the 
ontainer. We have noti
ed that their dynami
al des
ription 
annot be simplysubs
ribed to parametri
 surfa
e waves. A mu
h more 
omplex pi
ture appears: the wave motionresults from the intera
tion between two instabilities (sloshing motion related to the global motionof the �uid layer and parametri
 ampli�
ation). Note that the slope of the 
ontinuous part of thespe
trum is steeper in the presen
e of parametri
 wave patterns than for wave turbulen
e (Sη(f) ∼
f−4 in Fig. (6.7) instead of f−3 in Fig. (6.6)). This 
an be related to 
usps of the spatial patternssweeping the sensor, due to the fa
t that the power spe
trum density of a 
ontinous signal withderivative dis
ontinuities displays a f−4 power-law.107
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Figure 6.7: Left: Typi
al PSD of lo
al wave amplitude �u
tuations when sinusoidal for
ing offrequen
y f0 =30 Hz is a
ting on the 
ontainer, at a

eleration value a0=1.16 g. Right: Subharmoni
patterns on the spheri
al surfa
e of a �uid in mi
rogravity.Gravity-mat
hing experimentWith the data a
quired by the 
apa
itive gauge, we 
al
ulate the probability distribution fun
tion(PDF) of the lo
al wave amplitude η, as shown in Fig. (6.8) (main). We noti
e that 〈η〉 ∼ 0 andthat its �u
tuations are 
lose to being symmetri
 with respe
t to η = 0. No exponential tails arefound. The kurtosis of the PDF is slightly larger than 3, but not large enough to ex
lude gaussianity.For 
omparison, when repla
ing the upper �uid with air, we show in Fig. (6.8) (inset), the PDF forthe lo
al wave amplitude when gravito-
apillary wave turbulen
e developes. We see the asymmetri
tails (positive skweness) as it has been mentioned above. This 
ontrast is a 
lear indi
ation ofthe symmetry imposed in the system: there is no external �eld (su
h as gravity) that breaks the
z → −z parity thus the surfa
e perturbations are symmetri
 with respe
t to η = 0. It is un
learif the �u
tuations are indeed gaussian, but resolution of large events 
ould not be made in thepresent experimental set-up. As dis
ussed above, the wave system has a very low Atwood number
A = (ρ1−ρ2)/(ρ1+ρ2). For the nominal densities of both �uids A=0.02, redu
ing the e�e
tive gravitydrasti
ally. The dispersion relation for waves at the interfa
e is, in the 
ase of the deep water limit,written in Eq. (6.5). One �nds that in this system the 
apillary length lc = 2π

√
Aσ/g(ρ1 + ρ2) wherethe 
rossover from gravity to 
apillary regime takes pla
e is an order of magnitude larger than forliquid-air interfa
e. This means that the frequen
y 
rossover between gravity and 
apillary regimes

fc = π
√

(ρ1 − ρ2)g/2(ρ1 + ρ2)lc is obtained at a frequen
y 
lose to 3-4 Hz for our working �uids.Therefore, when the frequen
y 
ut-o� of the for
ing is larger than fc, the only KZ-type spe
trum we
an observe is the 
apillary one. In Fig. (6.9) we show both the pure 
apillary (main �gure) and thegravito-
apillary (inset) spe
tra. In the 
apillary-driven transparen
y window we 
an see only ones
ale-invariant spe
trum (for frequen
ies larger than the 
hara
teristi
 frequen
ies of the broad-bandfor
ing). The slope of the spe
trum is roughly ∼ f−2.75.The experimental value of the slope is a point worth explaining. We 
an 
al
ulate theoreti
allythe slope of the spe
trum in this 
on�guration, as it is shown in the publi
ation in the Appendix.Another way to 
al
ulate the spe
trum slope is to assume that the number of wave intera
tions
hanges from 3 (as the 
ase of the usual 
apillary wave turbulen
e) to 4, due to the imposed z → −zinvarian
e. Using dimensional analysis, we 
an write the power spe
trum density Sη(f) as a fun
tionof the parameters of the system σ, ρ1, ρ2, the average energy �ux per unit of mass ǫ and the frequen
y108
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Figure 6.8: Probability density fun
tion (PDF) of the lo
al wave amplitude η at the interfa
e oftwo inmis
ible �uids with A=0.02 (in blue) and a paraboli
 �t (in red). Inset: Probability densityfun
tion (PDF) of the lo
al wave amplitude η at the interfa
e of a water-air interfa
e with A=1 (inblue) and a paraboli
 �t (in red).
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tral density (PSD) for the lo
al wave amplitude η at the interfa
e of twoinmis
ible �uids with A=0.02 (in 
ontinuous blue line). Best �t slope Sη(f) ∼ f−2.75 (in dashed redline). Inset: Power spe
tral density for the lo
al wave amplitude η at a water-air interfa
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f . As before, Sη(f) has units of L2T and ǫ has units of L3T−3. We 
an write Sη(f) as a fun
tion ofthe adimensional numbers of the problem. To wit, the power spe
trum density of 
apillary waves inthis 
on�guration reads
Sη(f) =

(
σ

ρ

)2/3

f−7/3 × Φ(A =
ρ1 − ρ2

ρ1 + ρ2
,
ρǫ

σf
) (6.6)where Φ(x, y) is a polynomial fun
tion of two variables and we have used the de�nition of the Atwoodnumber A. We dis
ard a dependen
e of Ψ in A and we asume that when A → 0, Φ → Φ0 
onstant[22℄. As it was explained in the beginning of the 
hapter, for 4-wave intera
tions, Sη(f) depends onthe average energy �ux per unit of density ǫ (related dire
tly to the mean inje
ted power furnishedby the wavemaker) as ǫ1/3. Therefore

Sη(f) ∼
(
σ

ρ

)2/3

f−7/3 ×
(
ρǫ

σf

)1/3

∼
(
ǫσ

ρ

)1/3

f−8/3.This result is 
lose to the numeri
ally 
omputed PSD Sη(f) ∼ f−2.75, where the error is, in the worst
ase, 6%.This slope, as in the previous experiments, is for
ing independent. For the small for
ing used inthis experimental set-up, no 
usps over the wave 
rests were observed, whi
h eliminates the possibilityof singularities polluting the spe
tral 
ontent of the signal. This stresses the fa
t that 
apillary waveturbulen
e is a robust phenomenon.Comment on the 
ut-o� frequen
y of 
apa
itive measurements : All through this Chapterlo
al 
apa
itive measurements were performed in order to extra
t the lo
al amplitude �u
tuationsof the wavy �uid level in two experimental devi
es where gravity 
ould be removed, or at leastnegle
ted, from the surfa
e wave evolution. These �u
tuations present a power law spe
trum witha given slope over a 
ertain frequen
y band, whi
h is 
ompared with the one obtained in groundexperiments in presen
e of gravity. The 
ut-o� frequen
y of both 
omputed spe
tra are di�erent.For gravito
apillary measurements, the frequen
y 
ut-o� is 
lose to 150-200 Hz, where a dissipationslope, steeper than the 
apillary slope develops. This vis
ous dissipation takes pla
e for small wavesthat arrived at the menis
us of the �uid at the wire probe. The typi
al lengths aso
iated to the
ut-o� frequen
y is at least a fa
tor 5, 
al
ulated from the dispersion relation of 
apillary waves forwater. In absen
e of gravity, the 
apillary frequen
y fc goes to zero as g3/4 and as the e�e
tive gravityof the system goes to zero, 
lose the 
apa
itive wire the small amplitude waves are less atenuated.As the menis
us gets larger and larger, the small amplitude waves are less damped as they approa
hthe wire, making the 
ut-o� frequen
y larger and larger. In mi
rogravity and gravity mat
hingexperiments, the frequen
y 
ut-o� was of the order of 400-500 Hz.6.4 Con
lusionsWe have presented results about pure 
apillary wave turbulen
e regime in two di�erent experimentalset-ups, where the e�e
t of gravity 
an be negle
ted. The main feature of both experiments is thepower-law spe
trum of the 
apillary waves, that display a slope independent of the for
ing. Theexperimental PSD of the lo
al amplitude �u
tuations shows a power-law behavior (Sη(f) ∼ f−3.0 forthe mi
rogravity experiment and Sη(f) ∼ f−2.75 for the gravity mat
hing experiments) whi
h are infarly good agreement with the theoreti
al predi
tions. In the mi
rogravity experiment, parametri
110



surfa
e waves were also studied, although their behavior is not dis
ussed here. In the gravity mat
hingexperiment, the PDF of the lo
al wave amplitudes is a gaussian, and no exponential tails where found,whi
h 
an be seen as a signature of the e�e
t of the symmetry imposed on the system.
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Con
lusions and perspe
tives
Con
lusionIn this thesis, several studies have been 
ondu
ted on the statisti
al properties of observables in dis-sipative systems for
ed in statisti
ally out-of-equilibrium states. In these states, observables whetherlo
al (su
h as the lo
al wave amplitude in a steady turbulent-like regime) or global (su
h as theinje
ted power ne
essary to maintain a system in a steady out-of-equilibrium state), display large�u
tuations. These �u
tuations are, in some 
ases mu
h larger than their average and their dis-tribution often 
annot be des
ribed by the usual tools of equilibrium statisti
al me
hani
s whereminimization prin
iples 
an be used to 
onstru
t equilibrium distributions. It is this la
k of generalrule to approa
h out-of-equilibrium distributions and properties of observables that motivated thiswork, where simple systems are used to probe and understand the statisti
s of out-of-equilibrium inorder to apply these results to more 
omplex and nontrivial systems.The �rst part of this thesis is devoted to the experimental and theoreti
al study of the �u
-tuations of the inje
ted power I ne
essary to sustain a statisti
ally stationary state in dissipativeout-of-equilibrium systems. We have re
alled in �rst pla
e the main energy balan
e equation relatingthe inje
ted and dissipated power and given simple examples where the dissipated power Pdiss 
an bemodelized to �nd relationships between internal energy �u
tuations σE and inje
ted power �u
tua-tions σI (Chapter 1). We have fo
used spe
i�
ally in the 
ase where the for
ing driving the systemout-of-equilibrium is a random gaussian noise. We have shown that the shape of the PDF of theinje
ted power �u
tuations displays exponential asymmetri
 tails and a 
usp 
lose to zero, its mostprobable value. The PDF shape 
an be 
omputed from a simple theoreti
al model whi
h uses thefa
t that both the large s
ale for
ing f and the response of the system v are gaussian and 
orrelated,with 〈fv〉 ≡ 〈I〉 > 0. The asymmetry of the inje
ted power statisti
s is solely 
ontroled by themean inje
ted power 〈I〉, and therefore by the mean dissipated power 〈Pdiss〉 (Chapter 2). We haveexperimentally studied one of the simplest out-of-equilibrium system, an ele
troni
 RC 
ir
uit for
edby a random gaussian noise whi
h displays su
h a distribution. Several other dissipative systems instationary states display su
h statisti
s of the inje
ted power, even when a larger amount of degreesof freedom are involved in the de�nition of inje
ted power. Finally, we have experimentally testedthe Flu
tuation Theorem (FT) in the simple ele
troni
 RC 
ir
uit (Chapter 3). The FT relates the�u
tuations of the inje
ted power �u
tuations Iτ averaged over a time lag τ (mu
h larger than the
orrelation time τc) with the internal energy �u
tuations. We have found out that in this simple dis-sipative system the FT holds for small values of Iτ/ 〈I〉, but later it breaks down for values of Iτ/ 〈I〉larger than 1. Also we have tested experimentally the FT in a wave turbulen
e experien
e, where awavemaker ex
ites the surfa
e waves. By measuring both the for
e applied by the wavemaker on the�uid and the velo
ity of the wavemaker, the inje
ted power was 
omputed. These simple systemsdisplay large �u
tuations of the global observable ǫ = Iτ/ 〈I〉 larger than 1 for τ/τc ∼ 20, makingthem ex
ellent 
andidates to study the full�llment of the FT. We have found out that the FT does115



not hold in both 
ases.The se
ond part of this thesis is devoted to the experimental study of �u
tuations in wave systems.Here, we have studied the lo
al wave amplitude �u
tuations at the surfa
e of a �uid. This set of wavesare ex
ited by means of parametri
 ampli�
ation (sinusoidal verti
al vibration of the 
ontainer) orlarge s
ale for
ing (low-frequen
y vibration of wavemakers plunging into the �uid or low-frequen
yvibration of the whole 
ontainer). We present the main results in both 
ases:� In the 
ase of the parametri
 ampli�
ation of surfa
e waves, the system developes a stationary
ellular pattern at the �uid surfa
e. The 
ellular pattern os
illates at half the frequen
y ofthe for
ing fex. Its geometry, for all working �uids (water or mer
ury) is squared and appearsover the whole surfa
e of the �uid. This mode 
an present 
omplex dynami
al behavior whenthe surfa
e waves are nonlinearly 
oupled with another dynami
al variable, su
h as a large-s
ale �ow or a turbulent-like �ow. We have fo
used experimentaly on two situations. In the�rst 
ase, when the parametri
 ampli�
ation is mu
h larger than the threshold value of the
ontrol parameter, defe
ts appear on the pattern (Chapter 5). We have measured the lo
alwave amplitude by means of a 
apa
itive gauge. These defe
ts are lines 
onne
ting two sidesof the 
ontainer. The lo
al value of the wave amplitude vanishes on a defe
t. We have studiedtheir lo
al dynami
s and shown that they appear after se
ondary bifur
ations of the 
ellularpattern. In the turbulent-like state 
alled defe
t-mediated turbulen
e they 
hange qualitivelythe internal dynami
s of the wave system. This e�e
t 
an be seen in the PDF of the lo
alwave amplitude, whi
h displays an exponential tail and non-gaussian statisti
s and also in thePSD of the lo
al wave amplitude, where a power-law spe
trum ∼ f−5 appears as an indi
atorof the genration of defe
ts over the wave pattern. In the se
ond 
ase an underlying vortex�ow is superimposed on the parametri
ally ampli�ed surfa
e waves (Chapter 5). The vortex�ow is generated by a periodi
 Lorentz for
e FL] whi
h a
ts on the 
ondu
ting �uid (mer
ury).We have measured both the lo
al wave amplitude by means of indu
tive sensors and also thelo
al velo
ity �eld by means of Vivès probes. The underlying vortex �ow 
an be viewed as asour
e of spatio-temporal noise. We have shown that these spatio-temporal �u
tuations havetwo main e�e
ts on the parametri
 surfa
e waves: they lo
ally break the global stru
ture ofthe 
ellular pattern and it in
reases the threshold value of the 
ontrol parameter for parametri
generation of waves.� In the 
ase of large s
ale for
ing, the nonlinearly intera
ting waves develope a statisti
allysteady state known as wave turbulen
e. We have 
ondu
ted experimental studies on these out-of-equilibrium states, where the lo
al wave amplitude is measured. We have fo
used on the 
asewhere the restitution for
e of the surfa
e waves is solely 
apillarity and shown that 
apillarywave turbulen
e is a robust phenomenon. In two independent experimental devi
es wheregravity 
an be negle
ted, (either in a mi
rogravity environment where the e�e
tive gravity isnegligible or in a gravity-mat
hing experiment performed with two superposed inmis
ible �uidsof equal densities where gravity in the wave system is also negligible) a s
ale invariant PSDof the lo
al wave amplitude over two de
ades appears, with slope 
lose to -3, as theoreti
allypredi
ted.We must stress that the main results of this thesis are robust although the simpli
ity of theexperimental devi
es used to study dissipative systems. The main idea is to expand these results tomore 
omplex systems su
h as fully developed turbulen
e, MHD systems or granular materials, wherenot many experimental studies have been 
ondu
ted to gain insight on the statisti
al properties ofobservables (wheter global or lo
al) in out-of-equilibrium states.116



Perspe
tives and open questionsFlu
tuations of observables in dissipative systems sustaining out-of-equilibrium steady states are farfrom being understood in the same way as �u
tuations at thermodynami
 equilibrium. There are nogeneri
 tools to study su
h a 
omplex problem, su
h as the ones of statisti
al me
hani
s 
an providefor equilibrium, and thus in several situations ad-ho
 approa
hes have to be used for ea
h spe
i�
 
lassof systems. In this work we have experimentally studied the inje
ted power �u
tuations in a 
lass ofdissipative systems where the for
ing f 
an be modelised by a random gaussian noise of zero meanfollowing the dynami
s of an Orstein-Ulhembe
k pro
ess. This is an importante simpli�
ation: nolarge �u
tuations of f nor more 
omplex temporal behavior are taken into a

ount in this approa
h.Even more, the relation between f and the response v of the system to the driving is linear and nohigher derivatives nor (temporal) memory e�e
ts where used to des
ribe the dynami
s of v. A moredetailed study on the e�e
t of these 
hanges on the shape of the PDF of the inje
ted power I, su
has nonlinear 
orre
tions on the damping rate or memory e�e
ts, should give insight on the role oflarge �u
tuations in the out-of-equilibrium properties of internal degrees of freedom, su
h as the 
aseof intermitten
y in fully developed turbulen
e.Regarding waves at the surfa
e of a �uid displaying out-of-equlibrium steady states, we havestudied in several experimental devi
es their lo
al amplitude dynami
s and the e�e
t of �u
tuations,whether external (by means of a superimposed underlying �ow as a sour
e of spatio-temporal noise) orinternal (by nonlinear intera
tion between ex
ited modes at di�erent 
hara
teristi
 s
ales) on theirstatisti
s. Although interesting results have been found in parametri
ally ampli�ed waves and in
apillary wave turbulen
e, they all 
on
ern lo
al measurements (of wave amplitude or velo
ity �eld).The relationship between one-point temporal measurements and spatially resolved measurementsrely on 
ertain hypothesis su
h as the Taylor hypothesis in fully developed turbulen
e or, in wavesystems, the existen
e of a dispersion relation. Their validity needs to be tested in the nonlinearregime, even the 
ase where the slope of the surfa
e waves is 
omparable to the wavenumber, andspatio-temporally resolved measurements should be made to fully test wave turbulen
e theory andthe e�e
t of small-s
ale �u
tuations on parametri
ally ex
ited waves. Furthermore, the dissipatives
ale in surfa
e waves should be studied, in order to understand their dissipation me
hanism in the
ase of a 
ontinuum of ex
ited modes (as in wave turbulen
e) or a dis
rete set (as in parametri
allyex
ited waves).
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Appendix AThermalization of the Langevin equationWe re
all in this Appendix the equilibrium thermalization pro
ess of a brownian parti
ule, des
ribedby a Langevin equation using the Flu
tuation-Dissipation theorem and we show how the simpledissipative system used in Chapter 2 and 3 does not satisfy the Flu
tuation-Dissipation theoremwhen is for
ed out of equilibrium by a random gaussian noise with a non-vanishing 
orrelation time.A.1 Flu
tuation-Dissipation theorem and thermalizationIt is important to stress that the simple system governed by the Eqs. (2.1) and (2.2)
dv(t)

dt
= −γv(t) + f(t),

df(t)

dt
= −λf(t) + ζ(t), (A.1)used in Chapter 2 and 3, where the for
ing f(t) is a 
olored noise, is strongly for
ed out-of-equilibrium.In this 
on�guration, no thermalisation 
an o

ur, whi
h means that the we 
annot relate dire
tlythe �u
tuations of the for
ing f(t) with the dissipation γ through the equilibrium temperature T .To prove this point, we will use the Flu
tuation-Dissipation theorem.The Flu
tuation-Dissipation theorem 
an be understood as follows: given a system in equilibriumwith a thermal bath at a temperature T , the statisti
al distribution fun
tions are given by theBoltzmann weights ∼ exp[E/kBT ], with E the energy of the system and kB=1.38 ×10−23 kg m2 s−2K−1 the Boltzmann 
onstant. We apply an external for
e F (t) whi
h starts to a
t on the systemat an instant t = 0. The response of the system to this for
ing will be a �u
tuating quantity.The variation of the 
onjugated thermodynami
al variable of F (
alled X1) will 
hange the internalenergy to E + X(t)F (t). In the 
ase where the for
ing a
ting on the system is "small" enough, wewill assume that the response of the system is proportional to the for
ing. In the frame of this linearresponse theory2, we 
an write

〈X(t)〉F = 〈X(0)〉0 +

∫ t

0

χ(t− t′)F (t′)dt′,where 〈X(t)〉F and 〈X(t)〉0 represent the perturbed and unperturbed averaged variables, and χ(t−t′)the linear response fun
tion of the system under study. It is important to noti
e that we have assume1Examples of thermodynami
al 
onjugated pairs are for instan
e pressure and volume, entropy and temperature,strain and stress, voltage and impedan
e, and mobility and di�usivity.2See the �rst referen
es in Chapter 3 for linear response theory119



the 
ausality of the system (χ(t) = 0 for t < 0) whi
h is set in a stationary regime so that in theunperturbed 
on�guration 〈X(t)〉0 = 〈X(0)〉0 . In this framework, we 
an relate the �u
tuations ofthe observable X in equilibrium, given by its auto
orrelation fun
tion CXX(τ) = 〈X(t + τ)X(t)〉0,with the linear response fun
tion χ(t) of a system at equilibrium with a thermal bath at temperature
T . To do so in a simple way, we suppose that F (t) = F0 for t > 0. Assuming that the distribu-tion fun
tion of the energy of the system is given by the Boltzmann weights, we develope them as
exp[E ′/�BT ] ≃ exp[E/�BT ](1 + F0X(t)). Then we 
ompute the perturbed average 〈X(t)〉F as

〈X(t)〉F = 〈X(0)〉0 +
F0

kBT
CXX(t).The Flu
tuation-Dissipation theorem therefore states that

CXX(t) = kBT

∫ t

0

χ(t− t′)dt′,or in frequen
y domain ω
SX(ω) = 4

kBT

ω
Im(|χ̂(ω)|).In the Langevin equation (as it is written in Eq.(2.2)), ζ(t) is a gaussian white noise with no
orrelation time and the Flu
tuation Dissipation theorem holds with Sf (ω) = 4kBT/λ(λ2 + ω2) =

4kBT
ω
Im(|χ̂(ω)), with χ(t) = exp[−λt] andD = γkBT . From Eq.(2.2) we 
an see that the for
ing term

f(t) used in Eq.(2.1) has a typi
al 
orrelation time s
ale of order λ−1 su
h that the fri
tional termshould involve a 
ertain memory e�e
ts and be written instead of γv as ∫ t

0
(D/kBT )eλ(t−t′)v(t′)dt′, inorder to des
ribe a thermal bath with a �nite 
orrelation time.
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Appendix BCal
ulation of the PDF of the inje
tedpower from the Fokker-Plan
k equationWe present here the 
al
ulation of the probability density fun
tion of the inje
ted power I for thesimple systems governed by Eqs.(2.1) and (2.2).B.1 Fokker-Plan
k equationIn this 
omplement we will dis
uss the 
al
ulation of the stationary probability density fun
tion ofthe system des
ribed in Eqs. (2.1) and (2.2). Taking the derivative of Eq.(2.1) and using Eq.(2.2),we 
an write the evolution of v(t) as
v̈(t) + (λ+ γ)v̇(t) + γλv(t) = ζ(t),

ζ(t) being a white noise with zero mean and singular auto-
orrelation fun
tion 〈ζ(t)ζ(t′)〉 = Dδ(t−t′).This is the equation for the position x(t)of a damped parti
le of unit mass and damping 
oe�
ient
λ + γ in a quadrati
 potential of sti�ness λγ, although in this 
ase there are no os
illations due tothe fa
t that the eigenvalues of the equation are {−λ,−γ}. Following [6℄, the evolution equationfor the joint 
onditonal probability distribution fun
tion P(v, f, t) of both variables is 
alled theFokker-Plan
k (or the forward Kolmogorov) equation and reads

∂tP(v, f, t) = −∂v [(f − γv)P(v, f, t)] + λ∂f [fP(v, f, t)] +
∆

2
∂ffP(v, f, t).In the stationary limit, no temporal dependen
e on time appears and the solution to the stationaryFokker-Plan
k solution with a gaussian initial 
ondition is the so-
alled bivariate gaussian PDF. To
al
ulate this joint PDF a simple 
al
ulus 
an be done by noting that if ζ(t) is gaussian and theequations are linear, then P(v, f) must remain gaussian. We supose that, in the stationary limit,

P(v, f) ∼ exp[−1

2
(av2 + 2bvf + cf 2)].We have also used the fa
t that the mean values of both variables are zero, whi
h results dire
tlyfrom 〈ζ〉 ≡ 0. In the stationary limit the 
ondition ∂tP = 0 means that the 
oe�
ients have to obey
122



the relationships
〈v2〉 =

1

a
≡ σ2

v ,

〈f 2〉 =
1

c
≡ σ2

f ,

〈vf〉 =
1

b
≡ rσvσf , (B.1)where we have de�ned the 
orrelation 
oe�
ient r = 〈vf〉/σvσf . Cal
ulating these 
oe�
ients fromEqs.(2.1) and (2.2) is straightforward. We 
an write stationary solutions of both equations as

v(t) =

∫ t

0

f(t′)e−γ(t−t′)dt′, (B.2)
f(t) =

∫ t

0

ζ(t′)e−λ(t−t′)dt′ (B.3)where we 
an 
ompute that 〈f 2〉 = D/2λ, 〈v2〉 = D/2λγ(λ + γ) and 〈vf〉 = D/2λ(γ + λ). Withthese 
onstants, the normalized probability density fun
tion is the bivariate gaussian PDF
P(v, f) =

1

2πσv.σf (1 − r2)1/2
exp

[
− 1

2(1 − r2)

(
v2/σ2

v − 2rvf/(σvσf ) + f 2/σ2
f

)]
.B.2 Cal
ulation of the probability density fun
tion of I=fvFrom the solution of the Fokker-Plan
k equation, P(v, f), we 
ompute the PDF of I = fv. We beginby normalising the variables v′ = v/σv and f ′ = f/σf in order to simply the 
al
ulations. Then, we
hange variables from the pair {f ′, v′} to {I = fv, u = v′}. The probability density fun
tion P(I, u)must then satisfy

P(v′(I, u), f ′(I, u))

∣∣∣∣
∂(v′(I, u), f ′(I, u))

∂(I, u)

∣∣∣∣ = P(I, u),where ∣∣∣∣
∂(v′(I, u), f ′(I, u))

∂(I, u)

∣∣∣∣ =
1√
|I|is the determinant of the ja
obian of the transformation, therefore the joint PDF of {f ′, v′} is

P(I, u) =
1

2π(1 − r2)1/2
√
|I|

exp

[
− 1

2(1 − r2)

(
u2 − 2rI + u2/I2

)]
,with r = 〈I〉. From this starting point, we integrate on u to get the probability density fun
tion of

I, as
P (I) =

exp [rI/ (1 − r2)]

2π(1 − r2)1/2
√

|I|

∫ ∞

−∞

exp

[
− 1

2(1 − r2)

(
v2 + v2/I2

)]
dI.
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The integral 
an be aproximated using the steepest des
ent method1 for fun
tions of the form
exp[−f(u)], where f(u) has a global unique minimum at u0 in the interval of integration. Thefun
tion 
an be expanded as a Taylor series around u0

f(u) = f(u0) + f ′(u0)(u− u0) + f ′′(u0)
(u− u0)

2

2
+O((u− u0)

3),where f ′(u0) stands for the derivative of f with respe
t to u, evaluated at u0.Due to the fa
t that u0 is a global minimum, we 
an aproximate the integral
∫ ∞

−∞

exp[f(u)]du ∼ exp[f(u0)]

∫ ∞

−∞

exp[
f ′′(u0)

2
(u− u0)

2]du ≡
√

2π

f ′′(u0)
exp[f(u0)].We have just used that the former integral 
an be aproximated by a gaussian fun
tion that de
reasesfast su
h that only the the values of u 
lose to u0 are important in the integration.We apply the former method the fun
tion f(u) = (u2 + I2/u2)/2(1 − r2), whi
h has a globalminimum at u0 =

√
|I| with 
on
avity f ′′(u0) = 4/(1 − r2). The probability density fun
tion of I
an be aproximated by
P (I) = C exp[rI/

√
1 − r2] × exp[|I|/(1 − r2)]/

√
|I|,with C a normalisation 
onstant. This exponential behavior 
an be sorted out of the exa
t expressionof P (I), that 
omes from the integral representation of the modi�ed Bessel fun
tion of the se
ondkind of order zero K0(x) as2

∫ ∞

−∞

exp[(y2 + x2/y2))]dy =
1

2π
K0(|x|).Using the PDF of I we 
an 
al
ulate all the moments of I, 〈I〉n as,

〈I〉n =

∫ ∞

−∞

InP (I)dI,whi
h will depend only on the normalized mean inje
ted power r = 〈v′f ′〉.

1See, for instan
e, Mathemati
al Methods for Physi
ists, George B. Arfken and Hans J. Weber, A
ademi
 Press,New York (2000)2See, for instan
e, from B. Sorin, P. Thionet, Revue de statistique apliquée, 16, N°4 (1968), pp.65-72)124
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Appendix CCopie of arti
les
C.1 "Flu
tuations of Energy Flux in Wave Turbulen
e", pub-lished in Physi
al Review Letters, 100, 064503 (2008)Abstra
t: We report that the power driving gravity and 
apillary wave turbulen
e in a statisti-
ally stationary regime displays �u
tuations mu
h stronger than its mean value. We show that itsprobability density fun
tion (PDF) has a most probable value 
lose to zero and involves two asym-metri
 roughly exponential tails. We understand the qualitative features of the PDF using a simpleLangevin-type model.C.2 "PDF of the power inje
ted by a random for
ing into dissi-pative systems", submitted to The European Journal of Physi
asB (2008)Abstra
t: The �u
tations of the inje
ted power ne
essary to drive a dissipative system into anonequilibrium steady state, is studied. Here we develope the ideas evo
ated in a previous letter.First, we show that very di�erent physi
al systems driven by a random for
ing present identi
alfeatures for the �u
tuations of their inje
ted power. Other related quantities like the heat �ux inturbulent 
onve
tion exhibit the same type of �u
tuations. In all the 
ases 
onsidered, the Prob-ability Density Fun
tions (PDF) of the inje
ted power, I, have a 
hara
terisi
 
usp at I = 0 andasymmetri
al exponential tails. In the se
ond part we will detail the derivation of an exa
t analyti
alformula of the PDF of these �u
tuations in the simplest 
ase of this 
lass of dissipative brownianmotion: we 
ompute �rst the joint PDF of velo
ity and applied for
e for the brownian motion ofa parti
les sustained by an Ornstein�Uhlenbe
k (O�U) type of noise and then we dedu
e the PDFof their produ
t. The agrements and dis
repan
ies of these PDF with the ones obtained in otherdissipative systems are dis
ussed. Further extensions of these works, espa
ially for energy �ux inturbulent �ows will be dis
ussed to 
on
lude.C.3 "Flu
tuations of energy �ux in a simple dissipative out-of-equilibrium system", submitted to Physi
al Review E (2008).Abstra
t: We report the statisti
al properties of the �u
tuations of the energy �ux in an ele
troni
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RC 
ir
uit driven with a sto
hasti
 voltage. The �u
tuations of the power inje
ted in the 
ir
uitare measured as a fun
tion of the damping rate and the for
ing parameters. We show that itsdistribution exibits a 
usp 
lose to zero and two asymmetri
 exponential tails, the asymmetry beingdriven by the mean dissipation. This simple experiment allows to 
apture the qualitative features ofthe energy �ux distribution observed in more 
omplex dissipative systems. We also show that thelarge �u
tuations of inje
ted power averaged on a time lag do not verify the Flu
tuation Theoremeven for long averaging time. This is in 
ontrast with the �ndings of previous experiments due totheir small range of explored �u
tuation amplitude. The inje
ted power of an ensemble of N 
ir
uitsis also studied to mimi
 systems with large number of parti
les either 
orrelated or not, su
h as in adilute granular gas.C.4 "Lo
al Dynami
s of Defe
ts in Parametri
ally Ex
itedWaves", submitted to International Journal of Bifur
ation andChaos (2008).Abstra
t: We present an experimental study on the lo
al dynami
s of parametri
ally ex
ited wavesat an air-water interfa
e when defe
ts are present in the wave pattern. The probability densityfun
tion (PDF) of the lo
al wave amplitude displays an exponential part for values 
lose to theaverage amplitude and de
reases sharply to zero for large amplitudes. The power spe
tral density(PSD) of the lo
al amplitude �u
tuations shows a power-law behavior over one de
ade whi
h werelate to a regime of defe
t-mediated turbulen
e.C.5 "FaradayWaves in the Presen
e of Spatio-Temporal Noise",to be submitted to Physi
al Review E (2008).Abstra
t: We report an experimental study on the nonlinear intera
tion between a spatially periodi
vortex �ow and the 
elular �ow that generates parametri
ally ex
ited surfa
e waves in a liquid metal.The vortex �ow a
ts as a sour
e of spatio-temporal noise for the wave system. The subharmoni
response of the lo
al wave amplitude and velo
ity �eld is diminished as the vortex �ow intensityin
reases, as it is shown in their power spe
tral densities, probability density fun
tions, 
orrelationmeasurements and spe
tral 
oheren
e. In addition, the instability threshold of the subharmoni
waves is in
reased, showing the e�e
t of an e�e
tive vis
osity.C.6 "Capillary wave turbulen
e on a spheri
al �uid surfa
e inzero gravity", submitted to Physi
al Review Letters (2007).Abstra
t: We report the observation of 
apillary wave turbulen
e on the surfa
e of a �uid layer inlow gravity environment. In su
h 
onditions, the �uid 
overs all the internal surfa
e of the spheri
al
ontainer whi
h is submitted to random for
ing. The surfa
e wave amplitude displays power-lawspe
trum over two de
ades in frequen
y. This spe
trum is found in roughly good agreement withthe wave turbulen
e theory. Su
h a large band observation has never been rea
hed during groundexperiments due to the presen
e of gravity waves. When the for
ing is periodi
, two-dimensional127



spheri
al patterns are observed on the �uid surfa
e su
h as subharmoni
 stripes or hexagons withwavelength satisfying the 
apillary wave dispersion relation.C.7 "Symmetry Indu
ed 4-Wave Capillary Wave Turbulen
e",submitted to Physi
al Review Letters (2008).Abstra
t: We report theoreti
al and experimental results on 4-wave 
apillary wave turbulen
e. Asystem 
onsisting of two inmis
ible and in
ompressible �uids of the same density 
an be writtenin a Hamiltonian way for the 
onjugated pair (η,Ψ). When given the symmetry z → −z, the setof weakly non-linear intera
ting waves display a Kolmogorov-Zakharov (KZ) spe
trum nk ∼ k−4in wave ve
tor spa
e. The wave system was studied experimentally with two inmis
ible �uids ofalmost equal densities (water and sili
on oil) where the 
apillary surfa
e waves are ex
ited by a lowfrequen
y random for
ing. The power spe
tral density (PSD) and probability density fun
tion (PDF)of the lo
al wave amplitude are studied. Both theoreti
al and experimental results are in fairly goodagreement with ea
h other.
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