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Resumé de la thèse:Dans ette thèse, nous présentons une étude théorique et expérimentale des �utuations dans dessystèmes dissipatifs forés hors de léquilibre. Dans une première partie nous étudions les �utuationsde la puissane injetée néessaire à maintenir le système dans un régime stationnaire, dans le asd'un forçage aléatoire gaussien. Nous montrons que la fontion de distribution de probabilité (PDF)de la puissane injetée omporte des ailes exponentielles et une singularité en zéro. Ces propriétéssont dérites à laide dun alul théorique simple. Nous montrons aussi que e type de PDF peut êtreobservée dans di�érents systèmes dissipatifs. Nous étudions également la relation entre les �utua-tions de la puissane injetée moyennée sur un intervalle de temps et l'énergie interne (Théorème deFlutuation). Dans une deuxième partie, nous présentons deux études expérimentales des �utua-tions de l'amplitude loale des vagues à la surfae d'un liquide. La première étude est onsarée aux�utuations des ondes de surfae résultant de lampli�ation paramétrique en présene d'un éoule-ment tourbillonnaire. Nous montrons que les �utuations de l'amplitude et le seuil d'instabilitéparamétrique augmentent ave l'intensité de l'éoulement tourbillonnaire. La deuxième étude estonsarée à la turbulene d'ondes apillaires à la surfae d'un liquide en apesanteur ou à linterfaeentre deux liquides non misibles de même densité. Nous montrons que la densité de puissane spe-trale (PSD) de l'amplitude loale des vagues suit une loi de puissane en fontion de la fréquene etnous trouvons un bon aord entre l'exposant mesuré et sa prédition théorique.Mots lés: GRANDEURS GLOBALES, FONCTION DE GRANDES DEVIATIONS,THEOREME DE FLUCTUATION, AMPLIFICATION PARAMETRIQUE, TURBU-LENCE DE DEFAUTS, TURBULENCE D'ONDES.Abstrat:In this thesis, we present a theoretial and experimental study of �utuations in dissipative sys-tems fored out of equilibrium. In the �rst part, we study the �utuations of the injeted powerneessary to maintain a system in a stationary state in the ase of a random gaussian foring. Weshow that the probability distribution funtion (PDF) of the injeted power presents exponential tailsand a singularity at zero. These properties are desribed by means of a simple theorial alulation.We also show that this type of PDF an be observed in di�erent dissipative systems. Then, we studythe relation between the �utuations of the injeted power averaged over a given time lag and the in-ternal energy of the system (Flutuation Theorem). In the seond part, we present two experimentalstudies of the loal amplitude �utuations of surfae waves at a �uid-�uid interfae. The �rst study isdevoted to the �utuations of parametrially ampli�ed surfae waves in the presene of a vortex �ow.We show that the amplitude �utuations and the parametri instability threshold inrease with thevortex �ow intensity. The seond study is devoted to apillary wave turbulene developing in a mi-rogravity environment or at the interfae between two inmisible �uids of equal densities. We showthat the power spetral density (PSD) of the loal wave amplitude follows a power-law as a funtion offrequeny and we �nd good agreement between the measured exponent and its theoretial predition.Key words: GLOBAL OBSERVABLES, LARGE DEVIATION FUNCTION, FLUC-TUATION THEOREM, PARAMETRIC AMPLIFICATION, DEFECT-MEDIATEDTURBULENCE, WAVE TURBULENCE.Thèse préparée au Laboratoire de Physique Statistique, UMR 8550 Département de Physique del'Eole Normale Supérieure de Paris, 24 rue Lhomond 75005, Paris, Frane.4
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IntrodutionThe theoretial and experimental studies developed in this thesis are foused on the statistial prop-erties of observables and their �utuations in dissipative systems when they are fored into a statisti-ally stationary state far from equilibrium. In order to say that a system is "out-of-equilibrium" weneed to de�ne �rst what "equilibrium" means. A system with a large number of degrees of freedomis said to be in equilibrium (also alled thermodynami equilibrium) when is either isolated and doesnot interat with its surroundings or its temperature T is �xed externally by a thermal bath, alsoalled a thermostat. In the ase where the system has its temperature �xed externally, its energy E�utuates and the probability of �nding the system in a marosopi state of energy E is proportionalto exp[−E/kBT ], where kB is the Boltzmann onstant. In this "equilibrium" state, equipartition ofenergy ours in the lassial limit and eah one of the internal degrees of freedom has a mean energy
e = kBT

2
. For any observable O of the system, its higher order moments an be omputed using theweight of the marosopi state with energy E. Even more, when a small external foring is appliedto the system, suh as a small eletri �eld on a onduting liquid1, or a small pressure gradient ona oloidal suspension2, the response of the internal degrees of freedom to the perturbation an beestimated aurately by just assuming that the internal �utuations of the system reated sponta-neously the small perturbation. This is the so alled Flutuation-Dissipation theorem. In that sense,just knowing the distribution funtion of a marosopi state, we an estimate its response to smallperturbations of its equilibrium.This workframe breaks down when dissipation is inluded into the system. When this happens, nomirosopi assumptions on the dynamial evolution of the internal degrees of freedom an be made.The system loses energy in time through ertain proesses and an external operator must be injetingit ontinously. In this on�guration, �utuations still our, that are driven by the balane betweeninjeted and dissipated power. Therefore, the energy �utuations of the system are not externallyontrolled and a desription that an use the Boltzmann weights as a distribution funtion of theenergy of the system is not possible. The observables, either global or loal, present �utuations thatannot be desribed by simply knowing the energy of the marosopi state, beause large energy�utuations an be present and beome quite ommon as the systems is ontinually maintained farfrom its equilibrium.In this regime, there are no general distribution funtions that an desribe in di�erent lasses ofsystems, the �utuations of the observables of interest. In any ase, we will not try to develop a studyfor any type of "out-of-equilibrium" system. We shall fous on the partiular ase of statistiallystationary states, where temporal averages are well de�ned. We will use the temporal average 〈〉 andassume that the system under study presents a stationary out-of-equilibrium state, in some sense,ergodi3. In that way, the spatial average over the system volume V of the temporally averaged1As �rst studied by Smoluhowski (M. von Smoluhowski, Bull. Int. Aad. Si. Craovie, 184 (1903)).2An approah to this problem was �rst given by Einstein (A. Einstein, Annalen der Physik 17, 549-560 (1905)).3For ergodiity in statistial mehanins, see, for instane the book by Rihard C. Tolman, The Priniples ofStatistial Mehanis, (New York, Dover, 2nd Edition, 1979)9



observable 〈O(t)〉,
1

V

∫

V

〈O(t)〉dV,is the same as the ensemble average of the observable O(Γ),
∫

Σ

Φ(Γ)O(Γ)dΓ,where Γ is the phase spae of the system, Σ is the volume of the phase spae and Φ(Γ) is the ergodiinvariant measure of the system, whih depends solely on the available phase spae volume and weassume it is known and an be alulated.This fat allows us to relate ensemble averages, whih are taken by averaging over the availablephase spae of the dissipative system using a suitable distribution funtion and temporal averages.Global observables are quantities, suh as the energy of the system or its entropy reation, thatare averaged over the entire volume of the system. Even after being averaged on a large number ofe�etive degrees of freedom, they an present large �utuations with respet to their averaged values.These �utuations an be asymmetri in their distribution funtions, a fat related to the lak ofmirosopi reversibility (due to dissipation) and external ontrol of the internal energy �utuations.It is in this ontext that we present the �rst part of our study.On the other hand, loal �utuations in systems fored far from equilibrium, suh as the loalveloity �utuations in turbulent �ows or the loal onentration of hemials in a haoti hemialreation, are known to display large �utuations, bursts and even intermitteny. The distributionfuntions and statistial properties of loal �utuations have been studied in depth in hydrodynamiturbulene4 and turbulent-like regimes in out-of-equilibrium systems. A great deal of attention hasbeen plaed on the study of these types of haoti or stohasti regimes in systems that an sustainwaves, suh as bending waves of elasti sheets, Rayleigh waves on the surfaes of elasti solids,eletromagneti waves in vauum or in a nonlinear medium, shok waves in gases, Langmuir waves inplasmas, and so forth5. In hydrodynamis, for instane, a �uid an sustain surfae waves or internalwaves, suh as sound waves or inertial waves, whih propagate in the bulk of the �uid. These waveswill have di�erent properties mainly desribed by their dispersion relation whih depends on the typeof restitution fore that sustains them. When they are strongly exited or ampli�ed, nonlinearitiesbeome important in their dynamial evolution.These nonlinear interations hange the wave properties suh as their energy transfer mehanismor their dissipation sale. They an also produe �utuations in the amplitude or the phase of thewaves that an modify the spatio-temporal evolution of the wave system. This type of �utuationswill be the main interest of the seond part of our study.The manusript is divided into two di�erent parts. The First Part is devoted to the global �u-tuations of observables in out-of-equilibrium systems. We present the energy balane equation thatrelates injeted and dissipated power and we use it to study simple systems where we an modelisethese two observables (see Chapter 1). We extrat relations between the statistial properties ofthese observables (suh as their orrelation time sales and standard deviations) when the system isset in a stationary out-of-equilibrium state. In Chapter 2, we study the injeted power �utuations Iin dissipative systems where the dissipated power is proportional to the internal energy E of the sys-tem and the foring driving the system is a random gaussian noise. The injeted power distribution4See for instane the work of A. S. Monin and A. M. Yaglom, Statistial Fluid Mehanis: Mehanis of Turbulene(Dover Publiations, 2nd Edition, 2007).5A long review on waves an be found in Whitham (G. B. Whitham, Linear and Nonlinear Waves (Wiley-Intersiene, New York, 2nd Edition, 1999 ) 10



funtion displays several robust features, suh as the appearane of exponential tails and a singularusp lose to I ≃ 0. Then, we disuss several systems where the injeted power �utuations displaythis type of probability distribution funtion. In Chapter 3, we probe the validity of the FlutuationTheorem in suh dissipative out-of-equilibrium systems.The Seond Part is devoted to the loal �utuations of waves in out-of-equilibrium systems.In Chapter 4 we present the general framework of wave �utuations and disuss some spei� sys-tems where turbulent-like states develope. In Chapter 5 we present an experimental study on the�utuations of parametrially exited surfae waves. In two separate studies, statistial propertiesof the standing waves are studied when the wave pattern displays �utuations. Finally, Chapter 6is devoted to the experimental investigation of apillary wave turbulene. We present two separatestudies where the statistial properties of pure apillary dispersive waves are studied.Conlusions and Perspetives are presented in the last part in whih we underline the main resultsof our work and propose further developements related to this study.
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Part IIFlutuations of global quantities inout-of-equilibrium systems
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Chapter 1Energy balane in out-of-equilbrium systemsWe reall in this Chapter, through a simple but general balane equation, several results on theproperties of the energy �utuations in ou-of-equilibrium dissipative systems in steady states. Someinteresting relationships between injetion and dissipation of energy in these systems are also pre-sented in Setion 1.1. Then, we study the ase of onstant dissipation as the simplest type ofdissipation in Setion 1.2. As an approah to other omplex systems, we then study the ase oflinear damping in Setion 1.3.1.1 Desription of the problem1.1.1 Balane EquationThe main equation that onerns the energy �ux to drive a system into an out-equilibrium state isthe following
dE(t)

dt
= Pinj(t) − Pdiss(t). (1.1)Here Pinj(t) stands for the injeted power to drive the system out-of-equilibrium, Pdiss(t) standsfor the dissipated power and E(t) is the energy of the system. The three observables are globalquantities, spatially averaged over the whole system. We will all R(t) = Pinj(t) − Pdiss(t), theforing term of the system. Eq. (1.1) desribes the evolution of the rate of hange of the internalenergy as these two operators balane their e�ets.For several out-of-equilibirum systems, the energy �ux evolution an be written in the form ofEq.(1.1), for example:� Inompresible hydrodynami turbulene [1℄. In hydrodynamis, as the mean �ow of a �uidis inreased, turbulene develops. A statistial approah to the study of the �ow properties(suh as the energy �utuations or transport oe�ients) is often used. The transition froma laminar or smooth situation to a �utuating or turbulent one is ontrolled by the Reynoldsnumber Re = V L/ν, where V and L are the typial veloity and length sales of the �ow, and

ν is the kinemati visosity of the �uid. For Re ≫ 1, large �utuations in the veloity �eldour and turbulene is said to be developed. In this regime the energy balane equation ofEq.(1.1) has been studied [2℄. Taking the Navier-Stokes equation
ρ

[
∂v

∂t
+ v·∇v

]
= −∇p+ ρν∇2v + f ,13



where ρ is the density of the �uid,∇p its loal pressure gradient and f(r, t) is the external foringper unit of volume. Multiplying the above equation by the veloity �eld v(r, t) and integratingover the volume of the system V , the energy balane equation (Eq. (1.1)) is statis�ed with
E = ρ

∫

V

v2

2
dr, Pinj =

∫

V

f · vdr, Pdiss = ρν

∫

V

ω2dr,where ω ≡ ∇× v is the loal vortiity �eld. The veloity �eld v(r, t) is zero at the boundariesbut its vortiity is not. Here, Pdiss is always positive and Pinj an hange sign depending onthe sign of the integrated loal injeted power f · v. To eliminate the boundary terms relatedto the veloity, we have used the inompressibility ondition ∇ · v = 0 and to eliminate theboundary term related to the pressure we have assume that the boundaries do not move. Inthe ase where the foring is made by means of a moving boundary ∂V (suh as impellers [2℄or wavemakers[3℄), the injetion term will read in that ase
Pinj =

∫

∂V

(p+
ρv2

2
)v · ndS +

∫

∂V

ρν(v × ω) · ndS.The �rst term will be nonzero when the veloity v is not ortogonal to the unitary vetor n,normal to the moving boundary of the impellers, as it is shown in Fig.(1.1) for instane, thatset the �uid in motion. The seond one, related to the visous stresses will be zero when noshear is applied on the �uid by the moving boundary.� Granular gases [4℄. An ensemble of N inelasti partiles on�ned in a volume V an be regardedas a granular gas when the partile density n = N/V is su�iently low. In this low-density limit,events where 3 or more partiles ollide simultaneously are very unlikely and binary ollisionsdominate the momentum transfer between partiles. The ollision rule for the veloities of apair of inelasti partiles after they interat v1
∗ and v2

∗ (their initial veloities being v1 and
v2) is

v1
∗ = v1 −

(1 + r)

2
n(v1 − v2) · n, v2

∗ = v2 +
(1 + r)

2
n(v1 − v2) · n,where n is the vetor joining the enter of both partiles. We suposse here that they interat ashard inelasti spheres [5℄, as shown in Fig. (1.2). The restitution oe�ient 0 < r < 1 relatesthe e�eny of the momentum transfer before and after the olision. Note that in the elastiase r = 1, we an hange v1 and v2 by v1

∗ and v2
∗ making the system reversible in time. Inthis ase no dissipation takes plae and as the system is ontinually fored the energy of thesystem grows. The onservative limit an be shown to be a singular one, and preautions mustbe taken into aount when taking the thermodynami limit (in this ase r → 1) [6℄.The energy loss is proportional to the ombined momenta of the partiles that interat. Theoe�ient of proportionality is given by (1− r2)/4 and the injetion of energy is usually madeby the olision of the partiles with a moving boundary that "heats" the granular gas [4℄, asshown in Fig. (1.2). Eq.(1.1) is then satis�ed with

E =
1

2

N∑

i=1

mv2
i Pinj = 2νp

N∑

i=1

mVp · (Vp − vi), Pdiss =
(1 − r2)

4
νc

N∑

i6=j

mvi · vj,where νp and νc are the mean ollision frequeny of a partile with the boundary and withanother partile respetively, and Vp the veloity of the moving boundary.14
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Figure 1.1: Experimental set-up of the VKS experiment, where a large volume of liquid Na is setinto turbulent motion by means of rotating impellers at frequenies f1 and f2 to study the e�et ofturbulent �utuations on the dynamo ation (Figure taken from [2℄).� Turbulent thermal onvetion [7℄. Let us onsider a �uid on�ned between two in�nite horizon-tal plates separated by a distane h. The temperature of the lower and upper plates are �xed at
Td and Tu respetively, with the temperature di�erene (Td − Tu) > 0. When the temperaturegradient (Td−Tu)/h is strong enough to overome the dissipative losses due to visous frition,the �uid strati�ation is unstable to small veloity perturbation and it starts to moves. In theBoussinesq aproximation the motion of an inompresible �uid obeys

ρ

[
∂v

∂t
+ v·∇v

]
= −∇p+ ρν∇2v + ρgαδTez,and the loal temperature δT (r, t) follows the advetion-di�usion equation

ρCp

[
∂δT

∂t
+ v·∇δT

]
= λ∇2δT,where ρ, α, ν, Cp and λ are the �uid density, thermal expansion oe�ient, kinemati visosity,heat apaity and thermal ondutivity respetively, and g is the aeleration of gravity. Eahoe�ient, in this approximation is independent of the loal temperature. The buoyany foreis modelized f(r, t) = ρgαδT (r, t)ez, where ez is a unit vetor along the vertial (generally z)axis. Multiplying the equation of onservation of momentum by v(r, t) and integrating over15
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Figure 1.2: a) Granular gas with N inelasti partiles on�ned in a volume V . The moving boundaryinjets energy onstantly to the system by ollisions. b) Collision rule for two inelasti partilesinterating as hard spheres.the volume, Eq.(1.1) is satis�ed with
E = ρ

∫

V

v2

2
dr, Pinj = ραg

∫

V

δTvzdr, Pdiss = ρν

∫

V

ω2dr.When the buoyany fore is muh larger than visous frition, onvetion develops in the systemin a random and �utuating way. This regime is alled turbulent onvetion and develops whenthe Rayleigh number Ra = ρCpgαh
3(Td − Tu)/(νλ) ≫ 1. In this regime, large �utuations ofveloity and temperature are observed, as it is shown in Fig.(1.3).� Eletroni systems [9℄. In a simple eletroni dipole omposed of a resistane R and a a-paitane C, an eletromotive fore ε(t) must be applied to generate the mean motion of theeletrons of the ondutor, reating a urrent i whih �ows through the resistane, as shown inFig.(1.4). Marosopially, the ontinuity equation for the measured tension U(t) over a losediruit, reads
ε(t) = U(t) +Ri(t),where the rate of hange of the harge Q(t) of the apaitane is given by

dQ(t)

dt
= C

dU(t)

dt
≡ i(t).Multiplying the ontinuity equation by U , we an rewrite the expression as Eq. (1.1), with

E =
1

2
U2, Pinj = γεU, Pdiss = γU2,where γ = 1/RC is the inverse of the harging time of the RC dipole. We will take thissimple system as a anonial example of a dissipative system and explore further the statistialproperties of the �utuations of these global quantities in later hapters.16
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Figure 1.4: Eletroni RC dipole submitted to an eletromotive fore ε(t).that for a time T larger than the internal orrelation time τc of its �utuations, the temporal average
〈E〉T (t) =

1

T

∫ t+T

t

E(t′)dt′,does not hange with respet to T in the limit T → ∞. In this limit, we will disard the index T inthe time-averages and we will simply write 〈E〉, independent of time.Following the reasoning in Setion 1.1, a balane between the injeted and dissipated powermust be ahieved in order to neglet the mean rate of hange of E. Hene, several onstrains andrelationships between Pinj and Pdiss have to be satis�ed for a dissipative system to sustain a steadyout-of-equilibrium state. These onstraints are related to the statistial properties of these quantities,suh as their averages 〈Pdiss〉,〈Pinj〉 or rms �utuations σPinj
, σPdiss

, where σX =
√
〈X2〉 − 〈X〉2 fora given variable X.In ertain ases their �utuations display values that are several times larger than their averagevalues. Their statistis also present large deviations, even when they are averaged over the entirevolume of the system or its boundaries [2℄. Therefore, in this type of systems, the usual tools ofequilibrium statistial mehanis do not apply, or an only be applied when the injetion of energyinto the system an be regarded through the sope of the Flutuation-Dissipation theorem [11℄.Averaging over time Eq. (1.1) leads to 〈Ė〉 = 〈Pinj − Pdiss〉 = 0 .We an see that, in order tomaintain the system in a statistially stationary regime,

〈Pinj〉 = 〈Pdiss〉 ,where the brakets 〈〉 stand for time average and we suppose that the system is, in a statistial sense,ergodi. From the de�nition above, 〈R〉 = 0, whih means that all the injeted power is somehowdissipated by the system. This point is ruial: physially, the system itself hooses the way todissipate its exess energy input. Even more, it hooses the way to relate the rms �utuations of
Pinj and Pdiss, and by doing so, it �xes the rms �utuations of the energy E, as we will show in thefollowing parragraph.1.1.3 Statistial properties of the energy �ux in frequeny domainAs shown above, the mean values of both injeted and dissipated power have to be balaned in orderto maintain the system in a stationary out-of-equilibirum state. But what about the �utuations of18



suh quantities? What relationships an be extrated for their �utuations? How do these relationsontrol the energy �utuations? These questions an be partially answered by looking arefully intothe spetral properties of Pinj and Pdiss. For that matter we de�ne the Fourier transform of the�utuating variable X(t) as
X̂(ω) =

1

2π

∫ ∞

−∞

X(t)e−iωtdt,and X̂(ω)∗ = X̂(−ω), where X̂(ω)∗ stands for the omplex onjugate of X̂(ω). When taking theFourier transform of both injeted and dissipated powers, we have eliminated their mean values usingthat their averages anel eah other in the steady state.This proedure enables us to relate the statistial properties in frequeny domain to the onesin time. For that matter we de�ne the ross-orrelation funtion of the statistially stationary�utuating variables X(t) and Y (t) by
CXY (t, t′) ≡ 〈X(t)Y (t′)〉 − 〈X〉 〈Y 〉 .It follows that in a statistially stationary state� CXY (t, 0) = CY X(0,−t) (time translation)� CXY (t, t′) = CXY (|t− t′| , 0) ≡ CXY (|t− t′|) (stationarity)� |CXX(0)| ≥ |CXX(t)| (maximum orrelation at the initial time)� limt→∞ CXY (t) → 0 (events with large time lag are statistially independent)This funtion indiates the degree of statistial dependene of a variable (or variables) at di�erentperiods of time. It an be related diretly to the the spetral properties of their Fourier transformsby means of the Wiener-Khinhin theorem [11℄ whih states

SX(ω) = lim
T→∞

1

2

∫ T

−T

CXX(t)e−iωtdt. (1.2)whih simply means that the power spetral density SX(ω) of the variable X(t) de�ned by
〈X̂(ω)X̂(ω′)∗〉 = SX(ω)δ(ω − ω′),is the Fourier transform of its autoorrelation funtion CXX(t).In di�erent dissipative systems, it is possible to estimate the rms �utuations and typial timesales of the large sale (low-frequeny) foring of the system, related diretly to the energy injetionmehanism, but no diret information an be given on the dissipation mehanism and its intrinsidynamis. Furthermore, ross-orrelation funtions of both global quantities annot be deduedfrom �rst priniples. This means that global relationships between Pinj and Pdiss are of paramountimportane to probe the internal energy transfer mehanisms and intermediate dynamis betweeninjetion and dissipation.We apply the former de�nition of power spetral density and orrelation funtions to the energybalane equation. Taking the Fourier transforms of Eq. (1.1), the energy balane in frequenydomain reads

−iωÊ(ω) = P̂inj(ω) − P̂diss(ω). (1.3)19



We an dedue from Eq.(1.3) an interesting relationship between the typial time sales of inje-tion and dissipation and their rms values. Multiplying Eq.(1.3) by P̂inj(ω)∗ + P̂diss(ω)∗, the equationreads
−iωÊ(ω)(P̂inj(ω)∗+P̂diss(ω)∗) = |P̂inj(ω)|2−|P̂diss(ω)|2+P̂inj(ω)∗P̂diss(ω)−P̂inj(ω)P̂diss(ω)∗. (1.4)This lengthy expression an be simpli�ed by taking ω = 0. Due to the fat that both variablesare real, we have P̂inj(0) = P̂inj(0)∗ and P̂diss(0) = P̂diss(0)∗, whih eliminate the rossed produts.This leads to the zero-frequeny equality of the power spetral densities of both variables |P̂inj(0)|2 =

|P̂diss(0)|2, or, written in time-domain using the Wiener-Khinhin theorem,
∫ ∞

0

(〈Pinj(t)Pinj(0)〉 − 〈Pinj〉2)dt =

∫ ∞

0

(〈Pdiss(t)Pdiss(0)〉 − 〈Pdiss〉2)dt. (1.5)In order to extrat diret information on the rms �utuations, we an assume that the autoor-relation funtions of the injeted and dissipated power have exponentially dereasing behavior as
CPingPinj

(t) ∼ σ2
Pinj

e−|t|/τinj and CPdissPdiss
(t) ∼ σ2

Pdiss
e−|t|/τdiss , by doing so, we obtain the relationship

σ2
Pinj

τPinj
= σ2

Pdiss
τPdiss

, (1.6)where σX and τX are the rms and orrelation time of the variable X. This relates both orrelationtimes to the standard deviations of the injetion and dissipation. In that sense, their rms values are�xed by the onstrain of Eq.(1.6).All the above relationships an be derived by integrating diretly Eq. (1.1) in the long time limit.It is instrutive to dedue the later relation between the zero-frequeny spetrum of Pinj and Pdissin the stationary regime as follows [12℄
σ2

Pinj
τinj =

∫ ∞

0

[
〈Pinj(t)Pinj(0)〉 − 〈Pdiss〉2

]
dt

=

∫ ∞

0

[〈
(Ė(t) + Pdiss(t))(Ė(0) + Pdiss(0))

〉
− 〈Pdiss〉2

]
dt

=
〈
(E(∞) − E(0))(Ė(0) + Pdiss(0))

〉
+

∫ ∞

0

[〈
Pdiss(t)(Ė(0) + Pdiss(0)

〉
− 〈Pdiss〉2

]
dt

= 〈E〉 〈Pdiss〉 − 〈E(0)Pdiss(0)〉 +

∫ ∞

0

[〈
Pdiss(0)(Ė(−t) + Pdiss(t)

〉
− 〈Pdiss〉2

]
dt

=

∫ ∞

0

[
〈Pdiss(t)Pdiss(0)〉 − 〈Pdiss〉2

]
dt

= σ2
Pdiss

τdiss (1.7)where we have only used the stationarity of the system.We have shown that the two quantities, Pinj and Pdiss, and their �utuations drive the dynamisand ontrol the statistial properties of the internal energy E of an out-of-equilibrium system in asteady state (〈Ė〉 = 0). In a statistially steady state, they are related by equations suh as (1.6).Although experimentally, we annot impose the form of dissipation the system will use to eliminatethe exess of energy given by the injeted power, it is an interesting task to modelised Pdiss in simplesystems, satisfying the previous results. 20



1.2 Constant DissipationThe simplest hoie of dissipation in an out-of-equilibrium system is the ase where the dissipatedpower Pdiss is onstant and no dynamial onsiderations are taken into aount for its �utuations.This funtional form is not ompletly unphysial: in granular gases it has been shown that in theelasti limit, the dissipated power an be taken as a onstant [6℄. Naturally, for a given type ofinjetion operator Pinj (whih we will all I from now on), the dissipated power Pdiss annot remainonstant for an in�nite ammount of time and it must eventually develop dynamial �utuationsin order to satisfy Eqs.(1.1) and (1.6). Anyway it is an interesting question to study this type ofdissipation form.For the ase of onstant dissipation, the energy balane reads
dE

dt
= I(t) − 〈I〉 ≡ δI(t),where the energy �utuations are related only to the autoorrelation funtion of the injetion oper-ator, beause R(t) = δI(t). Although it is the simplest di�erential equation, in terms of stohastiproesses, it has several apliations desribing di�erent physial proesses suh as brownian motion[13℄ proposed by Langevin or e�etive di�usion in hydrodynami turbulene [14℄ proposed by Taylor.Eq. (1.1) an be formally integrated, to ompute E(t) =

∫ t

0
(I(u)−Pdiss(u))du =

∫ t

0
R(u)du. We an�x the zero energy level at will and by doing so, the mean value of the energy 〈E〉, whih will be�xed at zero for simpliity.1.2.1 Energy FlutuationsThe energy �utuations an be alulated diretly from Eq.(1.1) integrating it twie, giving theexpression

〈
E2

〉
= lim

t→∞
2

∫ t

0

dt′
∫ t′

0

〈R(t′)R(s)〉 ds, (1.8)whih relates them diretly to the time-integrated autoorrelation funtion of the foring term R(t).By the same arguments, we an alulate the n-th moment of the energy 〈En〉, but we will fousmainly on the rms �utuations.The �utuations of global observables in a stationary state must remain bounded. To main-tain the energy �utuations bounded, we must impose ertain onditions on the time-integratedautoorrelation of R(t). As before, assuming an exponentially dereasing time orrelation funtion
CRR(t′) ∼ σ2

R exp (− |t′|/ τR), Eq.(1.8) reads at a �xed time t,
〈
E2

〉
(t) = σ2

Rτ
2
R(t/τR − 1 + exp (−t/τR)). (1.9)For short times ompared to the orrelation time of the foring t ≪ τR, 〈E2〉, whih is relateddiretly to the energy �utuations, grows as σ2

Rt
2 (balisti limit) and for long times t≫ τR they growas σ2

RτRt (di�usive limit). For both of these limiting behaviors, the rms value of E diverges in theasymptoti limit t→ ∞.One way to eliminate the divergene of the moments of E is to impose ∫ ∞

−∞
〈R(0)R(s)〉 ds =

σ2
RτR = 0, meaning that the zero frequeny part of the power spetral density |R̂(ω = 0)|2 mustbe zero. This an be understood from Eq. (1.8), arguing that if the integral of the autoorrelationfuntion dereases fast enough we an separate the two integrals: one related to the zero-frequeny21
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Figure 1.5: a) Funtional form of the normalised power spetral density (|R̂(ω)|2/σ2
RτR as a funtionof the normalised frequeny ω/τR. b) Inset: Log-Log plot. The dashed line shows the asymptotibehavior |R̂(ω)|2/σ2

RτR → ω2 lose to ω = 0.part of the power spetral density and another that grows linearly in time. This is just the di�usivelimit for long times, as it was already shown above. It is a strong assumption, beause using the fatthat the autoorrelation funtion is exponentially dereasing we an see from Eq. (1.9) that the rmsvalue will not only be bounded, but atually zero. This means that the autoorrelation funtion of
R(t) does not behave as simply as a deaying exponential in any way. Using Eq. (1.1) and takingthe Fourier transform |Ê(ω)|2 = |R̂(ω)|2/ω2, and integrating it in ω-spae, we get

〈
E2

〉
=

∫ ∞

−∞

|R̂(ω)|2
ω2

dω. (1.10)With this expression we an study the rms �utuations of E by means of the spetral properties of
R̂(ω). If we assume that the foring rms �utuations 〈R2〉 are bounded and knowing that |R̂(0)|2 = 0,we an assume that

lim
ω→0

|R̂(ω)|2/σ2
RτR → ωα

lim
ω→∞

|R̂(ω)|2/σ2
RτR → ω−(1+β) (1.11)with α, β > 0. Inluding this in Eq. (1.10) and impossing bounded rms �utuations of the energy, wesee that α ≥ 2 to prevent divergenes at zero frequeny (that is, the di�usive limit). Indeed, due tothe fat that R is real and assuming that it is bounded when t→ ∞, we an expand in series its powerspetrum lose to ω = 0. From |R̂(0)|2 = 0, we an assume that |R̂(ω)|2 ∼ σ2

RτR((ω2/τ 2
R)+O((ω/τR)4)when ω → 0. The typial shape of |R̂(ω)|2 following this limit in frequeny is shown in Fig. (1.5).Although all of these alulations are made for the ase of onstant dissipative power, the generalrelationships drawn for R(t) and E(t) an be applied for any type energy �ux that satis�es Eq. (1.1),for instane when the dissipative power is proportional to the energy of the system, as we will studyin the next parragraph. 22



1.3 Linear dampingLet us take Eq.(1.1) and assume that the dissipated power Pdiss is proportional to the energy ofthe system E ∝ Pdiss, with a oe�ient of proportionality with units of frequeny alled dampingrate, muh like the ase of a damped brownian partile [13℄ or water surfae waves in inompressiblevisous �uids [15℄. The balane equation (1.1) then reads
dE(t)

dt
= I(t) − γ′E(t) (1.12)where the damping rate γ′ does not depend on the energy of the system and will be regardedas a onstant in the following alulations. It is straightforward to show that in the steady state

〈E〉 = 〈I〉 /γ′ and the initial onditions are lost after a harateristi time of order γ′−1. Furthermore,due to the linearity of 1.12, we an integrate it diretly to solve the linear di�erential equation. Thatmeans that for a given injetion power proess, all the umulants and moments of the energy are justthe integrated umulants and moments of I with a ertain weight funtion. This weight funtion is inthis ase a dereasing exponential exp[−γ′t]where the damping rate takes the role of a harateristiorrelation time of the dissipative proess.1.3.1 Energy FlutuationsFrom the linear system, we ompute the solution simply as
E(t) =

∫ t

0

I(t′)eγ′(t−t′)dt′where the initial ondition of the energy are negleted in the stationary regime when a time of theorder of 1/γ′ has passed. For the seond moment 〈E2〉, the expression reads
〈
E2

〉
= lim

t→∞

∫ t

0

∫ t

0

〈I(u)I(v)〉 e−γ′(t−u))−γ′(t−v)dudv, (1.13)In the ase where the autoorrelation funtion of I behaves exponentially, and assuming station-arity of the system, we have CII(t) = σ2
I exp (−t/τI), where σI = σPinj

and τI = τPinj
. Computingnow 〈E2〉 for the stationary regime, we get

〈
E2

〉
=
σ2

I τI
γ′

+
〈I〉2
γ′2

=
σ2

I τI
γ′

+ 〈E〉2 (1.14)From the later equation, we an ompute the standard deviation of E, whih is simply σE =
σI

√
τI/γ′. For higher moments, i.e., 〈En〉 , n > 2, we have to know in advane how the n-pointorrelation funtion of I behaves. For instane, the third order moment 〈E3〉 an be written as

lim
t→∞

∫ t

0

∫ t

0

∫ t

0

〈I(u)I(v)I(w)〉 e−γ′(3t−u−v−w)dudvdwwhere we need expliitly the form of the 3-point orrelation funtion of I.In the frequeny domain, we an also extrat some interesting onlusions relating the powerspetral densities of both the energy and the injeted power. Taking the Fourier transform fromEq.(1.12), we have
−iωÊ(ω) + γ′Ê(ω) = Î(ω).23



From the absolute value of the Fourier transform of the energy |Ê(ω)|2, we �nd
|Ê(ω)|2 =

|Î(ω)|2
ω2 + γ′2

, (1.15)whih means that the autoorrelation funtion of E is given by the Fourier transform of Eq. (1.15),and, using the Wiener-Khinhin theorem, we also have
∫ ∞

−∞

(〈E(t)E(0)〉 − 〈E〉2)dt =
1

γ′2

∫ ∞

−∞

(〈I(t)I(0)〉 − 〈I〉2)dt,whih is just Eq. (1.6), written for a dissipated power proportional to the energy. In fat, supposingexponentially dereasing autoorrelation funtions for both observables, this gives
σ2

E = σ2
IτI/γ

′.Thus, in the ase where Pdiss is proportional to E, the main parameters ontroling the energy�utuations are the zero-frequeny omponent of the power spetral density of I and the damping rate
γ′, whih ats as an impedane to the energy �ux input. This type of dissipative power dependeneon the energy will be further studied in the next hapter.1.3.2 Injetion and Dissipation CorrelationsTime and spae orrelations are indeed present in out-of-equilibrium systems and have importante�ets on the dynamis of the internal degrees of freedom. Using (1.12) we an also study the ross-orrelation funtions of injetion and dissipation. The non-zero orrelation of both observables islear from the fat that E and its moments depend linearly on I, mainly beause

CIPdiss
(t) = 〈I(0)Pdiss(t)〉 − 〈I〉2 =

∫ t

0

(〈I(0)I(t′)〉 − 〈I〉2)e−γ′(t−t′)dt′.In the ase of exponentially dereasing autoorrelation funtions, this is just the integration of twodereasing exponentials with arateristi times τI and τdiss = γ−1.Straightforward alulations lead to the funtion CIPdiss
(t) = σ2

If(t), with
f(t) =

γ′τI
γ′τI − 1

(exp[−t/τI ] − exp[−γ′t]),whih is always possitive, as shown in Fig.(1.6). It has a maximum that dereases when γ′τI grows.This means that I and Pdiss lose their statistial dependene when their time sales begin to separate.We an also show that the orrelation time t∗/τI for the pair of variables, i.e. where CIPdiss
ismaximum, grows logarithmially in the normalised time variable t/τI as a funtion of γ′τI , as shownin Fig.(1.7).1.4 ConlusionsIn this Chapter we have shown several examples and simple systems where the energy balaneequation takes part in desribing the interation of injeted power Pinj = I and dissipated power

Pdiss when a dissipative system is maintained in an out-of-equilibrium stationary state. Althoughdissipation is hard to measure (and in some ases even not aessible), ertain relationships an besorted out, by aknowledging the fat that the injeted power furnished by the foring devie has tobe dissipated. Correlation times and standard deviations of both observables an be related and, insome ases, even restritions for them an be given.24
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Chapter 2Injeted Power into randomly foreddissipative systems in stationaryout-of-equilibirum statesIn this Chapter we study the statistial properties of the injeted power I into a dissipative system inthe ase where the foring driving the system into a steady out-of-equilibrium state an be modelisedby a random Gaussian noise with a harateristi time sale. In Setion 2.1 and Setion 2.2 weset the theoretial bakground for the alulation of the injeted power �utuations in this simplemodel. In Setion 2.3 we study experimentally this type of foring in an eletroni RC iruit, wherethe random foring is externally ontrolled. The probability density funtion (PDF) of the injetedpower displays exponential tails and a usp lose to I = 0. This PDF an be omputed and is generisine it appears in several systems driven out of equilibrium, as we wil show in Setion 2.4.2.1 Langevin equation with random foringThe injeted power I provides a permanent energy input into a dissipative system, in order tomaintain it in a dynamial state, di�erent from the one at equilibrium. It has been often onsid-ered theoretially as a onstant input parameter in out-of-equilibrium systems (for instane in theapproah of Kolmogorov of fully developed turbulene [1℄). However, even when the number ofomponents or degrees of freedom of the system under study is large, I an �utuate strongly andrearding it as a onstant is nor realisti neither suited for its desription.Its mean value 〈I〉 > 0 annot be �xed solely by the external foring: it depends on the impedaneof the system. As shown in the previous hapter, its rms �utuations have to satisfy ertain onstrainsin order to maintain the fored system in a statistially stationary out-of-equilibrium state. In ertainsimple limits, it ontrols the internal energy �utuations and its higher moments. It is then aninteresting question to study the statistial properties of the injeted power I and its relation to theinternal energy �utuations.To do so, we will study one of the simplest dissipative systems, desribed by a linear Langevinequation. Although it is the anonial example of �utuations in equilibrium statistial mehanis[2℄ desribing the thermalization of a brownian partile, it an also be envisioned as a stronglyout-of-equilibrium system [3℄, as we will show below.We will use a simple model where the response of the system to a random foring follows the27



linear Langevin equation
dv(t)

dt
= −γv(t) + f(t), (2.1)as one of the simplest dissipative system, where v(t) is the response of the system (for instane, theveloity of a damped partile [4℄, γ is the damping rate oe�ient and f(t) is a random foring. Thismodelisation only assumes that the response of the system is proportional to the foring (mainly thatthe rms �utuations of v are proportional to the rms �utuations of f). Eq. (2.1) is learly dissipativeand an be written as an energy balane equation by multiplying it by v(t). The energy of the system

E = v2/2 is pumped by the injeted power I = fv and later dissipated, Pdiss = γv2 = 2γE. In astationary out-of-equilibrium state, dissipation is proportional to the energy of the system, thereforethe general relationships presented in the previous Chapter hold.This simple system was �rst studied as a simple dissipative system by Farago [3℄ for foring fwhih is a gaussian white noise (with zero orrelation time) and later for a olored noise (non-zeroorrelation time) with a given autoorrelation funtion. Here, we will take the foring f atingon the system to be an Orstein-Ulhembek (O-U) type of noise with an exponentially dereasingautoorrelation funtion satisfying, thus
df(t)

dt
= −λf(t) + ζ(t). (2.2)where ζ(t) is a gaussian white noise with zero mean value and autoorrelation funtion 〈ζ(t)ζ(t′) =

Dδ(t− t′). Here, D is the noise intensity and δ(t) is the delta funtion satisfying x(t) =
∫
Ω
x(t′)δ(t−

t′)dt′, when t ∈ Ω and zero otherwise. In that sense the foring f and the response v follow the sametype of equation. For the foring f satisfying Eq.(2.2) the autoorrelation funtion is 〈f(t)f(t′)〉 =
D
λ
e−λ|t−t′|.Both variables f and v are by no means statistially independent. This omes from the fat that

〈I〉 = 〈fv〉 is positive in order to maintain the system in an out-of-equilibrium state. Given thelinearity of the Eq. (2.1), we an alulate expliitly 〈I〉.We will study the injeted power �utuations in this system in the next setion. We will see thatthey present large exponential tails and a usp near I ≃ 0. Given the fat that the system is in astationary state and both variables are gaussian, we will also alulate expliitly the injeted powerPDF, as shown in the next setion.2.2 Calulation of the Probability Density Funtion of the In-jeted PowerSupposing that the foring f on the system is a random gaussian noise with zero mean and dueto the linearity of Eq.(2.1), so will be v. The �utuations of both variables an be desribed by ajoint Probability Density Funtion (PDF) P(v, f, t), whih an be alulated from the Fokker-Plankequation [6℄ of the system. This proedure is explained in the Appendix. In the stationary limit,
P(v, f) reads

P(v, f) =
1

2πσvσf (1 − r2)1/2
exp

[
− 1

2(1 − r2)

(
v2/σ2

v − 2rvf/(σvσf ) + f 2/σ2
f

)]
.Here σv and σf are the rms �utuations of v and f respetively and r is the normalised orrelationoe�ient r = 〈vf〉/(σvσf ). From Eqs.(2.1) and (2.2), we an ompute diretly these oe�ients as28
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Figure 2.1: PDF of X = I/(1 − r2)σvσf for di�erent values of r. The arrow shows inreasing valuesof r at �xed values of σv, σf .funtions of D, λ and γ as
σf =

√
D

2λ
, (2.3)

σv =

√
D

2λγ(λ+ γ)
, (2.4)and

r =
〈I〉
σvσf

=

√
γ

γ + λ
(2.5)The normalised orrelation oe�ient r is also the normalised mean injeted power into the dissipativesystem. This oe�ient must be positive (in order to injet energy into the system) and smaller than1 due to the Cauhy-Shwartz identity [5℄ 〈fv〉 ≤ √

〈v2〉 〈f 2〉. Integrating diretly the expression of
P(f, v) to alulate the mean values of v or f gives 〈v〉 = 〈f〉 = 0.From the expression of the joint PDF, we an integrate diretly the PDF of the injeted power
I. To do so, we hange variables from v and f to I = fv and u = v, for example. The alulationsare straightforward, giving the expresion for the PDF of I

P (I) = C exp

(
r

I

(1 − r2)σvσf

)
K0

(∣∣∣∣
I

(1 − r2)σvσf

∣∣∣∣

)
, (2.6)where C = (πσvσf

√
1 − r2)−1 is a normalisation onstant and K0(x) is the zeroth order modi�edBessel funtion of the 2nd kind. In the normalised variable X = I/[(1−r2)σvσf ], we an see that the29



only parameter that ontrols the assymetry of the PDF is the orrelation oe�ient r, related diretlyto the mean dissipated power 〈D〉 = 〈I〉. For a given value of r, we show in Fig.(2.1) the typialshape of the PDF of the injeted power �utuations for a system desribed by Eqs. (2.1) and (2.2).Knowing the PDF of the injeted power, all of its moments and umulants an be diretly omputed,as it is shown in the Appendix. For instane, the �rst 4 moments are 〈I〉 = r, 〈I2〉 = 1 + 2r2,
〈I3〉 = 9r + 6r3 and 〈I4〉 = 9 + 72r2 + 24r4.For any value of r ∈ (0, 1), the usp at zero an be also dedued from the asymptoti behavior of
K0(x), beause limx→0K0(x) ∼ − log(x). The PDF displays large exponential asymmetri tails anda usp near I = 0. We an estimate both exponential tails using the assymptoti behavior of

lim
x→∞

K0(x) ∼ exp(−x),whih means that the PDF of X an be omputed, using the steepest desent method as
P (X) = C ′ exp (rX − |X|)√

|X|
, (2.7)with C ′ a normalisation onstant. We refer to the Appendix for this alulation. From ths approxi-mate expression both exponential tails are

P (X) → exp (−(1 − r)X) for X > 0 (2.8)
P (X) → exp (−(1 + r) |X|) for X < 0. (2.9)The limiting ases where r = 0 and r = 1 an be understood as follows. When r = 0, bothvariables v and f are statistially independent and no orrelation between them exists. In this asethe PDF of X is symmetri with respet to zero (see Fig. (2.1)), as it is for K0(|X|) whih behaves asan exponential funtion for large X. In this limiting ase no mean injeted power enters the system,hene it annot be viewed rigorously as an out-of-equilibrium system. When r = 1, both variablesare statistially dependent in the sense that v ∝ f and the PDF of X is the PDF of a squaredgaussian random variable, therefore it follows a χ-square distribution of 1 degree of freedom. In thisase the χ-square distribution displays an exponential tail for positive events and no negative eventsour.2.3 Injeted power into a simple experimental system: RCiruitTo test the later theoretial results, we an use a simple physial system: an eletroni iruit with aresistor of resistane R in series with a apaitor of apaitane C, whih is submitted to a stohastivoltage ζ(t), as shown in Fig. (2.2).The voltage ontinuity equation, applied to the iruit reads (see Chapter 2)
γ−1dV (t)

dt
+ V (t) = ζ(t), (2.10)where RC = γ−1. The quasi-gaussian stohasti foring ζ(t) is generated by a Spetrum Analyzer(Hewlett-Pakard HP 35670A). This noise is low-pass �ltered at a ut-o� frequeny λ �xed to 5 kHz,unless spei�ed otherwise. The ontrol parameter of this system is the noise amplitude D de�nedby the onstant value of its power spetral density, as an analogy to the white noise limit. C is30
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Figure 2.2: Eletroni RC dipole submitted to a stohasti voltage ζ(t).�xed to 1 µF, and R an be varied between 200 Ω and 10 kΩ leading to values of γ from 50 Hz to10 kHz. The output V (t) of the RC iruit is multiplied by the random foring ζ(t) by means ofan analog multiplier (Analog Devies AD540). The resulting voltage V (t)ζ(t) is proportional to theinjeted power (as it was shown in Chapter 1) and it is aquired with a Digital-to-Analog Aquisitionard (AT-MIO-16X) at 100 kHz sampling frequeny for 10 s, with a resolution of 0.3 mV. Thissimple system mimis the Langevin equation of a brownian partile, submitted to a random foring.Multiplying the latter equation by V (t) leads to the same fundamental balane equation (Eq. (1.1)),where the energy of the system E(t) = 1
2
V (t)2, I(t) = γζ(t)V (t) and Pdiss(t) = γV (t)2 = 2γE(t).The analog multipliation gives diretly ζ(t)V (t), whih is proportional to I(t).A typial temporal trae of the normalised injeted power I/〈I〉 is displayed in Fig.(2.3). Qui-esent periods with a small amount of injeted power are observed and interrupted by bursts where

I(t) an take both positive and negative values, although 〈I〉 ≥0. These �utuations are large withrespet with the mean value, equal to 〈I〉=6.6 x 10−2 Vrms2 Hz.The aim is now to study the probability distribution funtion (PDF) of these injeted power�utuations in the RC iruit.2.3.1 Statistial properties of the Injeted PowerWe study in this setion the statistial properties of the injeted power through its probability densityfuntion. The PDF of the injeted power, I, is shown in Fig.(2.4) for di�erent values of the noiseamplitude D, and the damping rate γ. For all values of D and γ, the PDFs exhibit two asymmetriexponential tails and a usp near I ≃ 0. As shown in Fig.(2.4), the PDF asymmetry inreasesstrongly with γ at �xed D. Moreover, the extremal �utuations inrease strongly with D at a �xed
γ. At a �xed value of γ, the PDFs of I are plotted in Fig. (2.5) for 9 di�erent inreasing noiseamplitudes. As shown in the inset of Fig. (2.5), all these PDFs ollapse on the same urve whenplotted in the entered-redued variable, (I−〈I〉)/σI , where σI is the rms value of I, and 〈I〉 its meanvalue. Suh a ollapse means that all the moments of I sale as σI . As shown in Fig.(2.6), σI (as wellas 〈I〉) sales linearly with D. This linear dependene with D of the moments of I an be reovered31
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by dimensional analysis from the linear Langevin Eqs. (2.1) and (2.2). Due to the linearity of this setof equations, the rms �utuations of the foring σf are proportional to D, and the rms �utuationsof the foring σv are proportional to the ones of the σf , and hene σv ∝ σf . Consequently, I ∝ D,and all of its higher order moments follow a similar saling 〈I〉n ∝ Dn. Following this reasoning, theslopes of the exponential tails sale as D−1, so when the noise amplitude D is doubled, the typial�utuation sale of I is doubled.
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Figure 2.5: Probability density funtions of injeted power, I, for D = 0.06 (+) to 1.56 (⊲) x 10−3V2
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P+(I) ∼ exp

(
−α+

I

Dγ1.65

)
. (2.11)Similarly, the PDF of the negative values of I behaves as

P−(I) ∼ exp

(
α−

I

Dγ1.33

) (2.12)33
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〈I〉 ∼ Dγ1.90 and σI ∼ Dγ1.59λ0.50. (2.13)34
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All these exponents are measured with a preision of ±0.05. Thus, the noise amplitude D is found todrive the sale of the injeted power �utuations whereas the damping rate γ ontrols the asymmetryof the PDF of I for a �xed orrelation time λ−1.Theoretially, one an alulate the mean and rms values of I diretly from the PDF of Eq.(2.6)(or from the set of Eqs.(2.1) and (2.2) by diret integration). They an be written, in the stationarylimit, as[6℄
〈I〉 = γ2 Dλ

λ+ γ
, (2.14)

σI = γ2 Dλ

λ1/2γ1/2
. (2.15)In the limit γ/λ << 1, Eq. (2.14) yields

〈I〉 ∼ Dγ2, (2.16)whih does not depend on the ut-o� frequeny λ, and Eq. (2.15) yields
σI ∼ Dγ3/2λ1/2 (2.17)The range of γ used experimentally is between 50 and 2000 Hz, and the frequeny ut-o� λ isin the range from 3 kHz to 40 kHz. This leads to γ/λ ∼ 0.1 in the worst ase. The �rst twoumulants of Eqs. (2.16) and (2.17) derived from the O-U proess thus are in good agreement withthe experimental results of Eqs. (2.13).2.4 Appliation to various systemsThe typial shape of the PDF of I an be found in several systems submitted to a random foring.Even when the foring is not ompletely gaussian, some features are generi, being mainly theexponential tails and usp near zero, the sole ontol parameter is the mean injeted power. Wepresent some of these systems in the following setion.2.4.1 Wave turbuleneWave Turbulene deals with the statistial steady state of a set of weakly nonlinear interating waves,whose properties will be explained in Chapter 6. To drive this state, a onstant input of energy mustbe supplied. Theoretially, only the mean �ux of energy 〈I〉 has been onsidered and is seen as aontrol parameter. However, experimentally large �utuations of I appear and, moreover, the mean�ux is determined by the system itself balaning injetion and dissipation. Here, we present twowave turbulene experiments where this point is studied in the frame of random foring.Wave Turbulene experiments in water and merury:A wavemaker is used to generate waves at the surfae of a �uid that an display out-of-equilibriumstationary states suh as wave turbulene [7℄. The veloity V (t) of the wave maker and the fore

FA(t) applied by the moving blade of the wavemaker are measured simultaneously. The veloity
V (t) of the wave maker is measured using a oil plaed on the top of the eletromagneti shaker (B36
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Figure 2.9: PDF on the power injeted by the random vibrations of a wavemaker into the surfaewave turbulene for experiments in small (blak) and large (red) ontainer of merury (from [7℄).Data are normalized by their mean value 〈I〉 = 0.05 W. The foring is a gaussian low frequeny noiseof bandwidth [0, 6] Hz. Dashed line �ts orrespond to the formula (2.6). Vertial full and dashedlines show the orresponding average and most probable value. Inset: Temporal trae of the injetedpower over 3 s and 〈I〉 = 0.05 W.
& K 4809). This shaker drives the wavemaker with a low-frequeny gaussian random noise. Theindued voltage generated by the moving permanent magnet of the vibration exiter is proportionalto the exitation veloity. The fore FA(t) applied by the eletromagneti shaker to the wave makeris measured by a piezoresistive fore transduer (FGP 10 daN). Both signals display statistis loseto gaussian of zero mean value.For a given foring with a low-pass �ltered bandwidth, the rms value of veloity is proportionalto the applied tension driving the shaker and does not depend on the �uid density ρ. The fore rms�utuations, on the ontrary, inreases with inreasing �uid density. The power injeted into the �uidby the wave maker is I(t) ≡ −FR(t)V (t) where FR(t) is the fore applied by the �uid on the wavemaker. This value generally di�ers from the measured one, FA(t)V (t) beause of the piston inertia,omparable in some ases with the one of the �uid (in the ase of water) whih is been pushed. Themean values of FR(t)V (t) and FA(t)V (t) are the same, though. Keeping this in mind, we have alsomeasured the aeleration of the piston V̇ to dedued the fore exered over the wavemaker fromNewton's law

MV̇ = FA(t) + FR(t),for the piston of mass M . In the ase of merury, MV̇ is negligible and I(t) an be estimatedaurately by −FA(t)V (t). In the ase of water, inertia has to be taken in to aount in omputingthe �utuating values of the injeted power.The �utuating injeted power displays bursts and large �utuations with respet to the averageinjeted power 〈I〉. Figure (2.9) shows the PDF of the injeted power for two di�erent experimentalon�gurations. Here, the main hange in the experimental onditions is the size of the ontainers. Forthe omputed urves, the working �uid is meury (density ρ = 13.6 x 104 kg/m3, kinemati visosity37



ν= 1.2 x 10−7 m2/s and surfae tension σ= 0.4 N/m). One again, we see a usp at I ≃ 0 andasymmetri tails. Using the aquired traes of both FA(t) and V (t), we ompute the mean injetedpower and their orrelation oe�ient r. For the small ontainer r ∼ 0.6 and for the large ontainer
r ∼ 0.7. Using this information we an ompare these PDFs with the omputed ones (Eq.(2.6)).There is a good agreement between theoretial and experimental results, although we an see that inthe smaller ontainer the tails slightly depart from exponential �t. There is no asjustable parameterbeing used in this omparison.Wave Turbulene experiments in elasti plates:
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Figure 2.12: Left: PDF of the renormalized dimensionless loal omponents of the heat transport,
X = αJi/(1 − (α〈Ji〉)2) with α = 1/(σvi

σδT ), near the side wall of a onvetive ell in the turbulentregime (Ra=2.6 × 109) extrated from [12℄. Blue dots show the horizontal omponent whereas reddots show the vertial ones. The dashed and dot�dashed lines show respetivelly the relations (2.6)and (2.7). The unknown oe�ient α is used as a �tting parameter. Right: PDF of the spatial�utuations of the heat �ux at Ra = 108 (blue) extrated from [14℄. Continuous red line orrespondsto relation (2.6) where r is used as a �tting parameterdi�erential equations
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nun, (2.18)where un is the omplex amplitude of the mode n and (∗) stands for omplex onjugate, kn = 2n−4stands for the shell wave number, and fn is the fore applied on the shell n. The dissipation at eahshell is given by νk2
nun, ν being the kinemati visosity. In absense of foring and dissipation thisset of equations onserve the energy

E =
1

2

N∑
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|u2
n|,and depending on the value of θ, intermitteny ours in the system. θ is related to the seondonserved quantity of the set of equations (whih is quadrati in un), when no foring nor dissipationare taken into aount.Instead of the usual onstant foring we use a random one. Suh a foring does not modify theenergy asade of the shell model. The random foring is one again hosen as an O-U type of noise,in order to be able to keep the harateristi time sale of energy injetion larger than dissipativeones. This random fore is applied to the 4th shell of the model, and the injeted power I(t) isalulated as the real part of u∗4f(t). At this stage, the PDF of both f(t) and u4(t) are gaussian. ThePDF of the injeted power I is shown in Fig.(2.11). For both plots of Figure 2.11, we just hangethie orrelation time τc = 1/λ, keeping onstant the rms value of the foring, σf=7.1 x 10−2, thetotal number of shells, Ns = 20, and the visosity, ν =4.0 x 10−6. In this simulation, we have used aRunge-Kutta method of order four and the time step was set at 2x10−5. The asymmetry inreaseswith τc. 40



Turbulent ConvetionThe same type of statistis was also found for the turbulent heat �ux in onvetive transport. Thestudies on turbulent onvetion have been foused sine a long time only on the relation between themean temperature di�erene, ∆T = (Td−Tu), and the heat transport, Q, or in dimensionless variablesbetween the Rayleigh number Ra (de�ned in Chapter 2) and the Nusselt number, Nu = Qh/(λ∆T ).Only reently measurements have been performed on the �utuations of the heat �ux [11, 12, 13, 14℄.The heat �ux an be estimated as the produt ot two random quantities: the veloity ompo-nent vi(r, t), either vertial (parallel to the temperature gradient) or horizontal (perpendiular tothe temperature gradient), and the temperature perturbation δT (r, t). These quantities have beenestimated loally in mid-height of a Rayleigh-Bénard experiment lose to the boundary of the ell[12℄, or by a Langrangian probe adveted by the onveting �uid [13℄, or in numerial simulationwhere the spatial �utuations an be measured [14℄. In all these ases, the PDF presents the sameshape. We show on the left part of Fig. (2.4.2) the 2 omponents of the dimensionless loal heat�ux, Ji(r, t) ≡ vi(r, t) × δT (r, t), measured by Xia [12℄ at mid-height of the onvetion ell lose tothe lateral walls where a onvetive large sale wind provides most of the heat �ux. In ontrast to itshorizontal ounterpart, the average of the vertial omponent of this �ux, 〈Jz(r, t)〉, is not expetedto vanish sine there is an average heat �ux from the bottom to top of the ell. The heat trans-port in the horizontal diretion (x�axis) is more than ten times smaller, 〈Jx(r, t)〉/〈Jz(r, t)〉 = 0.06,therefore the PDF is almost symmetrial. This an be simply understood from the fat that thevertial veloity vz(r, t) is pumped by the temperature di�erene δT (r, t), therefore spatio-temporalorrelations between both variables must be large, as we an see from Fig. 2.4.2. On the right partof this �gure, we present the instantaneous spatial �utuations of the vertial heat �ux estimatedby numerial simulation in a large aspet ratio ell for a large value of the Rayleigh number Ra[14℄.It is astonishing that, although in several studies the temperature �utuations have been found todisplay large events that do not follow gaussian statistis, the PDF of the normalised loal heat �ux
Ji(r, t)/〈Ji(r, t)〉 displays exponential tails following the simple expressions (2.6) or (2.7), where thesole parameter is its mean value related diretly to the orrelation between veloity and temperature�utuations.2.5 ConlusionsIn this Chapter, we have studied the probability distribution funtion of the injeted power in out-of-equilibrium systems when the foring ating on the system is a random gaussian noise. Theprobability distribution funtion (PDF) of I(t) displays a usp near I ≃ 0 and asymmetri expo-nential tails. This typial PDF shape has been observed in more omplex dissipative systems (suhas in granular gases, wave turbulene and onvetion). We have studied experimentally in a sim-ple eletroni system the dependene of I(t) with respet to the damping rate rate. The relevantparameters of the system an be easily hanged in our simple experiment. Using a simple model(two oupled linear Langevin equations) we an dedued the shape of the distribution of �utuationsof I. The sole ontrol parameter in this approah is the orrelation orrelation oe�ient r relateddiretly to the mean dissipation, driving the asymmetry of the distribution of I(t): the larger themean dissipation, the larger is the asymmetry of the PDF.
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Chapter 3Injeted power �utuations and theFlutuation Theorem in dissipative systemsThis Chapter is devoted to probe the validity of the Flutuation Theorem (FT) in an experimental,and therefore dissipative, system driven out-of-equilibrium in a stationary state. The FlutuationTheorem desribes the asymmetry of distribution of a �utuating global quantity suh as the injetedpower I, averaged over a time τ muh larger than its typial orrelation time τc. In that sense, the FTrelates diretly the injeted power �utuations and the internal energy �utuations when a dissipativesystem is set in an out-of-equilibrium stationary state. The experimental devie used to test the FTis the simple eletroni RC iruit desribed in Chapter 2.The Chapter is divided as follows: in the �rst part (Setion 3.1) we reall what the FT statesand the hypothesis that it neessitates for its appliation to a dissipative system. In the seond part(Setion 3.2), we experimentally test the FT in an eletroni RC iruit fored by a quasi-gaussianrandom noise. We �nd out that in this simple system it does not hold. We test the FT also in waveturbulene experiments performed in �uids and elasti sheets as shown in Setion 3.3.3.1 Flutuation Theorems and their appliation to dissipativeout-of-equilibrium systemsA dissipative system set in a statistially stationary out-of-equilibrium state neessitates a onstantin�ux of energy. This point has been disussed in-extenso in Chapters 1 and 2, where the statistialproperties and the distribution funtion of the injeted power �utuations have been studied in simpleexamples (for instane when the dissipated power Pdiss is onstant or proportional to the internalenergy E) and related to the internal energy �utuations of the system under study. A pertinentquestion is if there is a suitable way to desribe these �utuations and how the relationships that wehave found an be extended to dissipative systems fored strongly out of equilibrium in a statistiallysteady state, where there is no external ontrol on the injeted and dissipated power �utuations.We know that in equilibrium statistial mehanis, the distribution funtion P (O) of an observable
O in thermodynami equilibrium, is a gaussian entered around its mean value 〈O〉,

P (O) ∼ exp

[
O − 〈O〉
σ2

O

]
, (3.1)with σO the standard deviation of O, whih, as the number of degrees of freedom of the system

N grows, goes to zero ∼ N−1/2. This is a onsequene of the entral limit theorem: the sum of a43



large number of independent random variables, eah one of them having a �nite mean and standarddeviation, will be approximately normally distributed. In an isolated system (or a system in ontatof with a thermal bath at temperature T ) onsisting of a large number of non interating partiles, theenergy of the system at any instant of time E(t) an be written as the sum of the kineti energy of eahpartile whih �utuates due to thermal agitation. For a large number of partiles, the distributionfuntion of the energy will follow Eq. (3.1). When a system is set in an out-of-equilibrium state, thisis usually not the ase for the distribution funtions of its global observables.In this ontext, theoretial approahes to the problem of distribution funtions in out-of-equilibriumsystems have been given in reent years. Universal distributions, suh as Gumbell, χ-squared[1℄ orother distributions [2℄ have been proposed to desribe quantities in systems fored strongly out-of-equilibirum or into turbulent-like states. Although they seem to �t aurately ertain sets ofexperimental or numerial data, there is no generalization of these distributions to a larger lass ofdissipative systems. In that sense, instead of searhing for "universal" distribution funtions, theattention has been foused on �utuation relations.Flutuation relations have reeived muh attention, sine the early work of Nyquist and Johnson[3℄ and of Callen and Welton [4℄ on the �utuation-dissipation theorem, whih relates the out-of-equilibrium behavior of a system from its reversible �utuations in thermodynami equilibrium.Although the relationship between equilibrium �utuations with irreversible behavior was alreadyfound by Einstein in his theory of brownian motion [5℄, it was not given rigorous mathematial proofuntil the works of Onsager [6℄ and Kubo [7℄. Later, they where expanded to the nonlinear regimes[8℄, or as onetions between equilibrium states through out-of-equilibirum proesses [9℄, but alwaysin the ontext of equilibrium distributions or small perturbations of them.Far from equilibrium, there has been theoretial advanes in �utuation relations. These relationsdesribe mainly the asymmetry of the distribution funtion of the global observable O averaged in thelong time limit τ → ∞, whih is muh larger than the autoorrelation time τc of O. The smoothingor running average of O, Oτ , de�ned as
Oτ(t) =

1

τ

∫ t+τ

t

O(t′)dt′, (3.2)is used to ompute the asymmetry funtion [10℄
ρ(ǫ) ≡ lim

τ→∞

τc
τ

log

[
P (ǫ)

P (−ǫ)

]
, (3.3)where ǫ = Oτ/〈O〉 is the normalized observable whih follows a distribution P (ǫ). This funtion isthus an indiator of the asymmetry of the distribution funtion of the averaged normalised observable

ǫ. By omputing the running average Oτ , we smear out the large �utuations or transient dynamisof the system. It is lear that by averaging in an interval of length τ , the �utuations of Oτ willderease strongly. In the assymptoti limit τ → ∞, one would expet ǫ to onverge to 1, and its�utuations to be distributed as a gaussian
P (ǫ) ≃ exp[τ(ǫ− 1)2/2σ2

ǫ ], (3.4)where
σǫ ≡ lim

τ→∞

∫ τ

−τ

〈O(t′)O(0)〉 − 〈O〉2
〈O〉2 dt′is the temporal integral of the autoorrelation funtion of O, and by the Wiener-Khinhine theorem,the zero-frequeny omponent of its power spetrum density |Ô(ω)|2.44



The asymmetry funtion ρ(ǫ) is the starting point to study the Flutuation Theorem (FT).The FT (also alled the Gallavotti�Cohen relation) [11, 12, 13℄ was �rst introdued in a numerialsimulation where a newtonian �uid was subjeted to an external shear[8℄. Later, a mathematialproof was given [14℄. It states that,
ρ(ǫ) = βǫ, (3.5)whih means that in the long time limit ρ(ǫ) loses the temporal dependene on τ and only depends on

ǫ linearly. The onstant β, independent of the averaging time τ and value of the normalized observable
ǫ, is related to the internal energy �utuations and therefore related diretly to the "temperature"of the system. Therefore the FT an relate the omputed probability density funtion P (ǫ) of themeasured observable ǫ to the internal �utuations of the system, aessing information that otherwiseould not be aessed. To do so, large negative and possitive �utuations of ǫ must our.It is important to reall the hypothesis under whih the FT is valid. First, for the appliationof the FT the internal dynamis of the system under study must be mirosopially reversible intime. This point means that inverting the temporal evolution of the system leaves the equations ofmotion of the inner degrees of freedom unhanged. The seond hypothesis is that the system must bedissipative, ontrating the phase spae. Lastly, the dynamis on the phase spae should be haoti.This is an analogy to ergodiity in equilibrium statistial mehanis, where the available phase spaeis ompletely oupied and invariant measures an be de�ned and used to extrat and omputeaverages of observables [11, 12, 13℄. The type of systems where these hypothesis are satis�ed are veryspeial: they an interhange dissipation with injetion just by hanging t→ −t. Experimentally, asystem that ful�lls these restritions are very hard (not to say impossible) to �nd.The relation of Eq.(3.5) has been tested experimentally in granular gases [15℄, turbulent �ows[16℄, liquid rystals [17℄, eletri dipoles [18℄, mehanial osillators [19℄ and olloidal partiles [20℄and also numerially in granuar gases [21℄ and turbulent �ows [22℄. In all the di�erent studies, forlong averaging times, the linear relation between ǫ and ρ(ǫ) has been observed, but for a small rangeof ǫ. We will study experimentally the ful�llment of Eq.(3.5) in a simple system where large valuesof ǫ an be reahed (ǫ ≃3), in the next setion.The PDF of P (ǫ) for large averaging τ an be de�ned also by means of the Large DeviationFuntion (LDF) f(ǫ). It is generally de�ned as

f(ǫ) ≡ lim
τ→∞

τc
τ

log [P (ǫ ≡ Oτ/〈O〉)], (3.6)and it desribes how the �utuations of ǫ with respet to 〈ǫ〉=1 behave as the averaging time τ/τcin the smoothing average beomes larger and larger. Developing Eq. (3.3) using the de�nition of theLDF leads to
ρ(ǫ) = f(ǫ) − f(−ǫ). (3.7)Developing Eq. (3.7) up to �rst order in ǫ, thus taking into aount only the terms lose to ǫ ≃ 0,leads to

ρ(ǫ) ≃ 2f ′(0)ǫ,whih easily satis�es the Gallavotti-Cohen relation of Eq. (3.5). It is just needed that the LDF hasa linear part f(ǫ) = αǫ + g(ǫ), where g(ǫ) is a nonlinear funtion of the normalized variable ǫ. Forinstane, if the PDF of ǫ is similar to Eq. (3.4), the LDF is f(ǫ) = (ǫ− 1)2/2σ2
ǫ and the relation of45



3.915 3.92 3.925 3.93

−6

−4

−2

0

2

4

6

8

10

12

14

T [s] 

I τ/<
I>

 

 

 

Brute
τ/τ

c
=13

τ/τ
c
=63

10
0

10
1

10
2

10
−1

10
0

 τ/τ
c
 

σ(
I τ) 

/<
I>

Figure 3.1: Left: Typial temporal traes of ǫ = Iτ/ < I > for the τ/τc=0 (blue), 13 (red) and 63(blak) for γ = 1/RC = 500 Hz. Right: Standard deviation σIτ
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/〈I〉 ∼ (τ/τc)
−0.51.Eq. (3.7) gives ρ = 2ǫ/σ2

ǫ , satisfying the FT with β = 2σ−2
ǫ . The linear aproximation of the LDF asan explanation of the linearity found in experienes and numeris was �rst onjetured by Aumaîtrein his PhD thesis [21℄ and then predited in a Langevin equation in a dissipative regime by Farago[10℄.3.2 Experimental test of the Flutuation Theorem in an ele-troni RC iruitWe will test experimentally whether the FT is satis�ed in a simple dissipative system maintained inan out-of-equilibrium steady state. For this matter, we will ontinue to use the eletroni RC iruitof Chapter 2. As it was explained before, this simple iruit an be viewed as a mimi of a brownianpartile strongly fored out -of-equilibrium. The foring is still a random Gaussian noise with zeromean and a harateristi orrelation time 1/λ where λ is the frequeny ut-o� of its power spetrumdensity.The smoothing average of the injeted power Iτ is omputed from the previous data of I as

Iτ (t) =
1

τ

∫ t+τ

t

I(t′)dt′, (3.8)where τ stands for the time of average of the signal, whih is several times the orrelation time τcof the injeted power I. For our experimental set-up, the orrelation time τc is the inverse of theut-o� frequeny, 1/λ, whih is now �xed to 10−4 s. We show a typial temporal trae of ǫ = Iτ/〈I〉in Fig.(3.1), as we inrease the averaging time. We an see how, by inreasing the averaging time τ ,the �utuations around the mean, 〈ǫ〉 =1, derease their value. The rms �utuations derease with
τ/τc as a power law ∼ (τ/τc)

−1/2, just as in the ase of the entral limit theorem. With this data,one an ompute ρ(ǫ).First, it should be noted that our simple system is not time reversible, therefore the hypothesisused to derive the FT are not ful�lled in this system. However, we will try to test the relationEq.(3.5) with our experimental data. 46
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P (I) ≃ exp[rI/σvσf (1 − r2)] ×K0(|I|/σvσf (1 − r2)),we an alulate the "instantanteous" asymmetrial funtion ρinst(I) as

ρinst(I) = log[
P (I)

P (−I) ] =
2r

σvσf (1 − r2)
I, (3.9)where 2r

σvσf (1−r2)
is onstant. If we use the de�nitions of σ2

f = D/2λ, σ2
v = D/2λγ(λ + γ) =

σ2
f/γ(λ+ γ) and r =

√
γ/(γ + λ) the expression of Eq.(3.9) an be written as

ρinst(I) =
2

σ2
vλ
I,where λ is the inverse of the orrelation time of the injetion and σ2

v/2 = E is the internal energyof system. In that sense, we an estimate the energy of the system, by omputing the slope dρinst(I)
dIand the orrelation time of the injeted power. 52



3.4 ConlusionsIn this Chapter we have experimentally studied the possible appliation of the Flutuation Theorem(FT) on a simple dissipative system: an eletroni RC iruit exited by an stohasti voltage. TheFT has been probed by measuring the asymmetrial funtion ρ(ǫ) with ǫ = Iτ/〈I〉, and Iτ thesmoothing average on a time lag τ , muh larger than the orrelation time of the injeted power. Inthis simple experiment, large �utuations of ǫ have been observed (ǫ ≃ 3) even for long averagingtime (τ/τc ≃ 20). We have found out that the FT is only satis�ed for small values of ǫ with respet tothe most probable value of the its distribution funtion. For larger values, the asymetrial funtionis no longer linear with ǫ but saturates. Thus, the FT does not hold for the large values of ǫ even atlarge τ/τc. This disagreement is not a partiular feature of this eletroni system, but seems to begeneri in several other systems, suh as two di�erent wave turbulene experiments, as soon as large�utuations of ǫ are experimentally ahieved.
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Part IIIFlutuations in Wave Systems
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Chapter 4Flutuations in Surfae WavesIn the present Chapter we review some basi results about waves at the interfae between a horizontal�uid layer or between two inmisible �uids. These systems are used as tools to study the propertiesof out-of-equilibrium stationary states that an develop from interating waves. We will start bygiving the working frame of wave propagation in Setion 4.1, de�ning the dispersion relation and thewave equations of motion.4.1 Wave motionWaves an propagate over interfaes. We an observe them in di�erent systems suh as bendingwaves in elasti membranes and sheets [1, 2℄, Rayleigh waves or Love waves at the surfaes of elastisolids [3℄ or Rossby waves at the surfae of the oean [4℄. We are used to see wave propagation everyday at �uid surfaes as it is shown in Fig. 4.1, where the disturbanes propagate at di�erent speeds,with di�erent wavelengths osillating at di�erent frequenies.The way to relate these parameters, when the wave amplitude is small with respet to the wave-length, is through the dispersion relation of surfae waves
ω(k, {θ}) = ω, (4.1)whih relates the pulsation frequeny ω with the wavevetor k of a wave and the parameters of the�uid {θ} whih enable wave propagation, suh as its density ρ, surfae tension σ, dieletri onstant

ǫ, et. We will assume the �uid that sustains surfae wave propagation is homogenous and isotropi,so the pulsation ω only depends on the modulus of the wave vetor |k| = k. This relation desribesalso the phase cp(k) = ω(k)
k

and group cg = ∂ω(k)
∂k

veloities at a given wave vetor. In this �rstapproximation, we will not be onerned by visous damping, as explained in the following setions.The dispersion relation is also related to the restitution fores that sustain waves. In the nextparagraph, we ompute the dispersion of the surfae waves in a �uid of depth h, in presene of gravityand surfae tension.4.1.1 Gravity-apillary wavesWaves are driven by gravity e�ets, when the �uid balanes its inertia with the ation of gravity thattries to keep its surfae in its equilibrium �at possition with a heavier �uid under a lighter one. Inontrast, waves are driven by apillarity when the restoring mehanism balanes the urvature e�etsof the �uid surfae and its inertia. The equations of wave propagation ome from the �uid equations57



Figure 4.1: Ripples at the surfae of water.of motion when the interfae dynamis are taken into aount. To wit, we onsider the ase of twoinmisible and invisid �uids indexed by i = 1, 2. We will assume that the �uids are ontained in a boxof height 2h = h1 + h2 and unbounded in the orthogonal oordinates r = (x, y). η(r, t) orrespondsto the surfae elevation between them, ρ1 is the density of the bottom �uid (−h1 < z < η), ρ2 thedensity of the upper �uid (η < z < h2) with ρ1 > ρ2 and σ the surfae tension oe�ient betweenthe two �uids. The veloity �elds vi(r, t) are governed by the inompressible Euler equations
∇ · vi = 0,[

∂vi

∂t
+ vi · ∇vi

]
= −∇pi

ρi
+ g, (4.2)where the �rst equation is the �ow inompressibility ondition and the seond equation is just themomentum onservation. Here, ∇pi is the pressure gradient aross the �uid of density ρi and g isthe aeleration of gravity, pointing vertially in the ẑ diretion. The normal veloity of the �uidshould be zero at the solid boundaries of the ontainer, whih means

v1(z = −h1) · ẑ = v2(z = h2) · ẑ = 0, (4.3)where we have hosen the normal to the solid boundaries in the ẑ diretion. At the interfae betweenthe fwo �uids, the veloity �elds vi must satisfy the kinemati ontinuity ondition
∂η

∂t
+ vi · ∇⊥η = vi · ẑ (4.4)where vi is evaluated at the interfae z = η(r, t) and ∇⊥ stands for the gradient in the r oordinates.58
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Figure 4.2: Loal amplitude perturbation η(x, y, t) of the interfae (at z = 0) between two invisidinmisible �uid layers of depths h1 and h2. The �uid densities are ρ1 and ρ2 respetively.The propagation of waves is a dynami phenomenon. Therefore, we need a dynami onditionover the fore balane aross the interfae to explain the mehanism of wave propagation. In abseneof visous stresses, this is given by the pressure di�erene ∆p = p1 − p2 between the upper and lower�uid, normal to the free surfae. This pressure jump aross the interfae z = η(r, t) is given by theLaplae fore related to the prinipal radii of urvature R1 and R2, namely,
∆p = σ

(
1

R1
+

1

R2

)
= −σ∇⊥ · ∇⊥η

(1 + |∇⊥η|2)1/2
, (4.5)where the last term is just the mathematial expression of the mean urvature κ =

(
1

R1
+ 1

R2

) of thesurfae η(r, t) at the point r.When the surfae is in equilibrium, it rests �at. In this state the the veloity �elds are zero andpressure �elds follow the hydrostati solution of Eq. (4.2), i.e. peq
i = −ρigz. As the interfae isdeformed, the hydrostati solution does not hold. The veloity �elds generate deformations arossthe surfae, whih in turn reate a dynami pressure omponent. These disturbanes must satisfyEqs. (4.2) and the boundary onditions (Eqs. (4.3) and (4.4)). We will simplify the problem byassuming that the perturbed veloity �elds are irrotational ∇×vi = 0. By Thompson's theorem [1℄,this is true for all times when the �uid is invisid. The irrotational ondition means that vi an bedetermined from a potential funtion φi as vi = −∇φi. Therefore, Eqs. (4.2) an be written as

−∇2φi = 0,

−∇
[
∂φi

∂t
+

|∇φi|2
2

]
= −∇pi

ρi
+ g, (4.6)where the �rst equation is just the de�nition of an harmoni �eld and the seond is Bernoulli'sequation of energy onservation. This ondition is ful�lled over the whole �uid, inluding its freesurfae. The whole ondition an be rewritten as a �rst integral of the hydrodynami problem,namely as

ρi
∂φi

∂t
+ ρi

|∇φi|2
2

+ pi + ρigz = B,with B a onstant that an be introdued in pi or in φi to renormalise its value, given the fat thatonly pressure di�erenes and veloities∇φi are important in the dynamial evolution of disturbanes.Now, we an state the problem in terms of only two types of variables: the potential funtions φi,59



whih generate the pressure di�erenes and veloity �elds inside the �uids and η whih relates thepressure jump aross the �uids. We write the kinemati
∂η

∂t
+ ∇⊥φi · ∇⊥η =

∂φi

∂z
, (4.7)and dynami

(ρ1 − ρ2)gη + ρ2
∂φ2

∂t
− ρ1

∂φ1

∂t
+

1

2

[
ρ2|∇φ2|2 − ρ1|∇φ1|2

]
= −σ∇⊥ · ∇⊥η

(1 + |∇⊥η|2)1/2
(4.8)onditions evaluated at the free interfae z = η(x, y, t). In the former onditions, nonlinearities anbe negleted if we assume that the disturbanes aross the interfae are small with respet to thewavelength (∇⊥η ≪ 1). In this linearized ase, the evaluated �elds at the interfae z = 0 for smallamplitude of the perturbations satisfy

∂η

∂t
=

∂φi

∂z
|z=0,

(ρ1 − ρ2)gη + σ∇2
⊥η = −

[
ρ2
∂φ2

∂t
− ρ1

∂φ1

∂t

]
|z=0. (4.9)
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normal derivative to the solid boundaries are zero. From the harmoni de�nition of ∇2φi = 0, thepotential funtions satisfy the equations
d2fi(z)

dz2
− k2fi(z) = 0,subjeted to the boundary onditions f1(z = −h1)

′ = f2(z = h2)
′ = 0 with (·)′ the derivative withrespet to the z oordinate. The equations for both fi(z) are of seond order, therefore, two onstantsare needed to alulate the full solution. Using the boundary onditions, we an write

f1(z) = f 0
1

cosh k(z + h1)

cosh kh1
, f2(z) = f 0

2

cosh k(z − h2)

cosh kh2
,where f 0

i an be traed bak to the initial surfae perturbation η0, using the dynami ondition ofpressure di�erene. Through the kinemati ondition of veloity ontinuity normal to the interfae(Eq. (4.4)), we have
−iωη0 = f 0

1k⊥ tanh (kh1) = −f 0
2 k⊥ tanh (kh2).These relationships, oupled to pressure jump aross the interfae of Eq. (4.9), gives the dispersionrelation

ω2 =
(ρ1 − ρ2)gk + σk3

ρ1 coth kh1 + ρ2 coth kh2

. (4.10)
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)1/2k.With this expresion we an relate the wavelength λ = 2π

k
with the pulsation frequeny of aperturbation ω = ω(k). The above relation displays several interesting limits. When ρ2/ρ1 ≪ 1, the61



dispersion relation reads
ω2 =

[
gk +

σ

ρ1
k3

]
tanh kh1.This is the typial ase of a liquid-vapor interfae (suh as air-water or nitrogen-merury interfaes,used in the following hapters). The �rst term on the right hand side is related to gravity andthe seond to apillary fores. The multipliative term tanh (kh1) is related to the e�et of theharateristi penetration length of the wave (whih in this ase is of the order of the wavelength)on the propagation of a wave in a �nite depth layer h1 of �uid.From this expression, we an see there are two ross-over lengths. One, where the e�ets of bothrestitution fores are equal lc =

√
σ

ρ1g
and another one where the depth of the layer is omparableto the wavelength. For in�nite depth (kh1 ≫ 1) the multipliative term is onstant. In this regime,the waves with wavelengths larger than lc propagate with a pulsation frequeny ωg =

√
gk and arealled gravity waves. The phase veloity cp(k) = ω(k)

k
=

√
g/k, that is, the veloity at whih afront of onstant phase ψ = k⊥ · r − ω(k⊥)t propagates, is larger as the wavelength is larger. Thegroup veloity cg(k) = ∂ω(k)

∂k
=

√
g/4k, that is the veloity at whih a wave modulation in amplitudepropagates, is twie as small as the phase veloity. This means that waves with large wavelengthpropagate faster than waves with smaller wavelength.When the wavelength is smaller than lc, the dispersion relation reads ω(k) = ( σ

ρ1
)1/2k3/2. Thewaves that follow this relationship are alled apillary waves. The phase veloity cp(k) = ω(k)

k
=

( σ
ρ1

)1/2k1/2 is larger as the wavelength is smaller. The group veloity cg(k) = ∂ω(k)
∂k

= 3
2
( σ

ρ1
)1/2k1/2 islarger than the phase veloity. Therefore, as a wave paket ontaining wavelengths smaller than lcpropagates, its shape hanges as the small wavelengths propagate faster than the larger ones. Surfaewaves on �uid surfaes are dispersive beause of this latter fat: wave pakets do not maintain theirshape as they propagate.When we take into aount wavelengths that are omparable to the �uid depth of the layer h1, thedispersion has to take into aount this fat. In this limit, tanh kh1 ∼ kh1 and, hene, we an expressthe pulsation frequeny as ω(k) =

√
gh1k. With this expression, we an see that wave propagationis non-dispersive for large wavelength with a onstant veloity cg = cv =

√
gh1.We an also alulate the dispersion relation by energy onsiderations, given the fat that wavestransport energy, as well as momentum. To simplify the alulations we onsider the limit where

ρ2/ρ1 ≪ 1, so we an neglet the upper �uid. The energy E of the system an be written as a kinetiontribution
K = ρ1

∫

V

v2

2
dV,and a potential ontribution

U = ρ1g

∫

V

zdV + σ

∫

∂V

dA,where V stands for the volume of the �uid of density ρ1 and ∂V its free surfae. We will use theequipartition of energy K = U , where (·) stands for the average over a period of the wave osillation.This approah will only be valid in the small amplitude aproximation, as it will be disussed infollowing setions. The gravitational term of the potential energy an be rewritten as
Ug = ρ1g

∫
dr

∫ η

−h1

zdz = ρ1
g

2

∫
η2dr + U0

g ,
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where U0
g is onstant. The surfae omponent of potential energy an be expressed as

Uc = σ

∫ √
1 + |∇η|2dr ≃ σ

2

∫
|∇η|2dr + U0

c ,where, as before, U0
c is onstant. Therefore, the equipartition of energy then reads,

∫ η

−h1

dz

∫
ρ1|∇φ|2

2
dr =

1

2

∫
[ρ1gη2 + σ|∇η|2] dr (4.11)for kineti and potential energy averged over a wave period. We an use the solutions of Eqs. (4.3)and (4.4), to relate both the potential and interfae disturbanes. This approah an be useful toestimate also the bulk dissipation of the �uid in the small visosity limit, as we will will see next.4.1.2 Visous e�ets in gravity-apillary wavesWhen we take into aount the visosity e�ets in the �uid, we annot assume the �ow to be potentialeverywhere. Even for small values of the kinemati visosity ν, vortiity, whih is just the url ofthe veloity �eld ∇×v is non-zero. It is generated in small and shallow layers lose the boundarieswhere the veloity �eld su�ers strong shear. The penetration length δ, that is, the typial size of theboundary layer where the �uid is not potential an be estimated by balaning the temporal derivativeof the veloity �eld ∂v

∂t
and the visous term ∇2v in the Navier-Stokes equation as δ ∼ √

ν/ω.Using the same simple analysis one an estimate the bulk dissipation in the �uid. To do so, weassume that visosity is low, therefore we an neglet the boundary layer ontribution to the kinetienergy. Also, for simpliity we an assume that we are in the "deep layer limit" kh1 ≫ 1, where the�ow does not reah the bottom. In this limit, the dissipation rate of the energy γ an be estimatedby γ = Pdiss

E
= Pdiss

2K
. The dissipated power by visous stresses Pdiss] is given by

Pdiss =
1

2
ρ1ν

∫

V

e2ijdV,where eij is the seond order tensor related to the symmetri part of the veloity gradients. Sine wehave assumed that the visous layer is negligible and thinner than the layer depth, we an express
Pdiss as

Pdiss =
1

2
ρ1ν

∫

V

(
∂2φ

∂xi∂xj

)2

dV = 8ρ1νk
4

∫

V

φ2dV.Therefore, the dissipation rate is just γ = 2νk2. Using the Navier-Stokes equation, we an alsoestimate the surfae layer ontribution γS = (νk2)3/2ω
−1/2
k to the damping of surfae waves, whih isof higher order in the visosity, and an be negleted in the present analysis[7℄. As for the boundarylayer ontribution γB, it an be found from dimensional analysis, when one balanes the dissipatedpower over the bondary of depth δ with the kineti energy of the �uid in the layer. Taking δ as theharateristi sale where the veloity �eld gradients and v0 its harateristi value, the dissispatedpower due to visous stresses per unit of area is Pdiss ∼ ρ1νv

2
0/δ. The kineti energy per unit of area,on the ontrary, is going to be integrated over a harateristi distane l as ∼ ρ1v

2
0l. In the smallvisosity limit, δ ≪ l we will not get any ontribution of the boundary layer dissipation rate for adeep layer layer of �uid kh1 ≫ 1, beause the waves only penetrate lose to the free surfae over adistane of the order of the wavelength. For shallow layers, that is, in the limit kh1 ≪ 1, the wavegenerated �ow reahes the bottom of the �uid and therefore the typial length l is of the order of the�uid depth. In this ase, the dissipation rate related to the boundary layer is γB ∼ ν/δh1 ∼

√
νω/h1.63
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Chapter 5Flutuations in Parametrially ExitedSurfae WavesWe present in this hapter two experimental studies on the statistial properties of the loal ampli-tude �utuations of parametrially exited waves at the surfae of a �uid layer. We reall �rst themehanism of parametri ampli�ation of surfae waves by means of a simple amplitude equationof the envelope lose to the instability threshold. In Setion 5.1, following these theoretial onsid-erations, we present our experimental studies. First, in Setion 5.2, we study the loal dynamis ofwave amplitude �utuations in an out-of-equilibrium stationary state refered to as defet-mediatedturbulene, where defets appear over the pattern of standing waves. We desribe this turbulent-likeregime and haraterize its appeareane by means of the qualitative hanges of the PDF and PSDof the loal wave amplitude. Then, in Setion 5.3, we present an experimental study on the e�etof spatio-temporal �utuations on a set of parametrially ampli�ed surfae waves. An underlyingvortex �ow generated by a periodi Lorentz fore takes plae over the bulk of a onduting �uid (inthis ase merury) ating as the soure of these �utuations. For that matter we measure both theloal wave amplitude and veloity �eld of the parametri surfae waves. We show that the maine�ets of these spatio-temporal �utuations are to inrease the threshold value of the parametriinstability and also to deorrelate the wave amplitude in di�erent plaes over the ontainer, makingthe parametrially ampli�ed mode lose its oherene over the ontainer.5.1 Parametri Ampli�ation of Surfae WavesThe fundamental idea behind parametri ampli�ation is the temporal or spatial modulation of thefrequeny of an osillator or a wave to ahieve an exponential growth of their amplitude. It was �rstexperimentally studied by Faraday [1℄. He realized that a set of surfae waves on a layer of �uidappear when the ontainer was vibrated periodially at a given frequeny. In his experimental set-up,a set of standing waves osillating at half the foring frequeny (twie the period T of the foring)appeared over the whole surfae, when a threshold value of the ontrol parameter (the vibrationamplitude) was surpassed. These waves formed a pattern with di�erent geometries, depending onthe frequeny and amplitude of the foring. This instability was then given theoretial bakgroundwhen Mathieu[2℄ studied the motion of an osillating ellipti membrane. It has beome lear thatparametri resonane is involved in several proesses and areas of physis, ranging from optial andeletroni parametri ampli�ation to Bragg sattering in periodi latties and energy bands in solidstate physis[3℄. 65



To ilustrate this phenomenon in surfae waves, we write the evolution equation for the amplitude
ηk(t) of the mode with wave number k and pulsation ωk given by the dispersion relation. Benjaminand Ursell[4℄ have shown that ηk(t) follows a Mathieu equation

η̈k(t) + ω2
k(1 + Γk cos(Ωt))ηk(t) = 0, (5.1)in the linear aproximation for vanishing kinemati visosity ν (negligible visous layer δh ∼

√
ν/ω2

k).Here, ω2
k satis�es the dispersion relation of surfae waves, Γk is the parametri foring amplitude and

Ω is the foring frequeny. In the ase where the aeleration of gravity is modulated sinusoidally
geff(t) = g + a cos(Ωt), as it is in Faraday's experiment where the ontainer is shaken. Γk an bewritten as Γk = ak/ω2

k for a deep layer of �uid[5℄.Following the experimental �ndings of Faraday regarding the subharmoni behavior of the stand-ing surfae waves, we hoose Ω = 2(ωk + ∆), where ∆ is alled the detunning and represents themismath between the eigenfrequeny ωk of the surfae wave of wave number k and the subharmonifrequeny of the standing wave pattern Ω/2. The �rst mode of wave number kc to be ampli�ed isthe one with the smallest detunning at a given ritial foring amplitude Γkc
. Close to the instabilityonset γ = εΓk (ε ≪ 1) of the �at surfae we an derive an assymptoti normal form for the amplitudeof the mode with wave number kc by writing δ = ε∆. Here ε is a small parameter assoiated withthe time sale separation between the fast time sale t ∼ ω−1

k (related to the wave pulsation periodof osillation) and the slow time sale T = εt whih orresponds to the instability growth rate. Weexpand
ηk(t) = A(T )eiΩ

2
t + A(T )e−iΩ

2
t + h.o.t.,where A(T ) is a omplex amplitude, A(T ) is its omplex onjugate and higher order terms (h.o.t.)lose to the instability threshold. The variable A desribes the slow dynamial evolution of theenvelope of the standing wave pattern at frequeny Ω/2. Applying what is alled a solvabilityondition, i.e. a ondition to eliminate from the solution ηk(t) seular terms that grow on a timesale of the order ∼ εt, we �nd the evolution equation of the slow time dynamis of the envelope

∂TA = −iδA + i
γ

8
A.Phenomenologially, we an add the e�et of dissipation in the limit of vanishing visosity as Λ = ελand nonlinear saturation by symmetry arguments to the lowest order in the developement in powersof ε. In that ase, one an write a phenomenologial equation for the evolution of the nonlinearlysaturated wave amplitude

∂TA = −(λ+ iδ)A+ i
γ

8
A+ β|A|2A, (5.2)where β is a omplex number assoiated with nonlinear renormalization of the amplitude (real partof β) and frequeny (imaginary part of β). This equation is known as the omplex Ginzburg-Landauequation with parametri foring and has been extensively studied in several out-of-equilibriumsystems[6℄. It an be rigorously alulated for the parametrially fored pendulum, where all theoe�ients an be omputed. The threshold value of the instability is found by balaning thethe foring term γ oming from the parametri foring with the dissipation and detunning. Astraightforward alulation gives the instability threshold urves γ2

c = λ2 + δ2. When the normalizedontrol parameter ǫ = (γ − γc)/γc is larger than zero, the �at surfae beomes unstable to smallperturbations and a mode of wave number kc grows and invades the whole spae. A set of standingwaves appear osillating at a frequeny Ω/2, forming a pattern. For working �uids suh as merury66



and water, the pattern geometry is made of squares. Depending on the sign of the detunning ∆, thenonlinearly saturated wave amplitude behaves di�erently as ǫ grows, as it is shown in Fig. 5.1. Forpositive detunning, the behavior of the nonlinearly saturated wave amplitude A is superritial andthere is no oexistane with the �at solution A = 0. For negative detunning, A behaves subritiallyand there exists a hysteresis loop that onnets the nonzero and the �at solution. In the partiularase where ∆ = 0, the real part of β = 0 and quinti terms must be taken into aount to saturate
A.
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5.2.1 Experimental set-up and measuring tehniques
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Figure 5.3: First experimental set-up: Waves at the surfae of a water layer are parametrially am-pli�ed by periodi modulation of gravity whih is measured by means of a piezoeletri aelerometerThe loal wave amplitude is measured by a apaitive gauge and later demodulated with a phasesensitive devie at the subharmoni foring frequeny.The shemati representation of the experimental set-up is shown in Fig.5.3. A 100 x 100 mm2Plexiglass ontainer is �lled with a 4 mm layer of water (density ρ ≃ 103 kg/m3, kinemati visosity
ν ≃ 10−6 m2/s and surfae tension σ ≃ 4.0 x 10−2 N/m). In order to prevent evaporation of the �uid,the ontainer is sealed with a Plexiglass plate and its temperature is ontrolled by irulating waterat 20 ± 0.1 °C oming from a thermal bath (Lauda RC6 Chiller). To amplify parametrially thewaves at the surfae of the �uid, the whole ontainer was mounted over an eletromagneti shaker (B
& K 4809) driven by one of the two outputs of a frequeny syntheziser (HP 8904 A). This providesa lean sinusoidal aeleration geff = a cos(2πft), where f is the exitation frequeny and a is themaximum aeleration, proportional to the applied voltage V . We have hosen f = 60 Hz as theexitation frequeny, although we also tested higher frequenies between 60 and 120 Hz. There isno qualitative di�erene in the pattern or in the loal dynamis of the pattern defets. The vertialaeleration modulation geff is measured by a piezoeletri aelerometer (B & K 4803) �xed to thevibrating ontainer, using a harge ampli�er (B & K 2635).The loal wave amplitude is measured by two apaitive wire gauges, 0.1 mm in diameter, whihare plaed on one diagonal of the ontainer, eah one 2 m away from its enter. Srewed to thePlexiglass plate, they plunge perpendiularly to the �uid at rest. This tehnique, used mainly tomeasure the loal height of quasi-stati �uids, was applied to wavy liquids in an experiment of69



wave turbulene [13℄. The measuring priniple of the loal wave amplitude uses the fat that theapaitane of a annular apaitor, whih plunges into a �uid, is proportional to the loal height ofthe submerged part. The insulation (a varnish) of the wire gauge is then the dieletri of the annularapaitor with the wire as the inner ondutor. The outer ondutor is the �uid itself. For dieletriliquids, the measuring priniple still holds, although the nature of the outer ondutor is not lear.For an annular apaitor submerged in a dieletri liquid of dieletri onstant εd, the apaitane
C depends on εd/ε0, ε0 being the permitivity of vauum, and linearly on the submerged length l,that is, the loal �uid level. We have measured the apaitane C of the wire gauge with the helpof a low-ost homemade analogi multivibrator ating as a apaitane meter with a response timeof 0.1 ms. It an measure apaitanes up to 200 pF. Depending on the dieletri onstant of the�uid used to generate the waves, the linear sensing range and proportionality oe�ients hange. Wehave experimentally omputed the proportionality oe�ients for 3 di�erent �uids (water, εd = 88ε0,ethanol, εd = 10ε0 and silion oil, εd = 2ε0), as shown in Table (5.2.1).Fluid Dieletri onstant ratio εd/ε0

1 Proportionality onstant [mm/V℄Water 88 20.15Ehanol 24.3 0.12Silion Oil (PDMS) 2.2-2.9 0.02For water-air interfae the linear sensing range of the sensor allows waveheight measurementsfrom 0.1 mm (the wire diameter) up to 2 m with a 20 mm/V sensitivity. It an be also appliedto �uid-�uid interfaes, as long as the dieletri ratio stays large (as it will be seen in the nexthapter). Another important point is the dynamial range of the apaitane meter. The outputof the multivibrator is low-passed �ltered at 13 kHz with a Butterworth �lter of order 6, but thedynamial ontent of the surfae height �utuations is also �ltered at lower frequenies (fdiss ∼100Hz) by the dissipation of small sale waves at the menisus, whih is of typial size of 2 mm. Forour working dynamial range, this measuring tehnique was previously heked with measurementsperformed with eddy urrent displaement transduers or with an optial determination of the loalslope of the surfae[14℄. The temporal apaitane �utuations are not polluted by the water menisusmotion formed at the loal wire gauge.Inreasing the foring amplitude a above a threshold value ac, the �at surfae is no longer stable tosmall pertubations and a square pattern of standing waves appear through the Faraday instability[1℄.The temporal response to the sinusoidal gravity modulation at exitation frequeny f of these wavesis subharmoni. The surfae waves make a pattern of squares with a wavelength λ of 4 mm at
f=60 Hz. This is on�rmed by optial observation with a strobosopi light driven at f/2. At thisfrequeny, no e�et of the menisus on the internal dynamis of the pattern was observed.Taking the output of the apaitane meter, we have demodulated the loal wave amplitude h(t)at the subharmoni frequeny as

h(t) = A(t)ei ω
2

t + A(t)e−i ω
2

t + r(t),where ω = 2πf , A is the omplex amplitude envelope and A its omplex onjugate and r(t) arehigher frequeny omponents. The higher harmonis in r(t) are at least two orders of magnitudesmaller than the main subharmoni response when the pattern is fully developed. To extrat theslow dynamis of the envelope A we have used a phase-sensitive detetion devie (SR 830) driven bya arrier signal at frequeny f/2. The arrier signal is taken from the seond output of the frequeny1Values taken from http://www.asiinstruments.om/tehnial/Dieletri%20Constants.htm70



synthesizer to avoid spurious detunning between the harmoni and subharmoni modulations. In thedemodulation proess, the arrier and loal wave amplitude signals are analogially multiplied. Theprodut of both signals is low-pass �ltered with a Butterworth �lter of order 8 and a time onstantof 100 ms and ampli�ed. The resulting omplex amplitude is separated in real and imaginary part.The sampling frequeny used to aquire the slow amplitude �utuations is set at 1 kHz (unlessstated di�erently, as shown below), to ensure a good resolution of the amplitude singularities. Weshow in Fig. (5.2) typial temporal traes of the real and the imaginary part (Re(A), Im(A)) of theomplex amplitude envelope A in the dynamial regime of interest where large �utuations in thewave pattern our, making possible the rough anellation of both Re(A) and Im(A), i.e., forming adefet. In this experimental on�guration, defets are lines dividing two regions where the amplitudein one region is in phase opposition from the other. In terms of the loal wave amplitude a defetis a line where the envelope passes through zero, i.e. A = 0, whih means both the imaginary andreal part of the omplex amplitude are zero. These separation lines ross the ontainer from onewall to the other along the pattern in every diretion: from the upper to lower wall, from left toright or running through the diagonals of the ontainer. The passage of these phase jumps alongthe separation line is measured puntually by the apaitive gauge. The resolution of the apaitivegauge is of the order of 0.1 mm.5.2.2 Experimental resultsNow, we desribe the appearene of defets in the pattern of standing waves. Fixing the exitationfrequeny f at 60 Hz and inreasing the redued ontrol parameter ǫ = (a − ac)/ac from negativeto positive value, the �rst instability of the system ours, where the standing parametri wavesappear, osillating at half the frequeny of the foring. At the threshold ǫ = 0, only the subharmoniomponent in the wave system appears with a de�ned wave number kc = 2π/λ (λ ∼2 mm) givenby the dispersion relation ωc = ω(kc) = πf . At this frequeny, there is no observable detunningbetween the eigenfrequeny ωc and πf [15℄. This means that no slow modulation of the omplexamplitude appears. Hene, demodulating the loal wave amplitude response provides the onstantamplitude of the envelope of the pattern. Inreasing ǫ further, seondary instabilities develop, asdesribed in the preeeding setion, either at zero wave number (the so alled drift instability wherethe pattern "drifts" in a given diretion at onstant speed) or at �nite wave number. This laterseondary instability is known as an osillatory instability, and it ours at nonzero wave number
kc. In our experimental set-up, due to the boundary onditions of the ell, it is this later type ofseondary instability that appears, at a very low frequeny δf ∼ 1 Hz (in this ase 30 or 40 times theperiod of the basi pattern). δf is of the same order of magnitude of the frequeny assoiated to thebandwith ∆k related to the �nite size L=100 mm of the ontainer ∆k ∼ 2π/L. These low-frequenyosillations appear one after the other as higher harmonis of δf when ǫ is onstinously inreased.There is a strong hysteresis in the ontrol parameter in the osillatory regime. For instane, the �rsthystereti loop (in between osillations at δf and 2δf) ranges from ǫ =0.7 to 0.9. In the proessfrom the stationary amplitude regime where A is onstant to the slowly osillating one, no phaseturbulene is observed. This is on�rmed by extrating the loal phase dynamis φ of the omplexamplitude envelope A (φ = arg(A)). No abrupt �utuations in its time derivative φ̇ are found, asit should be in the ase of a phase-turbulent regime[16℄. This is due to the fat that parametriinstabilities have a strong phase-loking between the foring modulation and the system response.For larger values of ǫ, the regime where seondary instabilites dominate, defets appear in the wavepattern, as desribed above. We measure the loal passage of a defet over the apaitive gauge bymeasuring in the temporal trae these singular points where A vanishes. A typial trae of a defet71



pro�le in the wave pattern is shown in Fig. (5.4).
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Figure 5.4: a) Temporal traes of the real and imaginary part of A(t) showing the passage of a defet(Re(A) = Im(A) = 0). b) Temporal trae of |A(t)|, and the orresponding modulus of the phasederivative |φ̇(t)|. In this plot, |φ̇(t)| has been multiplied by 0.05 to make it visible in the same saleas the amplitude �utuations.The points where Re(A) = Im(A) = 0 are the points where the phase φ is ill-de�ned and adisontinuity appears. This singularity is removed when it reahes the boundaries of the ell or whenit ollides with another one, therefore ating as a dynamial mehanism to eliminate �utuationsfrom the system. There is a strong orrelation between the extrema of the phase derivative φ̇(t)and the points where |A(t)| reahes its minima. The pro�le of a defet determined with this loalmeasurement tehnique is asymmetri, due to the intrinsi dynamis of the defet: it passes throughthe apaitive gauge at non-zero speed, and through its propagation hanges the wave pattern bymoving the singularity in the phase till it will reah one of the boundaries of the ell or anotherdisloation, thus vanishing. At this exitation frequeny (f = 60 Hz), the passage time τ of a defet,i.e., the amount of time the amplitude |A| takes to go from its mean value to zero and bak, is of theorder of 0.1 s, an order of magnitude smaller than the osillation period of the amplitude modulationdesribed above (1/δf ∼ 1 s). In this regime, several defets an go through the apaitive gauge,eah one with a di�erent veloity arriving from di�erent sides of the ontainer.The nuleation of a defet is a random event, happening at di�erent plaes over the pattern. Aswe inrease the ontrol parameter, the time it takes to generate a defet that rosses the apaitivegauge dereases. In this state, we an study the statistial properties of the wave amplitude whenthis type of singularities ontrol its dynamial evolution.We show in Fig.(5.5) the probability distribution funtion (PDF) of the normalized amplitude
|A| / 〈|A|〉 . Close to zero the PDF shuts steeply to zero. This shows that the time of passage of defetsis very small, and that they are isolated and singular events. It presents a maximum lose to 〈A〉 /272
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γ/ρg ∼ 2 mm, whih prevents the formation of blow-up singularities [17℄.The probability distribution funtions of both the normalized realRe(A)/σ(Re(A)) and imaginary

Im(A)/σ(Im(A)) parts of the omplex amplitude do not present exponential tails, as we show in theinset in Fig. (5.5). Here σ(x) stands for the standard deviation or rms �utuations of the �utuatingvariable x. The kurtosis of both variables is lose to 2, and a small degree of negative (positive)skweness appears for the real (imaginary) part. Furthermore, the real and imaginary omponents of
A annot be regarded as independent variables either beause the omputed orrelation oe�ient
< Re(A)Im(A) > /σ(Re(A))σ(Im(A)) is lose to -0.9. This means that a distribution for waveamplitudes suh as the Rayleigh distribution∼ |A|e−|A|2/2 [18℄, that takes into aount the probabilitydensity funtion of the modulus of a gaussian variable, annot �t the experimental PDF of |A|, evenif the PDF of Re(A) and Im(A) where gaussian due to the large orrelation between Re(A) and
Im(A).We fous now on the dynamial desription of the �utuating wave amplitude. The appeareneof defets hanges the dynamial behavior of the wave pattern amplitude, as we an see from its73
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propagate at a given veloity. He predits a power-law spetrum f−5 when line singularities (A = 0)propagate at onstant speed, but in our ase the dynamial variable is the modulus of the envelopeamplitude |A|. Therefore no simple relationship an be made between the experimental result andthe theoretial predition. To wit, we have hanged the sampling frequeny from 1 to 5 kHz. Nosubstantial di�erene in the slope has been observed. The resolution of the defet ore does not a�etthe slope of the spetrum either. This is on�rmed when the exitation frequeny is hanged from60 to 120 Hz to make the wavelength smaller.These two separate statistial indiators, the PDF and the PSD of the loal wave amplitude,show the qualitative hange in the behavior of the parametrially exited surfae waves when defetsdominate their dynamis in a stationary out-of-equilibrium state. Their interation with the wavepattern mediate the propagation of wave amplitude �utuations from one plae of the ontainer tothe other. When ǫ grows larger and larger, more defets will randomly appear over the wave pattern,speeding the propagation of these �utuations. This out-of-equilibrium stationary state is termeddefet-mediated turbulene.We have shown in this setion that when a large number of modes in the wave number band
kc ± ∆k are parametrially exited, �utuations of the loal wave amplitude are strong enough tobreak loally the wave pattern and fore the wave amplitude to vanish, forming a defet. In thisout-of-equilibrium state of the wave system, no ontrol over the wave amplitude �utuations an beahieved. To study the ase where �utuations of the the parametri surfae waves an be ontrolled,we present the next experimental study.5.3 Spatio-temporal noise in parametrially exited surfaewavesThe alulations on the �rst setion onsider the ase of the deterministi growth of the nonlinearlysaturated amplitude when the foring amplitude is lose to its threshold value and no �utuationsare taken into aount. A problem of both theoretial and pratial interest is how parametriresonane is modi�ed when the pump, i.e., the spatial or temporal modulation, is noisy. Only ahandful of experiments have been performed [20, 21, 22, 15℄ to study suh an e�et and in eah asethe �utuations of the pumping mehanism are temporal. To gain insight on the e�et of spatio-temporal �utuations on these parametrially ampli�ed surfae waves, we have developed a soure ofspatio-temporal noise by means of a periodi Lorentz fore [23℄. This fore, ating on a onduting�uid (in this ase, merury) reates an underlying vortex �ow that interats with the parametriallyampli�ed surfae waves.
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Figure 5.8: Seond experimental set-up. Up: Bottom of the ontainer, where an array of periodiallyalternating polarity magnets are positioned in an hexagonal array. On opposite sides of the ell twoopper eletrodes are used to drive a DC urrent in the merury layer. Bottom: Mounted ontaineron the eletromagneti shaker, showing the sensors (1) Vivès probes, (2) piezoeletri aelerometer,(3) indutive sensors and (4) apaitive wire gauges.
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5.3.1 Experimental set-up and measuring tehniquesWe desribe the seond experimental set-up in this setion. A shematial piture of the experimenalset-up is displayed in Fig. (5.7). A Plexiglass ontainer of 70 x 70 mm2 is �lled with merury (density
ρ = 13.6 x 104 kg/m3, kinemati visosity ν= 1.2 x 10−7 m2/s and surfae tension σ= 0.4 N/m)up to a height of 5 mm. At the bottom of the ell, alternating vertial polarity magnets (5 mm indiameter) were plaed with a 1 mm gap between them on an hexagonal array (6 mm in wavelength),as depited in Fig. (5.8). The magneti �eld strength at the surfae of the �uid on top of a magnetis 500 G. Two nikel-barnished opper eletrodes were glued at opposite sides of the ell, to be inontat with the merury layer. A �ne layer of nikel was deposited over them to ensure no hemialreation between merury and opper. The surfae stayed lean of impurities (amalgams of Ni andHg) for as long as two months. To avoid oxide formation, the surfae is kept lean by maintainingthe �uid in a nitrogen-�lled atmosphere. Through the opper eletrodes, a DC urrent I generatedby a power-supply (Agilent E3336A 20 V - 7 A), is applied to the onduting �uid. This givesrise to urrent density j, and therefore a Lorentz fore FL = j × B. The ontainer is temperature-regulated by irulating water 20.0 ± 0.1°C by means of a thermal bath (Lauda RC6 Chiller). Asin the previous experimental devie, an eletromagneti vibration exiter (B & K 4809) driven bya frequeny syntheziser (HP 8904 A), provides a lean vertial sinusoidal aeleration (horizontalaeleration less than 1 % of the vertial one). The e�etive gravity in the referene frame of theontainer is then g+acos(2πft), where g is the aeleration of gravity, a is proportional to the appliedtension V and f is the exitation frequeny. The vertial modulation of the aeleration is measuredby a piezoeletri aelerometer (B & K 4803) �xed to the vibrating ontainer and a harge ampli�er(B & K 2635).The surfae wave amplitude is measured by two indutive sensors (eddy-urrent linear displae-ment gauge, Eletro 4953 sensors with EMD1053 DC power supply). Both sensors, 3 mm in diameter,are srewed in the Plexiglas plate perpendiularly to the �uid surfae at rest. They are put 0.7 mmabove the surfae. The sensors are loated on one of the diagonals of the ontainer, 30 mm awayfrom eah other about the enter. The measuring mehanism of the eddy (irular)-urrent lineardisplaement gauge used to measure the position or displaement of a onduting metal at a distane
x relies on eletromagneti indution [24℄. Two oils, alled primary (or referene) oil and se-ondary (or sensing) oil, are positioned one over the other without touhing. An alternating tensionis imposed over the primary at high frequeny (the operating range is in between 50 kHz up to 10MHz). The eddy or irular urrents indued in the onduting material produe a magneti �eldwhih opposes the one on the sensing oil. This e�et is larger the loser the onduting material isto the sensing oil, due to the fat that the hange in the magneti impedane is larger. Althoughgenerally the relationship between the oil impedane and the distane x to the onduting materialis nonlinear, for the sensors used in this experiment, the sensing range is linear in very small rangeof x. The type of indutive sensors used in this experiment is of the shielded type, allowing it to beembedded in a metal soket, as shown in Figs. (5.8) and (5.9). The linear response of these indutivesensors in the ase of a wavy liquid metal surfae has been heked in a previous study [25℄. Thelinear sensing range of the sensors allows distane measurements from the sensor head to the �uidsurfae up to 1.27 mm with a 7.9 V/mm sensitivity. A apaitive measurement an be also made,but the sensitiviy of the apaitive wire gauge is orders of magnitudes smaller than the one of theindutive sensors. The greatest advantage of indutive sensors is that they are not perturbative asthe apaitive wire gauges. In ontrast, the main disadvantage is that indutive sensors average theloal �utuations over 3 mm, whih means that �utuations with length sales that are smaller than3 mm annot be resolved. This is the reason why we have hosen the wavelengths in the experimental78



set-up larger than 3 mm.
B

l
v

∆V

Figure 5.9: Left: Shemati view of an indutive sensor. A Eletromagneti proximity sensor. BShielded and C Unshielded sensor. Figure taken from Fraden[24℄, p.279. Right: Shemati view ofa Vivès probe, where the potential di�erene ∆V averaged over the distane l is proportional to theaveraged eletri �eld ∫
l
v × B · dl.In addition, the loal veloity �utuations of the �ow an also be studied in this experimentalon�guration. They are measured in two points 20 mm from the losest wall, 35 mm the farthestone and 50 mm away from eah other by means of Vivès probes [26℄. As shown in Fig. (5.9), theseprobes are made by two eletrodes made of opper and separated by a distane l=3 mm, that plunge2 mm into the �uid and are isolated ompletely from the liquid metal, exept at the end, where theeletrial ontat is made. A small ylindrial magnet (5 mm in diameter) is plaed 5 mm above theeletrodes, generating a magneti �eld strength of 500 G at the eletrial ontat point. The wholesystem is integrated into a ylindrial rod that is srewed to the Plexiglass plate. The measuringpriniple relies on Faraday's law of indution. When an element of onduting �uid in presene of amagneti �eld B passes with veloity v in between the wire eletrodes, an eletri �eld e is generatedfollowing ∫

l

e · dl =

∫

l

v × B · dl,whih in turn reates a small tension di�erene at the end of the wire eletrodes. The magneti �eldof the magnet in the Viveès probe does not a�et the qualitative behavior of the veloity �utuationsof the �ow. In this approximation we have not taken into aount neither the onstant nor theindued urrents in the onduting �uid, whih an generate also an eletri �eld. The explanationis as follows: the DC omponent is eliminated by high-pass �ltering the potential di�erene andthe indued urrents are negligible given the low speed of the vortex �ow (low magneti Reynoldsnumber Rm). For veloity �utuations of length sales larger than l, the voltage di�erene measuredbetween the eletrodes is proportional to the veloity �utuations v1 whih are orthogonal to thevertial magneti �eld B0 [27℄. A small tension proportional to v1B0l of the order of a few mirovoltsis ampli�ed by a fator 105 and aquired with the amplitude �utuations and the aeleration signals.The DC omponent of the signals are �ltered out in the aquisition. This �ltering eliminates theproblem of onstant eddy urrents in the indutive sensors and the large DC omponent in the Vivèsprobes. To resolve statistially the temporal �utuations of the measured quantities, the sampling79



frequeny is �xed at 500 Hz and the aquisition time is set 800 s, muh larger than the typial timesales of the aquired signals.5.3.2 Experimental resultsWe present in the following setion the experimental results of the e�et of the spatio-temporal�utuations due to the underlying vortex �ow on the standing surfae waves. To do so, we startby desribing both ellular �ows separately. We start by desribing the properties of the loal waveamplitude and veloity pro�le of the parametrially ampli�ed surfae waves.Parametrially ampli�ed surfae wavesSubjeting the ontainer to a periodial modulation of gravity, surfae waves an be ampli�ed para-metrially. These parametri waves respond subharmonially to the modulation. In this experimentalon�guration the modulation frequeny f is �xed and the modulation amplitude a is hanged. At agiven threshold amplitude ac, the �at surfae beomes unstable to small perturbations and stationarysurfae waves appear. We observe a square pattern of standing waves without defets.The hoie of the exitation frequeny f =23.8 Hz is two-fold: to have no time-dependent ampli-tude (an eigenmode of the ontainer) and a omparable wavelength to the one of the magneti �eld
B (λ = 6 mm), larger than the diameter of the indutive sensor, whih is 3 mm. We have exploreda frequeny range (20 < f < 30 Hz) in whih the wavelength of the pattern and the one of theperiodi Lorentz fore are similar. The wavelength of the parametrially ampli�ed waves is roughly8 to 10 times smaller that the size of the ontainer. The frequeny di�erene between two suessiveresonane tongues is about 1 Hz. By tuning the exitation frequeny within a 1 Hz interval, it iseasy to work in the viinity of the minimum of a resonane tongue, without detunning between theexitation frequeny and the natural osillation frequeny of the surfae waves. We show in Fig.(5.10) the bifuration diagram of the wave amplitude 〈h1〉 of the parametrially ampli�ed surfaewaves. Its dependene on the redued ontrol parameter ǫ = (a− ac)/ac is

〈h1〉 ∼ ǫ1/4,as reported elsewhere [15℄.Given the fat that the surfae deformations are generated by the ellular �ow in the bulk ofthe �uid, the veloity �eld also saturates nonlinearly and an be used to study the threshold of theparametrially ampli�ed waves. To our knowledge, this is the �rst measurement of the loal veloity�eld in parametrially exited surfae waves. The bifuration diagram of this signal is shown inFig.(5.11). The nonlinearly saturated veloity �eld grows as
〈v1〉 ∼ ǫ1/2,in ontrast to the loal amplitude dependene.Both the loal wave amplitude and veloity �eld present the same threshold value for ac, showingthe growth of one single mode over the ontainer and no distinguishable hysteresis loop is found inthe bifuration diagrams for h1 and v1. Inreasing ǫ further, more modes are exited. For large ǫ,

ǫ > 0.5, the unstable mode is no longer stationary and low-frequeny (large-sale) modulations ofboth �elds appear due to seondary instabilites as explained in the previous setion.This omplexregime was not studied here. To ompute the bifuration diagram of eah variable X(t) we have used80
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Figure 5.10: (a) Bifuration diagram for the wave amplitude 〈h1〉 as a funtion of a. (b) Bifurationdiagram for 〈h1〉4 as a funtion of ǫ = (a− ac)/ac.the Fourier oe�ients at f/2 of the signals, by taking
X̂(ω = πf) = lim

T→∞

∣∣∣∣
1

2

∫ T

−T

X(t)eπiftdt

∣∣∣∣ ,where T is the aquisition time, muh larger than the osillation period π/f (Tf ∼ 104). Thisproedure is simply a phase-sensitive detetion of the Fourier omponent at the osillation frequeny
f/2.This weakly nonlinear regime, with a stationary nonlinearly saturated standing wave, will bestudied when �utuations in spae and time are added to the wave system, through an underlyingvortex �ow.Vortex �owWe investigate now the e�et of the periodi Lorentz fore FL on the surfae and in-bulk �elds. Themehanism of the formation of the �ow is the following: when a onstant urrent I is applied throughthe liquid metal in the presene of a periodi magneti �eld B, a periodi Lorentz fore FL = j× Bsets the �uid in motion. In this experimental setup up, given the fat that the waves at the interfaehave very small amplitude with respet to the depth of the merury layer, the density urrent j anbe estimated as j = (I/S)e, where S=3.5 m2 is the surfae rossed by the urrent and e is a unitaryvetor pointing normally from one eletrode (the athode) to the other one (the anode).The veloity �eld v of the �ow an be estimated balaning the Lorentz fore FL that works asthe motor of the motion of the �uid and the onvetive aeleration ρ(v · ▽)v in the Navier-Stokes81
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ρ

(
∂v

∂t
+ (v · ▽)v

)
= −▽ p+ ρν △ v + FL,where ρ is the �uid density and ν its kinemati visosity. The order of magnitude for suh veloity�utuations at the foring sale (the magneti �eld wavelength λ) for a typial DC urrent I ∼ 1A is 5 m/s and the Reynolds Number Re is of the order of 100. Even at low Re, the veloity�eld reates deformations on the free surfae. Both surfae and in-bulk �utuations present largeamplitude events and low-frequeny �utuations, as it is shown in Fig. (5.12). We study in the nextparagraphs their statistial properties.Probability density funtions : To study the statistial properties of the loal response of the�uid to the periodi Lorentz fore, we ompute the probability density funtion (PDF) of both theloal surfae amplitude given by one of the indutive sensors h1 and the veloity �eld �utuationsgiven by one of the Vivès probes v1. The other two sensors display similar behaviors. For the aquiredsignals, at a given value of the DC urrent I, we show their omputed PDFs in Figs. (5.13) and(5.14). Inreasing the value of I, larger and larger events in loal height and veloity our. Thestandard deviation or rms value of loal surfae �utuations σ(h1) inreases with inreasing urrent,as do the rms of the veloity �utuations σ(v1). The growth rate is linear in I for the latter and asmall departure from linearity is measured in the former (left inset in Figs. (5.13) and (5.14)).When plotted in the resaled variables h1/σ(h1) and v1/σ(v1), all the PDFs ollapse on one urve(see right inset in Figs. (5.13) and (5.14)). No lear asymmetry is found in the normalized PDFsof both variables. A slight departure from the statistis of a normal variable was observed in both82
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ρh1v1

= 〈h1v1〉 /
√

〈h2
1〉 〈v2

1〉,where 〈〉 stands for time average. This oe�ient relates the degree of statistial independene of onevariable to the other. We show in Fig. (5.15) the evolution of this statistial indiator as a funtionof I for di�erent pairs of observables. Inreasing I, inreases the normalized ovariane of the loalwave amplitude measured at two di�erent points (h1 and h2) from 0.1 at 1 A till 0.25 at 8 A. Inontrast, the normalized ovariane for v1 and v2 �utuates slighlty arround 0.1 for any value of I, asit is also observed for the pair v1 and h1. In that sense, the vortex �ow reates loally independentsurfae and in-bulk �utuations over the ontainer.Power spetral densities : As I is inreased, low-frequeny �utuations dominate the responseof the �uid motion due to the Lorentz fore. This an be seen in the power spetral densities (PSD)of both the loal amplitude h1 and veloity �eld v1, as shown in Fig. 5.16. For the amplitude�utuations, the spetra display an exponential behavior and no power-laws for the PSD are found,even for large values of I. In the ase of the veloity �eld, the spetra are not exponential and itfollows a power-law lose to -5/3. This orroborates the fat that even at the low Re values ahievedin this experimental set-up, the �ow remains highly �utuating and haoti.When I is less than 1 A, there are lear peaks related to the lower normal modes of the ontainer,ating as avity modes for the exited surfae waves generated by large amplitude �utuations. At83
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Cx̂ŷ(f) = | 〈x̂(f)ŷ(f)〉 |/

√
|x̂(f)|2|ŷ(f)|2,where x̂(f) and ŷ(f) stand for the Fourier transforms of x and y at frequeny f . This oe�ientrelates the possibility of two waves to produe interferene between them at a given frequeny. In thisase we hoose that frequeny to be the one of the subharmoni response. We show its dependeneon I in Fig. 5.23b. As in the ase of the normalized ovariane, inreasing I for a given value of

a > ac(0) dereases the spetral oherene of the subharmoni response till it reahes zero. In thatsense, the vortex �ow prevents the wave to maintain its struture over the whole ontainer.These two indiators relate the degree of statistial dependene of two �utuating quantities (inthis ase loal amplitude and veloity �utuations). Taking into aount the previous measurementsand the fat that both the normalized ovariane and spetral oherene magnitude are dereasedwhen the vortex �ow intensity is inreased, we an think of this type of foring as a spatio-temporalnoise on the set of parametrially exited surfae waves.The last part of this experimental study is devoted to the e�et of these spatio-temporal �utua-tions on the instability threshold value. From the bifuration diagrams of the loal wave amplitudeand veloity �eld, we ompute the threshold value ac(I) as a funtion of I in the range [0,2℄ A, asshown in Fig. (5.24). The variable (ac(I) − ac(0))/ac(0) inreases roughly linearly with I. Fromthis urve we an see that the threshold value of the subharmoni waves an be shifted by 20 % for
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Figure 5.23: (a) Normalized ovariane ρxy as a funtion of I for h1, h2 (◦) and h1, v1 (�). (b)Spetral oherene magnitude Cxy as a funtion of I for h1, h2 (◦) and h1, v1 (�).type of systems.In the seond experiment, we have studied the e�et of a vortex �ow on the �utuations ofthe loal wave amplitude and veloity �eld of a set of parametrially exited surfae waves at a�uid surfae. The vortex �ow is generated by a periodi Lorentz fore FL = j× B in the bulkof a liquid metal (merury). When the sole exitation is the parametri pumping, the standingwave pattern developes and stationary surfae waves appear over the �uid surfae. When the soleexitation of the �uid motion is the vortex �ow, the statistial properties of the surfae waves werestudied separatetly. The PDFs of loal wave amplitude h1 and veloity �eld v1 are roughly normalwith their standard deviations growing linearly with the strength of the �ow. The PSDs of thetemporal �utuations of the wave amplitude are found to be exponential and the PSD of the veloity�utuations display a power-law. Also, the normalized ovariane between the aquired signals wasomputed as a funtion of I, staying always below 0.2. This means that the orrelation length ofthe foring (vortex �ow) is muh smaller than the size of the ontainer (whih is omparable to theorrelation length of the pattern struture). As a remark, these measurements indiate that thistype of foring annot generate oherent waves and therefore phenomena suh as propagation ofwave trains or wave turbulene may not be displayed in the presene of an underlying �ow.Later, we have shown experimentally that the vortex �ow an at as a soure of spatio-temporalnoise on a parametrially exited set of waves at a �uid surfae. Its presene deorrelates the surfaewaves over the ontainer. Indeed, the normalized ovariane ρxy and spetral oherene magnitude
Cxy at the subhamoni frequeny f/2 derease strongly in presene of the underlying �ow as I isinreased. The main e�et of the vortex-wave interation is the growth of the threshold of theparametri instability. The large growth of parametri instability onset annot be aounted solelyby the nonlinear hange in the eigenfrequeny of the standing pattern due to the nonlinear oupling92
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Chapter 6Flutuations in Capillary Wave TurbuleneThis last hapter is devoted to wave turbulene. In this state, a set or weakly nonlinear surfaewaves interat randomly between themselves, developing a stationary state where �utuations inwave amplitude our that annot be desribed by equilibrium distributions. We will fous mainlyon experimental studies on wave turbulene at air-�uid (or �uid-�uid) interfae when the e�et ofsurfae tension is important.In the �rst setion, we give a short overview of the theoretial bakground of wave turbuleneand the handful of experimental studies made so far on the subjet, partiularly on a set of studiesof gravito-apillary wave turbulene performed in laboratory experiments. Later, we desribe ourexperimental devies used to study apillary wave turbulene. Then, we present the experimentalresults.6.1 Wave TurbuleneIt was established 40 years ago that a set of weakly oupled dispersive waves an develope an out-of-equilibrium steady state alled wave turbulene[1℄. In this state, the wave amplitude Ak(t) of themode with wave number k, �utuates due to the weakly nonlinear interations with other waves anda statistial desription of the wave system properties (suh as the �utuations of energy, momentumand other onserved quantities for the wave system) must be used. The equations of motion aretypially of the form
dAs

k

dt
+ isωkA

s
k =

∑

si

∫
Lss1s2s3...sN

kk1k2k3...kN
As1

k1
As2

k2
As3

k3
...AsN

kN
δ(k1 + k2 + k3 + ...− k)dk123...N (6.1)where the si are equal to ± in suh a way that A+

k = Ak and A−
k = A∗

k. This equation has two mainontributions to the evolution of Ak: the osillation related to the typial pulsation frequeny of thewaves (isωkA
s
k) and the nonlinear interation term, whih relates the loal interation of a number

N of waves with wave number ki and amplitudes Asi

ki
through a sattering matrix Lss1s2s3...sN

kk1k2k3...kN
whihonly takes into aount the wave vetors whih satisfy the resonane k1 + k2 + k3 + ... + kN = k.Theoretially, the equations of evolution of the amplitudes Ak ome from a Hamiltonian, whih isnonlinear in Ak. There is no dissipation taken into aount in the theory, at least in a transparenywindow in between the injetion sale (usually set at k =0 or at the sale of the system) and thedissipation sale. In wave turbulene theory, the dissipation sale is usually set at k → ∞. In thededution of this type of equations, ertain hypothesis have been used, namely the homogeneity andisotropy of spae, loality of the interations (whih means that the wave vetors that an interat to96



ontribute to the evolution of Ak are the ones that satisfy the resonane ondition desribed abovein the so alled resonant manifold) and a ertain degree of ergodiity in order to take averages inspae and relate them to the temporal averages.The strength of the theory omes from the possibility of desribing the evolution of the waveamplitude in terms of the density distribution of wave numbers nk, whih is related diretly to theseond moment 〈AkA
∗
k′〉 = nkδ(k − k′) of the �utuating wave amplitude Ak. It is important tonotie that higher moments of the wave amplitude 〈As1

k1
As2

k2
As3

k3
...〉 an be written as a funtion of nkonly, beause there exist an asymptoti losure for the problem [3℄.The distribution nk displays a slow dynamial evolution (the pulsation frequeny is eliminatedfrom the e�etive dynamis and enters as a ondition of resonane of the wave set), given by thesmall nonlinear interation between waves of di�erent wave numbers, at slow time sales with respetto the fast dynamis of the dispersive wave system. The separation between the fast (linear) andslow (nonlinear) time sales makes possible to desribe the evolution of the wave system to an out-of-equilibrium state by a means of a kineti equation for nk. The kineti equation has the form

∂tnk = π
∑

ki

∫
(|Lss1s2

kk1k2
|2δ(k − k1 − k2)(nk1

nk2
− nk(nk1

+ nk2
))

− 2|Ls1ss2

k1kk2
|2δ(k − k1 − k2)(nknk1

− nk1
(nk + nk2

)))δ(ωk − ωk1
− ωk2

)dk12, (6.2)for 3 interating waves, for instane [1℄. It takes into aount only the seond moment of the waveamplitude. The higher moments of the amplitude are omputed as a funtion of nk, and that is usedto ompute the kineti equation.The density distribution evolves by a resonane proesses between waves to a stationary state.The number of interating waves depends on both the dispersion relation ωk = ω(k) = ω(k) and theorder of nonlinearity of the expansion of the interation terms between waves. The kineti equationin wave turbulene posseses, very muh like the Boltzmann equation for a diluted gas, an H theoremthat drives the system in an irreversible way to the thermodynami equilibrium (haraterized bythe Rayleigh-Jeans distribution). An important point of this theoretial developement is the fatthat the kineti equation an support non trivial solutions, di�erent from those of thermodynam-is equilibrium. Zakharov [2℄ proved that there are out-of-equilibrium solutions that desribe thetransport of onserved quantities like energy from the large sale of the injetion of energy to thesmall sale, where energy is dissipated. Within this inertial bandwidth of wave numbers a power-lawdensity distribution is a solution: nk ∼ k−α, with α > 0 the Kolmogorov-Zakharov exponent whihdepends on the type of dispersion relation and the number of nonlinear interations. By analogywith the energy asade in fully developed hydrodynami turbulene [4℄ these solutions are namedKolmogorov-Zakharov's spetra (KZ). KZ spetra have been theoretially predited for gravity andapillary surfae waves [5, 6℄, Alfvèn waves in astrophysial plasmas [7℄, ion waves in plasmas [8℄,nonlinear optis [9℄, bending waves in thin elasti sheets [10℄ and so forth. Moreover, numerialsimulations show the realisation of wave turbulene regimes with KZ power-law spetra in gravity[11℄ and apillary [12℄ wave turbulene.Even though wave turbulene has been theoretially and numerially studied in several physialsystems, experimental evidenes of the appearene of this out-of-equilibrium state are sare. KZspetra have been observed in atmospheri siene [13℄, surfae apillary waves [14, 15, 16℄, internalwaves in the oean [17℄ and spin waves in solids [18℄. In all these experimental studies, there was noontrol of the injetion mehanism nor on its e�et on the nonlinear interations between waves.Reently, a new set of experimental studies have been onduted on the subjet of gravito-apillarywave turbulene in laboratory [19, 20℄. In these experienes, a apaitive wire gauge reorded the97



loal wave amplitude �utuations η(t) of random waves fored at the surfae of a �uid. To reordthe loal wave amplitude, we will use the same priniple of apaitive measurement of [19, 20℄ in ourexperimental study.
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ω(k)2 = gk +

σ

ρ
k3,for a deep layer of �uid of density ρ and surfae tension σ (see Chapter 4). From this relation, theapillarity length is omputed as lc =

√
σ/gρ, giving a ross-over frequeny fc =

√
g/2π2lc. For theworking �uid, merury, lc ∼ 1.74 mm and fc ∼ 17 Hz. These parameters keep the same order ofmagnitude when the �uid is hanged for water. The apillary length annot be signi�antly hangedusing other interfaes between simple liquids and air. It is at an intermediate sale between the sizeof the experiment and the dissipative length. The theoretial value fc is in good agreement withthe experiment (see inset in Fig. (6.2)) for a low-frequeny broad band foring. At higher foring,there is a shift (see main Fig.(6.2)) whih an be due to nonlinear interations between gravity andapillary waves, but that deserves to be experimentally and theoretially studied. At even largerfrequenies, larger than 100 Hz, the dissipation of surfae waves takes plae at the apaitive wiremenisus. 99



The experimental spetrum density was ompared to the theoretially predited KZ power spe-tral density Sη(f) whih follows a power law depending on the resitution fore ating on the wavesystem. For surfae wave turbulene, the predited spetra [1℄ are
Sη(f) ∼ ǫ1/3gf−4 for gravity waves,
Sη(f) ∼ ǫ1/2

(
σ

ρ

)1/6

f−17/6 for apillary waves, (6.3)where ǫ is the mean injeted energy �ux per unit of mass into the system. The exponent in thespetra is related diretly to the number of waves whih take part in the sattering matrix L and thedispersion relationship. For gravity waves, 4 waves interat in the resonant proess, and for apillarywave turbulene, 3 waves interat (unless ertain symmetries are impossed to the system).These spetra an be also found by dimensional analysis [21℄. To do so, one an use
∫ ∞

−∞

Sη(f)df = 〈η2〉,whih has units of (distane)2, that we will write as L2. As df has units of inverse of time T−1,
Sη(f) ∼ L2T 1. The other parameters of the system have the following units g ∼ LT−2, (σ/ρ) ∼
L3T−2, f ∼ T−1 and ǫ ∼ L3T−3. Using dimensional analysis, we assume that we an write the powerspetrum density as a polynomial funtion Ψ of the adimensional parameters of the problem alled
Πi. The number of independent Πi is given by the number of dimensional quantities of the problem(in this ase 5) minus their dimensional units (in this ase distane L and time T , i.e. 2)) [22℄. Then
Ψ an be written as

Π1 ≡
Sη(f)

ǫ2/3f−3
= Ψ(Π2 ≡

σf

ǫρ
,Π3 ≡

g3f−3

ǫ
). (6.4)In the wave turbulene regime, where the foring applied at large sale is disarded (f/fc ≪1),the surfae wave turbulene spetrum of loal wave amplitude Sη(f) an be either driven by gravity

lim
Π2→0

Ψ(Π2,Π3) → Ψgrav(
g3f−3

ǫ
),or surfae tension

lim
Π3→0

Ψ(Π2,Π3) → Ψcap(
σf

ǫρ
).At this point, we annot onlude on the behavior of the funtion Ψ, and ertain assumptions have tobe made. We mainly assume that the the number of interating waves will �x the power-law behaviorof Ψ though the energy �ux ǫ: for N resonant wave proess, the spetrum Sη(f) dependene on theenergy �ux goes as ǫ 1

N−1 . For gravity waves, the number of waves interating in the gravity regime is4 [21℄, the exponent of the mean injeted power must be 1/3. Therefore Ψgrav(x) ∼ x1/3 and we get
Sη(f) ∼ ǫ1/3gf−4. For apillary wave turbulene, the number of interating waves is 3 [21℄, therefore
Ψcap(x) ∼ x1/6 and we get Sη(f) ∼ ǫ1/2(σ

ρ
)1/6f−17/6.An important result of the experimental study is the strong dependene of gravity wave turbuleneon the foring amplitude: the smaller the amplitude of the foring, the steeper the slope of theomputed power-law spetrum. The experimental value varies from -4 for large foring amplitudeand small driving frequeny band (fdriv=4 Hz) to almost -7 for small foring amplitude and largedriving frequeny (fdriv=6 Hz). When the foring is not strong enough, harmonis of the foring still100



appear over the experimental spetrum [19℄. The transition from the foring peak resonane to thedeveloped gravity wave turbulent state deserves further study.For apillary wave turbulene, the situation is di�erent. The experimental slope of apillaryspetra are lose to the theoretially predited one Sη(f) ∼ f−17/6. It is found to be independent ofthe foring [19℄. We will further study this regime in this Chapter.Comment on the relation between frequeny (loal) and wave number (spatial) mea-surements: The experimental power spetrum density disussed in the previous setion is deduedfrom the reorded wave amplitude �utuations of a loal measurement. This spetrum, when waveturbulene is developed in the surfae wave system, displays two distint frequeny windows wherea power-law type of spetrum developes: at low frequeny (in between fdriv and fc) a gravity waveregime, and at high frequeny (in between fc and fdis), a apillary one. For eah regime, a ompari-son between experiment and theory was made [19℄. The point we would like to disuss brie�y hereis the fat that the theoretial alulations of the power spetrum density are made on wave numberspae [1℄ and not in frequeny domain. As we are onsidering a statistially homogenous system inspae, it is natural to ompute the moments and statistial properties of the wave �utuations bytaking spae averages. Nevertheless, from the experimental point of view, taking spae averages isquite a di�ult task. On the ontrary, time averages of loal wave amplitudes are muh aessible.It is possible to relate both for stationary solutions in the linear regime as follows:
nT (ω) ∝ kd−1 dk

dω
n(k)where nT (ω) is the time averaged density distribution, now written in frequeny domain, and d isthe dimension of the spae where waves propagate (in this ase d = 2). This is done by assumingthe validity of the linear dispersion relation ωk = ω(k), where dω(k)

dk
is well de�ned. The ful�llment ofthe dispersion relation in the weakly nonlinear regime is taken as a fat for the omparison betweentheoretially and experimentally omputed power spetrum densities. In what rests, we will assumethat the dispersion relation is valid.6.3 Capillary wave turbuleneCapillary waves are ubiquitous in nature. They appear whenever the interfae between two �uids isperturbed. In the presene of another restitution fore that an sustain surfae waves (suh as gravityor a magneti �eld), a ompetition between both will our, generating naturally a rossover length(in the ase of gravito-apillary waves, it is the apillary length lc). When fored out-of-equilibrium,their nonlinear interation an produe a turbulent-like regime termed apillary wave turbulene.Capillary wave turbulene is the assymptoti regime where dispersive apillary waves at the interfaebetween two �uids interat randomly through weak nonlinearities. This interation generates anout-of-equilibrium stationary state where the density distribution nk displays a power-law behavioras a funtion of the wave-number k. In this subjet, theoretial, numerial and experimental studiesagree in showing the appearane of a sale-invariant KZ spetrum. Even so, there are several aspetsof apillary wave turbulene that have not been properly addressed or ompared between theory,experiments and numerial simulations, for instane, the non-gaussianity of the wave amplitudes[23℄, the nature and existene of intermiteny in a wave system [20, 24℄ or the role of symmetriesand dissipation in the wave interations [25, 26℄. From the experimental point of view, gravity waveshave always been present in the former experiments [14, 15, 16℄, and their nonlinear interations withapillary waves has not been taken into aount theoretially nor experimentally.101



To adress these points, pure apillary wave turbulene must be studied. The main issue in groundexperiments in surfae wave turbulene is the interation between diferent types of waves ating in thesame system, suh as the ase of gravito-apillary wave turbulene. Through the harateristi salesof eah asade, energy and other onserved quantities must be transported. This is done throughdi�erent proesses, envolving di�erent mehanisms. Therefore, to properly study pure apillary waveturbulene, surfae gravity waves must be either negligible or eliminated. In the following setion,we present two experimental on�gurations where this an be ahieved.6.3.1 Experimental set-up and measuring tehniquesWe present now the experimental devies used to study the statistial properties of the loal waveamplitude �utuations in pure apillary wave turbulene at the interfae between two �uids. To beable to neglet gravity e�ets as spureous ontamination of the apillary regime we designed twodi�erent set-ups. The �rst experiment, realized in a low-gravity environment, allowed us to probethe loal wave amplitude �utuations in a apillary wave turbulene regime and also parametriallyampli�ed surfae waves in a spherial ontainer. It is the �rst experimental report on low frequeny(large sale) apillary wave turbulene. The seond laboratory experiment was performed using agravity-mathing tehnique, where two inmisible �uids of similar densities where superposed, elim-inating the aeleration of gravity from the surfae wave dynamis. In this on�guration, apillarywaves in deep �uids display a symmetri distribution of amplitudes with respet to the equilibriumlevel, in ontrast to the gravito-apillary wave turbulene distribution of wave amplitudes.Mirogravity experimentBefore desribing the experimental set-up, we �rst explain the proedure and the neessary onsid-erations to perform an experimental study in a low-gravity enviroment. Low-gravity enviroment isahieved by �ying with the speially modi�ed Airbus A300 Zero-G airraft (operated by Novespaefor the Centre National d'Etudes Spatiales [27℄ at Bordeaux, Merigna), through a series of parabolitrajetories (∼ 90) whih result in low-gravity periods, eah one of 20 ± 2 s. Two ampaigns whereperformed, separated by 6 months. In the �rst (last) seond of the paraboli �ight, the aelerationof gravity dereases (inreases) and transient e�ets an polute the experimental measurements. Dueto this fat they are not taken into aount in the aquisition of data, and only 18 s are aquired.The e�etive gravity geff in a typial trajetory is low with respet to the aeleration of gravity gon ground geff/g ∼ 5 x 10−2. Although small, �utuations in geff our, alled g-jitters.Experimental devie: The dynamial part of the experimental set-up is depited shematiallyin Fig. (6.3). An inner ontainer is partially �lled with a �uid. The ontainer geometry is eitherspherial (15 m in diameter) or ylindrial (15 m in diameter, 18 m in length). Eah ontainer ismade of a wetting material (Plexiglas ylinder or glass sphere) to avoid that the �uid loses ontatwith the internal wall of the ontainer during the mirogravity phases. Aording to its geometry, theontainer is �lled with 20 or 30 l of �uid. This orresponds to an uniform �uid layer of roughly 5 mmdepth overing all the internal surfae of the ontainer during the mirogravity phases. The innerontainer is �xed inside an outer ontainer whih is made of polyarbonate (Lexan) and is air-tightto avoid �uid leaks. Seurity standards have to be respeted in order to performed experiments inlow gravity. As it is shown in Figs. (6.3) and (6.4), the whole system is put down on a rail and issubmitted to vibrations by means of an eletromagneti exiter (BK 4809) via a power supplied (BK102



Figure 6.3: First Experimental set-up: Mirogravity experiment. A spherial or ylindrial ell is�lled with a �uid. The waves at the surfae of the �uid are exited by a low-frequeny (large sale)foring performed by an eletromagneti shaker. Loal wave amplitude �utuations are measured bymeans of a apaitive wire gauge. Aeleration measurements were done by means of a piezoeletriaelerometer and a harge ampli�er. The �uid motion and loal wave patterns are also reorded bymeans of a amera and a videoamera.2706). We have used two type of forings: sinusoidal to study parametri instabilities and randomto study wave turbulene.� In the wave turbulene ase, the ontainer is driven with random noise, supplied by the soureof a dynamial analyzer (Agilent 35 670A), and low-pass �ltered in the frequeny range 0 - 6Hz by a low pass �lter (SR 650). This orresponds to wavelengths of surfae waves larger than1 m in zero gravity.� In the ase of wave patterns, the ontainer is driven with a sinusoidal foring at frequeny f0in the range 10 ≤ f0 ≤ 70 Hz, foring amplitude d0 of few mm orresponding to a ontaineraeleration 0.1 g ≤ a0 ≤ 30 g.In this hapter, we will fous mainly on random foring. Further investigations of the dynamialproperties of parametrially exited surfae waves are presented in the publiation on the subjet inthe Appendix. The loal aeleration of the ontainer is measured with a piezoeletri aelerometer(B & K 4803), whih is srewed on the ontainer, and a harge ampli�er (B & K 2635). The �uidused is either ethanol or water. The loal displaement of the �uid is measured with two apaitivewire gauges, plunging perpendiularly to the working �uid in two di�erent plaes. At the beginningof eah reording, great are was taken to have one wire gauge always plunging into the �uid in orderto avoid voltage jumps if the water dewets loally the wire. The sensor working mehanism, lineardynamial range and response time were desribed in the previous hapter. In the �rst ampain,a dynamial signal analyzer (Agilent 35670A) is used to reord the power spetrum of the surfaewave amplitude and the aeleration of the ontainer during eah mirogravity phase. In the seondampaign, both type of signals are low-pass �ltered with an eletroni �lter (SR650) at 4 kHz to avoidaliasing and reorded simultaneously at 10 kHz using an aquisition ard (National Instruments PCI6052E) inserted into a PC. The �uid surfae is visualized with a Nikon amera and reorded with103



Figure 6.4: Left: Outer ontainer in the low-gravity set-up with inner spherial ontainer.Center:Experimental set-up mounted on aluminium rak on Airbus A300 Zero-G. Right: Outer ontainerin the low-gravity set-up with inner ylindrial ontainer. (Photos taken with gravity (�uid is at thebottom of the ontainer).a Sony video amera. The whole aquisition system and dynamial set-up is srewed into a rak(136 m x 76 m x 143 m) whih is in turn srewed tight to the plane (see Fig. (6.4)). Duringmirogravity experiments and when no vibration is applied, we observe that the �uid rawls up thesides of the ontainer. The �uid then overs all the internal surfae of the inner ontainer due to theapillary fores. Contrary to the ommon sense, no formation of a single sphere of �uid is observedin the middle of the tank, due to these apillary e�ets and the relative small amount of �uid. Aroughly homogeneous �uid layer is then formed on the internal surfae of the ontainer, on�ning airin its enter. Over the homogeneous layer, apillary waves form and �utuations our.Gravity-mathing experimentThe seond way to elimate gravity waves is to design a set-up where two superposed �uids with thesame (or almost the same) density ρ. In this on�guration, omplete (or almost omplete) buoyanyis ahieved and the e�etive gravity of the system beomes negligible. In this on�guration, thesurfae waves have no prefered orientation with respet to the vertial and pure apillary wavesdominate. The e�etive gravity an be ontroled by means of the density di�erene related to theAtwood number A = (ρ1 − ρ2)/(ρ1 + ρ2) whih as in the dispersion relation of the surfae waves indeep �uid layers as
ω2(k) =

ρ1 − ρ2

ρ1 + ρ2

gk +
σ

ρ1 + ρ2

k3, (6.5)where ρ1 is the density of the upper �uid, ρ2 is the density of the lower �uid and σ is the surfaetension. For A=0, the only restitution fore is surfae tension and apillary wave turbulene andevelope on the interfae. In the ase of equal depth of the superimposed �uids, the number ofinterating waves in the sattering matrix inreases and therefore the theoretially predited apillarywave turbulene spetrum shifts its slope (as it an be seen in the publiations in the Appendix).This an be understood by symmetry arguments: the interation term has to take into aount the104
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Figure 6.5: Seond Experimental set-up: Gravity-mathing experiment: A losed ontainer is �lledwith an oil/water mixture. The waves at the interfae are exited by a low-frequeny random foringperformed by a plunging wavemaker driven by an eletromagneti shaker. Loal wave amplitude�utuations are measured by means of a apaitive wire gauge.
z → −z invariane, and no odd-terms an appear, hanging the order of the nonlinearity of theinteration term. This imposed symmetry may as well hange the PDF of the loal wave amplitude,beause no di�erene an appear between rests and troughs. The slope and skewness hanges anbe heked experimentally. We present in the following setion the experimental devie we havedeveloped for this matter.Experimental devie: The experimental devie used to study apillary wave turbulene is shownin Fig. (6.5). A Plexiglass ontainer (height h=60 mm, length l=100 mm, depth d=80 mm) ishalf �lled with distilled water (density ρ1 =1.00 g/m3, kinemati visosity ν1 =0.01 m2/s) andhalf �lled with silion oil (PDMS from ABCR GmbH & Co., density ρ2 =0.96 g/m3, kinemativisosity ν2 =0.07 m2/s). The surfae tension oe�ient for the �uids interfae is σ ∼ 30 mN/m.This value depends on the hemial origins of the PDMS, but it annot be lower than 10 mN/m[28℄. The equilibrium interfae position is measured at 35 ± 2 mm. The apillary surfae waves areexited in �rst plae by a rotating Plexiglass wavemaker whose blade is plunging in between both�uids. The wave blade osillated between to angles and its motion is ontrolled by a SSD motorfrom Parvex driven by a random gaussian noise oming from one of the outputs of a HP 8904Afrequeny generator with ut-o� frequeny fdriv = 3 Hz. At very low foring amplitude, the motionof the wave blade reates large bubbles. This is due to the wetting properties of the silion oil onthe wave blade. Any small motion, produes bubbles of water in oil that are adveted by the �owgenerated by the wavemaker osillation. We thus disarded this method. The method that we usedafterwards is also based on a wave-maker that plunged into the upper �uid, osillating vertiallywithout approahing the lower �uid. The wave-maker is driven by an eletromagneti vibration105



exiter (B & K 4809) via a power ampli�er. The random foring, supplied by the soure outputof a dynamial spetrum analyzer (HP 8904 A), is low-pass �ltered to a range between 0-3 Hz.We ontrol the foring amplitude suh that no bubble is present in the ell. The exited surfaewave amplitude η is loally measured 4 m away from the ontainer walls by means of a apaitivegauge, 0.1 mm in diameter. The measured apaitive �utuations are proportional to the loal waveamplitude ones. They are sampled at 500 Hz during 300 s. The alibration and linear response ofthis type of measurement is desribed elsewhere [19℄. We heked the onstant frequeny responseof the wire probe for the water-oil boundary in a frequeny band between 1 to 100 Hz by means ofan aelerometer solidary to the probe and a harge ampli�er. The only noteworthy di�erenes arethat in this ase both the dieletris are liquids of similar densities and similar visosities. We usedthe fat that the linear response of this type of measurement depends on the dieletri ratio of the�uids, in this ase εwater/εoil ∼ 40, giving good signal to noise ratio for this oil-water mixture.6.3.2 Experimental resultsWe present now the experimental results on apillary wave turbulene in the two on�gurationsdesribed above.Mirogravity experimentIn the low gravity phase, when the ontainer (either the ylindrial or the spherial one) is exited bya low-frequeny random foring, surfae wave �utuations appear over the �uid layer. Even in someases these �utuations are exited solely by the g-jitters. In this experimental on�guration, largeevents our where the amplitude η �utuates strongly. From the aquired signal η(t), we omputethe power spetral density of η, as shown in Fig.(6.6). One single power-law spetrum is observedon two deades in frequeny. Whatever the geometry of the tank (sphere or ylinder) and the largesale foring (random or sinusoidal), the exponent is found to be lose to -3. This spetrum doesnot depend on the large-sale foring parameter. Wave turbulene theory predits a f−17/6 salingof the surfae height spetrum for pure apillary regime. This expeted exponent is lose to thevalue -3 reported here. Kolmogorov-like spetrum of apillary wave turbulene is thus observed inFig. (6.6) over two deades in frequeny. To our knowledge, this large range of frequenies has neverbeen reahed with ground experiments for suh large sales. The power spetrum in the presene ofgravity is shown for omparison in the inset of Fig. (6.6). It displays two power laws: f−5 and f−3orresponding respetively to gravity and apillary wave turbulene regimes. The apillary range islimited at low frequenies f ≤ fc =
√
ρg/2π2lc ∼ 20 Hz. The apillary length lc being of order ofa few mm for usual �uids, the ritial frequeny fc is in rough agreement with the one observed inthe inset of Fig. (6.6). Suh a ritial frequeny orresponds to a wavelength of the order of 1 m.When g →0, the ross-over frequeny between both regimes is then predited to be pushed away tovery low frequeny. For our mirogravity preision, ±0.05 g, the apillary length then is expetedto be lose to m, and the ross-over frequeny of the order of 1 Hz, orresponding to wavelength ofthe order of 10 m. Thus, in mirogravity, for our frequeny range (4 Hz up to 400 Hz), the powerspetrum of surfae wave amplitude is not polluted by gravity waves. At high frequeny, the powerspetrum in the apillary range in mirogravity (Fig. (6.6)) is limited at frequeny about 400 Hzdue to the low signal-to-noise ratio. Note that the high frequeny limitation is lower in the preseneof gravity (≥ 100 Hz) as it is shown in the inset of Fig. (6.6). This ut-o� frequeny is relatedto the menisus diameter on the apaitive wire gauge that prevents the detetion of waves with asmaller wavelength. In mirogravity, this latter e�et vanishes sine the menisus diameter beomes106
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f−4 in Fig. (6.7) instead of f−3 in Fig. (6.6)). This an be related to usps of the spatial patternssweeping the sensor, due to the fat that the power spetrum density of a ontinous signal withderivative disontinuities displays a f−4 power-law.107
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√
Aσ/g(ρ1 + ρ2) wherethe rossover from gravity to apillary regime takes plae is an order of magnitude larger than forliquid-air interfae. This means that the frequeny rossover between gravity and apillary regimes

fc = π
√

(ρ1 − ρ2)g/2(ρ1 + ρ2)lc is obtained at a frequeny lose to 3-4 Hz for our working �uids.Therefore, when the frequeny ut-o� of the foring is larger than fc, the only KZ-type spetrum wean observe is the apillary one. In Fig. (6.9) we show both the pure apillary (main �gure) and thegravito-apillary (inset) spetra. In the apillary-driven transpareny window we an see only onesale-invariant spetrum (for frequenies larger than the harateristi frequenies of the broad-bandforing). The slope of the spetrum is roughly ∼ f−2.75.The experimental value of the slope is a point worth explaining. We an alulate theoretiallythe slope of the spetrum in this on�guration, as it is shown in the publiation in the Appendix.Another way to alulate the spetrum slope is to assume that the number of wave interationshanges from 3 (as the ase of the usual apillary wave turbulene) to 4, due to the imposed z → −zinvariane. Using dimensional analysis, we an write the power spetrum density Sη(f) as a funtionof the parameters of the system σ, ρ1, ρ2, the average energy �ux per unit of mass ǫ and the frequeny108
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f . As before, Sη(f) has units of L2T and ǫ has units of L3T−3. We an write Sη(f) as a funtion ofthe adimensional numbers of the problem. To wit, the power spetrum density of apillary waves inthis on�guration reads
Sη(f) =

(
σ

ρ

)2/3

f−7/3 × Φ(A =
ρ1 − ρ2

ρ1 + ρ2
,
ρǫ

σf
) (6.6)where Φ(x, y) is a polynomial funtion of two variables and we have used the de�nition of the Atwoodnumber A. We disard a dependene of Ψ in A and we asume that when A → 0, Φ → Φ0 onstant[22℄. As it was explained in the beginning of the hapter, for 4-wave interations, Sη(f) depends onthe average energy �ux per unit of density ǫ (related diretly to the mean injeted power furnishedby the wavemaker) as ǫ1/3. Therefore

Sη(f) ∼
(
σ

ρ

)2/3

f−7/3 ×
(
ρǫ

σf

)1/3

∼
(
ǫσ

ρ

)1/3

f−8/3.This result is lose to the numerially omputed PSD Sη(f) ∼ f−2.75, where the error is, in the worstase, 6%.This slope, as in the previous experiments, is foring independent. For the small foring used inthis experimental set-up, no usps over the wave rests were observed, whih eliminates the possibilityof singularities polluting the spetral ontent of the signal. This stresses the fat that apillary waveturbulene is a robust phenomenon.Comment on the ut-o� frequeny of apaitive measurements : All through this Chapterloal apaitive measurements were performed in order to extrat the loal amplitude �utuationsof the wavy �uid level in two experimental devies where gravity ould be removed, or at leastnegleted, from the surfae wave evolution. These �utuations present a power law spetrum witha given slope over a ertain frequeny band, whih is ompared with the one obtained in groundexperiments in presene of gravity. The ut-o� frequeny of both omputed spetra are di�erent.For gravitoapillary measurements, the frequeny ut-o� is lose to 150-200 Hz, where a dissipationslope, steeper than the apillary slope develops. This visous dissipation takes plae for small wavesthat arrived at the menisus of the �uid at the wire probe. The typial lengths asoiated to theut-o� frequeny is at least a fator 5, alulated from the dispersion relation of apillary waves forwater. In absene of gravity, the apillary frequeny fc goes to zero as g3/4 and as the e�etive gravityof the system goes to zero, lose the apaitive wire the small amplitude waves are less atenuated.As the menisus gets larger and larger, the small amplitude waves are less damped as they approahthe wire, making the ut-o� frequeny larger and larger. In mirogravity and gravity mathingexperiments, the frequeny ut-o� was of the order of 400-500 Hz.6.4 ConlusionsWe have presented results about pure apillary wave turbulene regime in two di�erent experimentalset-ups, where the e�et of gravity an be negleted. The main feature of both experiments is thepower-law spetrum of the apillary waves, that display a slope independent of the foring. Theexperimental PSD of the loal amplitude �utuations shows a power-law behavior (Sη(f) ∼ f−3.0 forthe mirogravity experiment and Sη(f) ∼ f−2.75 for the gravity mathing experiments) whih are infarly good agreement with the theoretial preditions. In the mirogravity experiment, parametri110



surfae waves were also studied, although their behavior is not disussed here. In the gravity mathingexperiment, the PDF of the loal wave amplitudes is a gaussian, and no exponential tails where found,whih an be seen as a signature of the e�et of the symmetry imposed on the system.

111



Bibliography[1℄ V. E. Zakharov, V. S. L'vov, and G. Falkovih, Kolmogorov Spetra of Turbulene I (Springer,Berlin, 1992).[2℄ V.E. Zakharov, Zh. Eksper. Teoret. Fiz. 51, 686 (1966)[3℄ A.C. Newell, Rev. Geophys. 6 (1968) 131[4℄ A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 299303 (1941)[5℄ K. Hasselmann, J. Fluid Meh. 12 481500 (1962); J. Fluid Meh. 15 273281 (1963)[6℄ V.E. Zakharov, N.N. Filonenko, Dokl. Akad. Nauk SSSR 170 (6) (1966) 12921295[7℄ V.E. Zakharov, N.N. Filonenko, Zh. Prikl. Mekh. I Tekn. Fiz. 5 (1967) 6267[8℄ E. Kuznetsov, A.C. Newell, and V. E. Zakharov, Phys. Rev. Lett. 67, 3243 (1991).[9℄ S. Dyahenko, A. C. Newell, A. Pushkarev and V. E. Zakharov, Physia D 57, 96 (1992)[10℄ G. Düring, C. Josserand and S. Ria, Phys. Rev. Lett. 97, 025503 (2006)[11℄ A. N. Pushkarev and V. E. Zakharov, Phys. Rev. Lett. 76, 3320 (1996).[12℄ A. I. Dyahenko, A. O. Korotkevih, and V. E. Zakharov, JETP Lett. 77, 477 (2003); A. I.Dyahenko, A. O. Korotkevih, and V. E. Zakharov, JETP Lett. 77, 546 (2003). A. I. Dyahenko,A. O. Korotkevih and V. E. Zakharov, Phys. Rev. Lett. 92, 134501(2004)[13℄ P. A. Hwang, D. W. Wang, E. J. Walsh, W. B. Krabill, R. N. Swift, Journal of PhysialOeanography 30, 27532767 (2000)[14℄ W. Wright, R. Budakian, and S. Putterman, Phys. Rev. Lett 76, 4528 (1996)[15℄ E. Henry, P. Alstrom and M. T. Levinsen, Europhys. Lett., 52 (1), pp. 2732[16℄ M. Yu. Brazhnikov, G.V. Kolmakov, A. A. Levhenko, and L. P. Mezhov-Deglin, JETP Lett.74, 583 (2001); M. Yu. Brazhnikov, G.V. Kolmakov, and A. A. Levhenko, Sov. Phys. JETP 95,447 (2002); M. Yu. Brazhnikov, G. V. Kolmakov, A. A. Levhenko and L. P. Mezhov-Deglin,Europhys. Lett., 58 (4), pp. 510516 (2002).[17℄ Yuri V. L'vov, Kurt L. Polzin, and Esteban G. Tabak, Phys. Rev. Lett. 92, 128501 (2004)[18℄ V. L'vov, Wave Turbulene Under Parametri Exitation (Springer-Verlag, Berlin, 1994)[19℄ E. Falon, C. Larohe and S. Fauve, Phys. Rev. Lett. 98, 094503 (2007)112



[20℄ E. Falon, S. Fauve and C. Larohe, Phys. Rev. Lett. 98, 154501 (2007)[21℄ C. Connaughton, S. Nazarenko and A. C. Newell, Physia D 184, 86 (2003)[22℄ G. I. Barenblatt, Saling, Self-similarity, and Intermediate Asymptotis: Dimensional Analysisand Intermediate Asymptotis, (Cambridge University Press, Cambridge (1996))[23℄ Y. Choi, Y. V. L'vov, S. Nazarenko, Physia D 201, 121 (2005)[24℄ A. Newell, S. Nazarrenko and L. Biven, Physia D (Amsterdam), 152-153, 520 (2001)[25℄ I.V. Ryzhenkova and G.E. Falkovih, JETP 71, 1085 (1990)[26℄ G.V. Kolmakov, JETP 83, 58 (2006)[27℄ http://www.nes.fr/[28℄ A-M. Cazabat, private ommuniation.

113



Part IVConlusions and perspetives
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Conlusions and perspetives
ConlusionIn this thesis, several studies have been onduted on the statistial properties of observables in dis-sipative systems fored in statistially out-of-equilibrium states. In these states, observables whetherloal (suh as the loal wave amplitude in a steady turbulent-like regime) or global (suh as theinjeted power neessary to maintain a system in a steady out-of-equilibrium state), display large�utuations. These �utuations are, in some ases muh larger than their average and their dis-tribution often annot be desribed by the usual tools of equilibrium statistial mehanis whereminimization priniples an be used to onstrut equilibrium distributions. It is this lak of generalrule to approah out-of-equilibrium distributions and properties of observables that motivated thiswork, where simple systems are used to probe and understand the statistis of out-of-equilibrium inorder to apply these results to more omplex and nontrivial systems.The �rst part of this thesis is devoted to the experimental and theoretial study of the �u-tuations of the injeted power I neessary to sustain a statistially stationary state in dissipativeout-of-equilibrium systems. We have realled in �rst plae the main energy balane equation relatingthe injeted and dissipated power and given simple examples where the dissipated power Pdiss an bemodelized to �nd relationships between internal energy �utuations σE and injeted power �utua-tions σI (Chapter 1). We have foused spei�ally in the ase where the foring driving the systemout-of-equilibrium is a random gaussian noise. We have shown that the shape of the PDF of theinjeted power �utuations displays exponential asymmetri tails and a usp lose to zero, its mostprobable value. The PDF shape an be omputed from a simple theoretial model whih uses thefat that both the large sale foring f and the response of the system v are gaussian and orrelated,with 〈fv〉 ≡ 〈I〉 > 0. The asymmetry of the injeted power statistis is solely ontroled by themean injeted power 〈I〉, and therefore by the mean dissipated power 〈Pdiss〉 (Chapter 2). We haveexperimentally studied one of the simplest out-of-equilibrium system, an eletroni RC iruit foredby a random gaussian noise whih displays suh a distribution. Several other dissipative systems instationary states display suh statistis of the injeted power, even when a larger amount of degreesof freedom are involved in the de�nition of injeted power. Finally, we have experimentally testedthe Flutuation Theorem (FT) in the simple eletroni RC iruit (Chapter 3). The FT relates the�utuations of the injeted power �utuations Iτ averaged over a time lag τ (muh larger than theorrelation time τc) with the internal energy �utuations. We have found out that in this simple dis-sipative system the FT holds for small values of Iτ/ 〈I〉, but later it breaks down for values of Iτ/ 〈I〉larger than 1. Also we have tested experimentally the FT in a wave turbulene experiene, where awavemaker exites the surfae waves. By measuring both the fore applied by the wavemaker on the�uid and the veloity of the wavemaker, the injeted power was omputed. These simple systemsdisplay large �utuations of the global observable ǫ = Iτ/ 〈I〉 larger than 1 for τ/τc ∼ 20, makingthem exellent andidates to study the full�llment of the FT. We have found out that the FT does115



not hold in both ases.The seond part of this thesis is devoted to the experimental study of �utuations in wave systems.Here, we have studied the loal wave amplitude �utuations at the surfae of a �uid. This set of wavesare exited by means of parametri ampli�ation (sinusoidal vertial vibration of the ontainer) orlarge sale foring (low-frequeny vibration of wavemakers plunging into the �uid or low-frequenyvibration of the whole ontainer). We present the main results in both ases:� In the ase of the parametri ampli�ation of surfae waves, the system developes a stationaryellular pattern at the �uid surfae. The ellular pattern osillates at half the frequeny ofthe foring fex. Its geometry, for all working �uids (water or merury) is squared and appearsover the whole surfae of the �uid. This mode an present omplex dynamial behavior whenthe surfae waves are nonlinearly oupled with another dynamial variable, suh as a large-sale �ow or a turbulent-like �ow. We have foused experimentaly on two situations. In the�rst ase, when the parametri ampli�ation is muh larger than the threshold value of theontrol parameter, defets appear on the pattern (Chapter 5). We have measured the loalwave amplitude by means of a apaitive gauge. These defets are lines onneting two sidesof the ontainer. The loal value of the wave amplitude vanishes on a defet. We have studiedtheir loal dynamis and shown that they appear after seondary bifurations of the ellularpattern. In the turbulent-like state alled defet-mediated turbulene they hange qualitivelythe internal dynamis of the wave system. This e�et an be seen in the PDF of the loalwave amplitude, whih displays an exponential tail and non-gaussian statistis and also in thePSD of the loal wave amplitude, where a power-law spetrum ∼ f−5 appears as an indiatorof the genration of defets over the wave pattern. In the seond ase an underlying vortex�ow is superimposed on the parametrially ampli�ed surfae waves (Chapter 5). The vortex�ow is generated by a periodi Lorentz fore FL] whih ats on the onduting �uid (merury).We have measured both the loal wave amplitude by means of indutive sensors and also theloal veloity �eld by means of Vivès probes. The underlying vortex �ow an be viewed as asoure of spatio-temporal noise. We have shown that these spatio-temporal �utuations havetwo main e�ets on the parametri surfae waves: they loally break the global struture ofthe ellular pattern and it inreases the threshold value of the ontrol parameter for parametrigeneration of waves.� In the ase of large sale foring, the nonlinearly interating waves develope a statistiallysteady state known as wave turbulene. We have onduted experimental studies on these out-of-equilibrium states, where the loal wave amplitude is measured. We have foused on the asewhere the restitution fore of the surfae waves is solely apillarity and shown that apillarywave turbulene is a robust phenomenon. In two independent experimental devies wheregravity an be negleted, (either in a mirogravity environment where the e�etive gravity isnegligible or in a gravity-mathing experiment performed with two superposed inmisible �uidsof equal densities where gravity in the wave system is also negligible) a sale invariant PSDof the loal wave amplitude over two deades appears, with slope lose to -3, as theoretiallypredited.We must stress that the main results of this thesis are robust although the simpliity of theexperimental devies used to study dissipative systems. The main idea is to expand these results tomore omplex systems suh as fully developed turbulene, MHD systems or granular materials, wherenot many experimental studies have been onduted to gain insight on the statistial properties ofobservables (wheter global or loal) in out-of-equilibrium states.116



Perspetives and open questionsFlutuations of observables in dissipative systems sustaining out-of-equilibrium steady states are farfrom being understood in the same way as �utuations at thermodynami equilibrium. There are nogeneri tools to study suh a omplex problem, suh as the ones of statistial mehanis an providefor equilibrium, and thus in several situations ad-ho approahes have to be used for eah spei� lassof systems. In this work we have experimentally studied the injeted power �utuations in a lass ofdissipative systems where the foring f an be modelised by a random gaussian noise of zero meanfollowing the dynamis of an Orstein-Ulhembek proess. This is an importante simpli�ation: nolarge �utuations of f nor more omplex temporal behavior are taken into aount in this approah.Even more, the relation between f and the response v of the system to the driving is linear and nohigher derivatives nor (temporal) memory e�ets where used to desribe the dynamis of v. A moredetailed study on the e�et of these hanges on the shape of the PDF of the injeted power I, suhas nonlinear orretions on the damping rate or memory e�ets, should give insight on the role oflarge �utuations in the out-of-equilibrium properties of internal degrees of freedom, suh as the aseof intermitteny in fully developed turbulene.Regarding waves at the surfae of a �uid displaying out-of-equlibrium steady states, we havestudied in several experimental devies their loal amplitude dynamis and the e�et of �utuations,whether external (by means of a superimposed underlying �ow as a soure of spatio-temporal noise) orinternal (by nonlinear interation between exited modes at di�erent harateristi sales) on theirstatistis. Although interesting results have been found in parametrially ampli�ed waves and inapillary wave turbulene, they all onern loal measurements (of wave amplitude or veloity �eld).The relationship between one-point temporal measurements and spatially resolved measurementsrely on ertain hypothesis suh as the Taylor hypothesis in fully developed turbulene or, in wavesystems, the existene of a dispersion relation. Their validity needs to be tested in the nonlinearregime, even the ase where the slope of the surfae waves is omparable to the wavenumber, andspatio-temporally resolved measurements should be made to fully test wave turbulene theory andthe e�et of small-sale �utuations on parametrially exited waves. Furthermore, the dissipativesale in surfae waves should be studied, in order to understand their dissipation mehanism in thease of a ontinuum of exited modes (as in wave turbulene) or a disrete set (as in parametriallyexited waves).
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Appendix AThermalization of the Langevin equationWe reall in this Appendix the equilibrium thermalization proess of a brownian partiule, desribedby a Langevin equation using the Flutuation-Dissipation theorem and we show how the simpledissipative system used in Chapter 2 and 3 does not satisfy the Flutuation-Dissipation theoremwhen is fored out of equilibrium by a random gaussian noise with a non-vanishing orrelation time.A.1 Flutuation-Dissipation theorem and thermalizationIt is important to stress that the simple system governed by the Eqs. (2.1) and (2.2)
dv(t)

dt
= −γv(t) + f(t),

df(t)

dt
= −λf(t) + ζ(t), (A.1)used in Chapter 2 and 3, where the foring f(t) is a olored noise, is strongly fored out-of-equilibrium.In this on�guration, no thermalisation an our, whih means that the we annot relate diretlythe �utuations of the foring f(t) with the dissipation γ through the equilibrium temperature T .To prove this point, we will use the Flutuation-Dissipation theorem.The Flutuation-Dissipation theorem an be understood as follows: given a system in equilibriumwith a thermal bath at a temperature T , the statistial distribution funtions are given by theBoltzmann weights ∼ exp[E/kBT ], with E the energy of the system and kB=1.38 ×10−23 kg m2 s−2K−1 the Boltzmann onstant. We apply an external fore F (t) whih starts to at on the systemat an instant t = 0. The response of the system to this foring will be a �utuating quantity.The variation of the onjugated thermodynamial variable of F (alled X1) will hange the internalenergy to E + X(t)F (t). In the ase where the foring ating on the system is "small" enough, wewill assume that the response of the system is proportional to the foring. In the frame of this linearresponse theory2, we an write

〈X(t)〉F = 〈X(0)〉0 +

∫ t

0

χ(t− t′)F (t′)dt′,where 〈X(t)〉F and 〈X(t)〉0 represent the perturbed and unperturbed averaged variables, and χ(t−t′)the linear response funtion of the system under study. It is important to notie that we have assume1Examples of thermodynamial onjugated pairs are for instane pressure and volume, entropy and temperature,strain and stress, voltage and impedane, and mobility and di�usivity.2See the �rst referenes in Chapter 3 for linear response theory119



the ausality of the system (χ(t) = 0 for t < 0) whih is set in a stationary regime so that in theunperturbed on�guration 〈X(t)〉0 = 〈X(0)〉0 . In this framework, we an relate the �utuations ofthe observable X in equilibrium, given by its autoorrelation funtion CXX(τ) = 〈X(t + τ)X(t)〉0,with the linear response funtion χ(t) of a system at equilibrium with a thermal bath at temperature
T . To do so in a simple way, we suppose that F (t) = F0 for t > 0. Assuming that the distribu-tion funtion of the energy of the system is given by the Boltzmann weights, we develope them as
exp[E ′/�BT ] ≃ exp[E/�BT ](1 + F0X(t)). Then we ompute the perturbed average 〈X(t)〉F as

〈X(t)〉F = 〈X(0)〉0 +
F0

kBT
CXX(t).The Flutuation-Dissipation theorem therefore states that

CXX(t) = kBT

∫ t

0

χ(t− t′)dt′,or in frequeny domain ω
SX(ω) = 4

kBT

ω
Im(|χ̂(ω)|).In the Langevin equation (as it is written in Eq.(2.2)), ζ(t) is a gaussian white noise with noorrelation time and the Flutuation Dissipation theorem holds with Sf (ω) = 4kBT/λ(λ2 + ω2) =

4kBT
ω
Im(|χ̂(ω)), with χ(t) = exp[−λt] andD = γkBT . From Eq.(2.2) we an see that the foring term

f(t) used in Eq.(2.1) has a typial orrelation time sale of order λ−1 suh that the fritional termshould involve a ertain memory e�ets and be written instead of γv as ∫ t

0
(D/kBT )eλ(t−t′)v(t′)dt′, inorder to desribe a thermal bath with a �nite orrelation time.

120



121



Appendix BCalulation of the PDF of the injetedpower from the Fokker-Plank equationWe present here the alulation of the probability density funtion of the injeted power I for thesimple systems governed by Eqs.(2.1) and (2.2).B.1 Fokker-Plank equationIn this omplement we will disuss the alulation of the stationary probability density funtion ofthe system desribed in Eqs. (2.1) and (2.2). Taking the derivative of Eq.(2.1) and using Eq.(2.2),we an write the evolution of v(t) as
v̈(t) + (λ+ γ)v̇(t) + γλv(t) = ζ(t),

ζ(t) being a white noise with zero mean and singular auto-orrelation funtion 〈ζ(t)ζ(t′)〉 = Dδ(t−t′).This is the equation for the position x(t)of a damped partile of unit mass and damping oe�ient
λ + γ in a quadrati potential of sti�ness λγ, although in this ase there are no osillations due tothe fat that the eigenvalues of the equation are {−λ,−γ}. Following [6℄, the evolution equationfor the joint onditonal probability distribution funtion P(v, f, t) of both variables is alled theFokker-Plank (or the forward Kolmogorov) equation and reads

∂tP(v, f, t) = −∂v [(f − γv)P(v, f, t)] + λ∂f [fP(v, f, t)] +
∆

2
∂ffP(v, f, t).In the stationary limit, no temporal dependene on time appears and the solution to the stationaryFokker-Plank solution with a gaussian initial ondition is the so-alled bivariate gaussian PDF. Toalulate this joint PDF a simple alulus an be done by noting that if ζ(t) is gaussian and theequations are linear, then P(v, f) must remain gaussian. We supose that, in the stationary limit,

P(v, f) ∼ exp[−1

2
(av2 + 2bvf + cf 2)].We have also used the fat that the mean values of both variables are zero, whih results diretlyfrom 〈ζ〉 ≡ 0. In the stationary limit the ondition ∂tP = 0 means that the oe�ients have to obey
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the relationships
〈v2〉 =

1

a
≡ σ2

v ,

〈f 2〉 =
1

c
≡ σ2

f ,

〈vf〉 =
1

b
≡ rσvσf , (B.1)where we have de�ned the orrelation oe�ient r = 〈vf〉/σvσf . Calulating these oe�ients fromEqs.(2.1) and (2.2) is straightforward. We an write stationary solutions of both equations as

v(t) =

∫ t

0

f(t′)e−γ(t−t′)dt′, (B.2)
f(t) =

∫ t

0

ζ(t′)e−λ(t−t′)dt′ (B.3)where we an ompute that 〈f 2〉 = D/2λ, 〈v2〉 = D/2λγ(λ + γ) and 〈vf〉 = D/2λ(γ + λ). Withthese onstants, the normalized probability density funtion is the bivariate gaussian PDF
P(v, f) =

1

2πσv.σf (1 − r2)1/2
exp

[
− 1

2(1 − r2)

(
v2/σ2

v − 2rvf/(σvσf ) + f 2/σ2
f

)]
.B.2 Calulation of the probability density funtion of I=fvFrom the solution of the Fokker-Plank equation, P(v, f), we ompute the PDF of I = fv. We beginby normalising the variables v′ = v/σv and f ′ = f/σf in order to simply the alulations. Then, wehange variables from the pair {f ′, v′} to {I = fv, u = v′}. The probability density funtion P(I, u)must then satisfy

P(v′(I, u), f ′(I, u))

∣∣∣∣
∂(v′(I, u), f ′(I, u))

∂(I, u)

∣∣∣∣ = P(I, u),where ∣∣∣∣
∂(v′(I, u), f ′(I, u))

∂(I, u)

∣∣∣∣ =
1√
|I|is the determinant of the jaobian of the transformation, therefore the joint PDF of {f ′, v′} is

P(I, u) =
1

2π(1 − r2)1/2
√
|I|

exp

[
− 1

2(1 − r2)

(
u2 − 2rI + u2/I2

)]
,with r = 〈I〉. From this starting point, we integrate on u to get the probability density funtion of

I, as
P (I) =

exp [rI/ (1 − r2)]

2π(1 − r2)1/2
√

|I|

∫ ∞

−∞

exp

[
− 1

2(1 − r2)

(
v2 + v2/I2

)]
dI.
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The integral an be aproximated using the steepest desent method1 for funtions of the form
exp[−f(u)], where f(u) has a global unique minimum at u0 in the interval of integration. Thefuntion an be expanded as a Taylor series around u0

f(u) = f(u0) + f ′(u0)(u− u0) + f ′′(u0)
(u− u0)

2

2
+O((u− u0)

3),where f ′(u0) stands for the derivative of f with respet to u, evaluated at u0.Due to the fat that u0 is a global minimum, we an aproximate the integral
∫ ∞

−∞

exp[f(u)]du ∼ exp[f(u0)]

∫ ∞

−∞

exp[
f ′′(u0)

2
(u− u0)

2]du ≡
√

2π

f ′′(u0)
exp[f(u0)].We have just used that the former integral an be aproximated by a gaussian funtion that dereasesfast suh that only the the values of u lose to u0 are important in the integration.We apply the former method the funtion f(u) = (u2 + I2/u2)/2(1 − r2), whih has a globalminimum at u0 =

√
|I| with onavity f ′′(u0) = 4/(1 − r2). The probability density funtion of Ian be aproximated by
P (I) = C exp[rI/

√
1 − r2] × exp[|I|/(1 − r2)]/

√
|I|,with C a normalisation onstant. This exponential behavior an be sorted out of the exat expressionof P (I), that omes from the integral representation of the modi�ed Bessel funtion of the seondkind of order zero K0(x) as2

∫ ∞

−∞

exp[(y2 + x2/y2))]dy =
1

2π
K0(|x|).Using the PDF of I we an alulate all the moments of I, 〈I〉n as,

〈I〉n =

∫ ∞

−∞

InP (I)dI,whih will depend only on the normalized mean injeted power r = 〈v′f ′〉.

1See, for instane, Mathematial Methods for Physiists, George B. Arfken and Hans J. Weber, Aademi Press,New York (2000)2See, for instane, from B. Sorin, P. Thionet, Revue de statistique apliquée, 16, N°4 (1968), pp.65-72)124
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Appendix CCopie of artiles
C.1 "Flutuations of Energy Flux in Wave Turbulene", pub-lished in Physial Review Letters, 100, 064503 (2008)Abstrat: We report that the power driving gravity and apillary wave turbulene in a statisti-ally stationary regime displays �utuations muh stronger than its mean value. We show that itsprobability density funtion (PDF) has a most probable value lose to zero and involves two asym-metri roughly exponential tails. We understand the qualitative features of the PDF using a simpleLangevin-type model.C.2 "PDF of the power injeted by a random foring into dissi-pative systems", submitted to The European Journal of PhysiasB (2008)Abstrat: The �utations of the injeted power neessary to drive a dissipative system into anonequilibrium steady state, is studied. Here we develope the ideas evoated in a previous letter.First, we show that very di�erent physial systems driven by a random foring present identialfeatures for the �utuations of their injeted power. Other related quantities like the heat �ux inturbulent onvetion exhibit the same type of �utuations. In all the ases onsidered, the Prob-ability Density Funtions (PDF) of the injeted power, I, have a haraterisi usp at I = 0 andasymmetrial exponential tails. In the seond part we will detail the derivation of an exat analytialformula of the PDF of these �utuations in the simplest ase of this lass of dissipative brownianmotion: we ompute �rst the joint PDF of veloity and applied fore for the brownian motion ofa partiles sustained by an Ornstein�Uhlenbek (O�U) type of noise and then we dedue the PDFof their produt. The agrements and disrepanies of these PDF with the ones obtained in otherdissipative systems are disussed. Further extensions of these works, espaially for energy �ux inturbulent �ows will be disussed to onlude.C.3 "Flutuations of energy �ux in a simple dissipative out-of-equilibrium system", submitted to Physial Review E (2008).Abstrat: We report the statistial properties of the �utuations of the energy �ux in an eletroni126



RC iruit driven with a stohasti voltage. The �utuations of the power injeted in the iruitare measured as a funtion of the damping rate and the foring parameters. We show that itsdistribution exibits a usp lose to zero and two asymmetri exponential tails, the asymmetry beingdriven by the mean dissipation. This simple experiment allows to apture the qualitative features ofthe energy �ux distribution observed in more omplex dissipative systems. We also show that thelarge �utuations of injeted power averaged on a time lag do not verify the Flutuation Theoremeven for long averaging time. This is in ontrast with the �ndings of previous experiments due totheir small range of explored �utuation amplitude. The injeted power of an ensemble of N iruitsis also studied to mimi systems with large number of partiles either orrelated or not, suh as in adilute granular gas.C.4 "Loal Dynamis of Defets in Parametrially ExitedWaves", submitted to International Journal of Bifuration andChaos (2008).Abstrat: We present an experimental study on the loal dynamis of parametrially exited wavesat an air-water interfae when defets are present in the wave pattern. The probability densityfuntion (PDF) of the loal wave amplitude displays an exponential part for values lose to theaverage amplitude and dereases sharply to zero for large amplitudes. The power spetral density(PSD) of the loal amplitude �utuations shows a power-law behavior over one deade whih werelate to a regime of defet-mediated turbulene.C.5 "FaradayWaves in the Presene of Spatio-Temporal Noise",to be submitted to Physial Review E (2008).Abstrat: We report an experimental study on the nonlinear interation between a spatially periodivortex �ow and the elular �ow that generates parametrially exited surfae waves in a liquid metal.The vortex �ow ats as a soure of spatio-temporal noise for the wave system. The subharmoniresponse of the loal wave amplitude and veloity �eld is diminished as the vortex �ow intensityinreases, as it is shown in their power spetral densities, probability density funtions, orrelationmeasurements and spetral oherene. In addition, the instability threshold of the subharmoniwaves is inreased, showing the e�et of an e�etive visosity.C.6 "Capillary wave turbulene on a spherial �uid surfae inzero gravity", submitted to Physial Review Letters (2007).Abstrat: We report the observation of apillary wave turbulene on the surfae of a �uid layer inlow gravity environment. In suh onditions, the �uid overs all the internal surfae of the spherialontainer whih is submitted to random foring. The surfae wave amplitude displays power-lawspetrum over two deades in frequeny. This spetrum is found in roughly good agreement withthe wave turbulene theory. Suh a large band observation has never been reahed during groundexperiments due to the presene of gravity waves. When the foring is periodi, two-dimensional127



spherial patterns are observed on the �uid surfae suh as subharmoni stripes or hexagons withwavelength satisfying the apillary wave dispersion relation.C.7 "Symmetry Indued 4-Wave Capillary Wave Turbulene",submitted to Physial Review Letters (2008).Abstrat: We report theoretial and experimental results on 4-wave apillary wave turbulene. Asystem onsisting of two inmisible and inompressible �uids of the same density an be writtenin a Hamiltonian way for the onjugated pair (η,Ψ). When given the symmetry z → −z, the setof weakly non-linear interating waves display a Kolmogorov-Zakharov (KZ) spetrum nk ∼ k−4in wave vetor spae. The wave system was studied experimentally with two inmisible �uids ofalmost equal densities (water and silion oil) where the apillary surfae waves are exited by a lowfrequeny random foring. The power spetral density (PSD) and probability density funtion (PDF)of the loal wave amplitude are studied. Both theoretial and experimental results are in fairly goodagreement with eah other.
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