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Resumé de la theése:

Dans cette thése, nous présentons une étude théorique et expérimentale des fluctuations dans des
systémes dissipatifs forcés hors de léquilibre. Dans une premiére partie nous étudions les fluctuations
de la puissance injectée nécessaire & maintenir le systéme dans un régime stationnaire, dans le cas
d’un forcage aléatoire gaussien. Nous montrons que la fonction de distribution de probabilité (PDF')
de la puissance injectée comporte des ailes exponentielles et une singularité en zéro. Ces propriétés
sont décrites a laide dun calcul théorique simple. Nous montrons aussi que ce type de PDF peut étre
observée dans différents systemes dissipatifs. Nous étudions également la relation entre les fluctua-
tions de la puissance injectée moyennée sur un intervalle de temps et 1'énergie interne (Théoréme de
Fluctuation). Dans une deuxiéme partie, nous présentons deux études expérimentales des fluctua-
tions de 'amplitude locale des vagues a la surface d’un liquide. La premiére étude est consacrée aux
fluctuations des ondes de surface résultant de lamplification paramétrique en présence d’un écoule-
ment tourbillonnaire. Nous montrons que les fluctuations de 'amplitude et le seuil d’instabilité
paramétrique augmentent avec 'intensité de 1’écoulement tourbillonnaire. La deuxiéme étude est
consacrée a la turbulence d’ondes capillaires a la surface d’un liquide en apesanteur ou a linterface
entre deux liquides non miscibles de méme densité. Nous montrons que la densité de puissance spec-
trale (PSD) de 'amplitude locale des vagues suit une loi de puissance en fonction de la fréquence et
nous trouvons un bon accord entre ’exposant mesuré et sa prédiction théorique.

Mots clés: GRANDEURS GLOBALES, FONCTION DE GRANDES DEVIATIONS,
THEOREME DE FLUCTUATION, AMPLIFICATION PARAMETRIQUE, TURBU-
LENCE DE DEFAUTS, TURBULENCE D’ONDES.

Abstract:

In this thesis, we present a theoretical and experimental study of fluctuations in dissipative sys-
tems forced out of equilibrium. In the first part, we study the fluctuations of the injected power
necessary to maintain a system in a stationary state in the case of a random gaussian forcing. We
show that the probability distribution function (PDF) of the injected power presents exponential tails
and a singularity at zero. These properties are described by means of a simple theorical calculation.
We also show that this type of PDF can be observed in different dissipative systems. Then, we study
the relation between the fluctuations of the injected power averaged over a given time lag and the in-
ternal energy of the system (Fluctuation Theorem). In the second part, we present two experimental
studies of the local amplitude fluctuations of surface waves at a fluid-fluid interface. The first study is
devoted to the fluctuations of parametrically amplified surface waves in the presence of a vortex flow.
We show that the amplitude fluctuations and the parametric instability threshold increase with the
vortex flow intensity. The second study is devoted to capillary wave turbulence developing in a mi-
crogravity environment or at the interface between two inmiscible fluids of equal densities. We show
that the power spectral density (PSD) of the local wave amplitude follows a power-law as a function of
frequency and we find good agreement between the measured exponent and its theoretical prediction.

Key words: GLOBAL OBSERVABLES, LARGE DEVIATION FUNCTION, FLUC-
TUATION THEOREM, PARAMETRIC AMPLIFICATION, DEFECT-MEDIATED
TURBULENCE, WAVE TURBULENCE.

Theése préparée au Laboratoire de Physique Statistique, UMR 8550 Département de Physique de
I’Ecole Normale Supérieure de Paris, 24 rue Lhomond 75005, Paris, France.
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Introduction

The theoretical and experimental studies developed in this thesis are focused on the statistical prop-
erties of observables and their fluctuations in dissipative systems when they are forced into a statisti-
cally stationary state far from equilibrium. In order to say that a system is "out-of-equilibrium" we
need to define first what "equilibrium" means. A system with a large number of degrees of freedom
is said to be in equilibrium (also called thermodynamic equilibrium) when is either isolated and does
not interact with its surroundings or its temperature 7" is fixed externally by a thermal bath, also
called a thermostat. In the case where the system has its temperature fixed externally, its energy E
fluctuates and the probability of finding the system in a macroscopic state of energy E' is proportional
to exp[—FE/kgT], where kg is the Boltzmann constant. In this "equilibrium" state, equipartition of
energy occurs in the classical limit and each one of the internal degrees of freedom has a mean energy
e= % For any observable O of the system, its higher order moments can be computed using the
weight of the macroscopic state with energy E. Even more, when a small external forcing is applied
to the system, such as a small electric field on a conducting liquid!, or a small pressure gradient on
a coloidal suspension?, the response of the internal degrees of freedom to the perturbation can be
estimated accurately by just assuming that the internal fluctuations of the system created sponta-
neously the small perturbation. This is the so called Fluctuation-Dissipation theorem. In that sense,
just knowing the distribution function of a macroscopic state, we can estimate its response to small
perturbations of its equilibrium.

This workframe breaks down when dissipation is included into the system. When this happens, no
microscopic assumptions on the dynamical evolution of the internal degrees of freedom can be made.
The system loses energy in time through certain processes and an external operator must be injecting
it continously. In this configuration, fluctuations still occur, that are driven by the balance between
injected and dissipated power. Therefore, the energy fluctuations of the system are not externally
controlled and a description that can use the Boltzmann weights as a distribution function of the
energy of the system is not possible. The observables, either global or local, present fluctuations that
cannot be described by simply knowing the energy of the macroscopic state, because large energy
fluctuations can be present and become quite common as the systems is continually maintained far
from its equilibrium.

In this regime, there are no general distribution functions that can describe in different classes of
systems, the fluctuations of the observables of interest. In any case, we will not try to develop a study
for any type of "out-of-equilibrium" system. We shall focus on the particular case of statistically
stationary states, where temporal averages are well defined. We will use the temporal average () and
assume that the system under study presents a stationary out-of-equilibrium state, in some sense,
ergodic®. In that way, the spatial average over the system volume V of the temporally averaged

L As first studied by Smoluchowski (M. von Smoluchowski, Bull. Int. Acad. Sci. Cracovie, 184 (1903)).

2An approach to this problem was first given by Einstein (A. Einstein, Annalen der Physik 17, 549-560 (1905)).

3For ergodicity in statistical mechanincs, see, for instance the book by Richard C. Tolman, The Principles of
Statistical Mechanics, (New York, Dover, 2nd Edition, 1979)



observable (O(t)),
7 [ .

is the same as the ensemble average of the observable O(T"),

/ o(0)O(T)dr,

where I is the phase space of the system, ¥ is the volume of the phase space and ®(I") is the ergodic
invariant measure of the system, which depends solely on the available phase space volume and we
assume it is known and can be calculated.

This fact allows us to relate ensemble averages, which are taken by averaging over the available
phase space of the dissipative system using a suitable distribution function and temporal averages.

Global observables are quantities, such as the energy of the system or its entropy creation, that
are averaged over the entire volume of the system. Even after being averaged on a large number of
effective degrees of freedom, they can present large fluctuations with respect to their averaged values.
These fluctuations can be asymmetric in their distribution functions, a fact related to the lack of
microscopic reversibility (due to dissipation) and external control of the internal energy fluctuations.
It is in this context that we present the first part of our study.

On the other hand, local fluctuations in systems forced far from equilibrium, such as the local
velocity fluctuations in turbulent flows or the local concentration of chemicals in a chaotic chemical
reaction, are known to display large fluctuations, bursts and even intermittency. The distribution
functions and statistical properties of local fluctuations have been studied in depth in hydrodynamic
turbulence® and turbulent-like regimes in out-of-equilibrium systems. A great deal of attention has
been placed on the study of these types of chaotic or stochastic regimes in systems that can sustain
waves, such as bending waves of elastic sheets, Rayleigh waves on the surfaces of elastic solids,
electromagnetic waves in vacuum or in a nonlinear medium, shock waves in gases, Langmuir waves in
plasmas, and so forth®. In hydrodynamics, for instance, a fluid can sustain surface waves or internal
waves, such as sound waves or inertial waves, which propagate in the bulk of the fluid. These waves
will have different properties mainly described by their dispersion relation which depends on the type
of restitution force that sustains them. When they are strongly excited or amplified, nonlinearities
become important in their dynamical evolution.

These nonlinear interactions change the wave properties such as their energy transfer mechanism
or their dissipation scale. They can also produce fluctuations in the amplitude or the phase of the
waves that can modify the spatio-temporal evolution of the wave system. This type of fluctuations
will be the main interest of the second part of our study.

The manuscript is divided into two different parts. The First Part is devoted to the global fluc-
tuations of observables in out-of-equilibrium systems. We present the energy balance equation that
relates injected and dissipated power and we use it to study simple systems where we can modelise
these two observables (see Chapter 1). We extract relations between the statistical properties of
these observables (such as their correlation time scales and standard deviations) when the system is
set in a stationary out-of-equilibrium state. In Chapter 2, we study the injected power fluctuations I
in dissipative systems where the dissipated power is proportional to the internal energy E of the sys-
tem and the forcing driving the system is a random gaussian noise. The injected power distribution

4See for instance the work of A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence
(Dover Publications, 2nd Edition, 2007).

°A long review on waves can be found in Whitham (G. B. Whitham, Linear and Nonlinear Waves (Wiley-
Interscience, New York, 2nd Edition, 1999 )
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function displays several robust features, such as the appearance of exponential tails and a singular
cusp close to I ~ 0. Then, we discuss several systems where the injected power fluctuations display
this type of probability distribution function. In Chapter 3, we probe the validity of the Fluctuation
Theorem in such dissipative out-of-equilibrium systems.

The Second Part is devoted to the local fluctuations of waves in out-of-equilibrium systems.
In Chapter 4 we present the general framework of wave fluctuations and discuss some specific sys-
tems where turbulent-like states develope. In Chapter 5 we present an experimental study on the
fluctuations of parametrically excited surface waves. In two separate studies, statistical properties
of the standing waves are studied when the wave pattern displays fluctuations. Finally, Chapter 6
is devoted to the experimental investigation of capillary wave turbulence. We present two separate
studies where the statistical properties of pure capillary dispersive waves are studied.

Conclusions and Perspectives are presented in the last part in which we underline the main results
of our work and propose further developements related to this study.

11



Part 11

Fluctuations of global quantities in
out-of-equilibrium systems
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Chapter 1

Energy balance in out-of-equilbrium systems

We recall in this Chapter, through a simple but general balance equation, several results on the
properties of the energy fluctuations in ou-of-equilibrium dissipative systems in steady states. Some
interesting relationships between injection and dissipation of energy in these systems are also pre-
sented in Section 1.1. Then, we study the case of constant dissipation as the simplest type of
dissipation in Section 1.2. As an approach to other complex systems, we then study the case of
linear damping in Section 1.3.

1.1 Description of the problem

1.1.1 Balance Equation

The main equation that concerns the energy flux to drive a system into an out-equilibrium state is
the following

dE(t)
dt
Here P,,;(t) stands for the injected power to drive the system out-of-equilibrium, Py(t) stands
for the dissipated power and E(t) is the energy of the system. The three observables are global
quantities, spatially averaged over the whole system. We will call R(t) = P,;(t) — Puss(t), the
forcing term of the system. Eq. (1.1) describes the evolution of the rate of change of the internal
energy as these two operators balance their effects.
For several out-of-equilibirum systems, the energy flux evolution can be written in the form of
Eq.(1.1), for example:

= Py, (t) — Puss(). (1.1)

e Incompresible hydrodynamic turbulence [1]. In hydrodynamics, as the mean flow of a fluid
is increased, turbulence develops. A statistical approach to the study of the flow properties
(such as the energy fluctuations or transport coefficients) is often used. The transition from
a laminar or smooth situation to a fluctuating or turbulent one is controlled by the Reynolds
number Re = VL /v, where V and L are the typical velocity and length scales of the flow, and
v is the kinematic viscosity of the fluid. For Re > 1, large fluctuations in the velocity field
occur and turbulence is said to be developed. In this regime the energy balance equation of
Eq.(1.1) has been studied |2|. Taking the NAVIER-STOKES equation

p {88—;’ + V-VV] = —Vp+ prV3v + 1,

13



where p is the density of the fluid, Vp its local pressure gradient and f(r, t) is the external forcing
per unit of volume. Multiplying the above equation by the velocity field v(r,t) and integrating
over the volume of the system V', the energy balance equation (Eq. (1.1)) is statisfied with

2
E = p/ %dr, Py, = / f-vdr, Pys= ,01// w?dr,
1% 1% 1%

where w = V x v is the local vorticity field. The velocity field v(r,t) is zero at the boundaries
but its vorticity is not. Here, Py is always positive and F;,; can change sign depending on
the sign of the integrated local injected power f - v. To eliminate the boundary terms related
to the velocity, we have used the incompressibility condition V - v .= 0 and to eliminate the
boundary term related to the pressure we have assume that the boundaries do not move. In
the case where the forcing is made by means of a moving boundary 9V (such as impellers |2]
or wavemakers|3]), the injection term will read in that case

2
Py, = / (p+ ﬂ)V . ndS+/ pv(v x w) - ndS.
oV 2 oy

The first term will be nonzero when the velocity v is not ortogonal to the unitary vector n,
normal to the moving boundary of the impellers, as it is shown in Fig.(1.1) for instance, that
set the fluid in motion. The second one, related to the viscous stresses will be zero when no
shear is applied on the fluid by the moving boundary.

Granular gases [4]. An ensemble of NV inelastic particles confined in a volume V' can be regarded
as a granular gas when the particle density n = N/V is sufficiently low. In this low-density limit,
events where 3 or more particles collide simultaneously are very unlikely and binary collisions
dominate the momentum transfer between particles. The collision rule for the velocities of a
pair of inelastic particles after they interact vi* and vo* (their initial velocities being v; and
Vo) is

(I+7) (1+7)

2 2

where n is the vector joining the center of both particles. We suposse here that they interact as
hard inelastic spheres [5], as shown in Fig. (1.2). The restitution coefficient 0 < r < 1 relates
the efficency of the momentum transfer before and after the colision. Note that in the elastic
case r = 1, we can change vy and vp by vi* and vo* making the system reversible in time. In
this case no dissipation takes place and as the system is continually forced the energy of the
system grows. The conservative limit can be shown to be a singular one, and precautions must
be taken into account when taking the thermodynamic limit (in this case r — 1) [6].

vi¥=vy — n(vy —vy)-n, vy =vy+ n(vy — va) - n,

The energy loss is proportional to the combined momenta of the particles that interact. The
coefficient of proportionality is given by (1 —r?)/4 and the injection of energy is usually made
by the colision of the particles with a moving boundary that "heats" the granular gas [4], as
shown in Fig. (1.2). Eq.(1.1) is then satisfied with

1 al 9 N (1—7”2) N
E = 5 ;mvi PZn] = 2Vp;mvp . (Vp — Vi)> Pdiss = Tyc;mvi - Vi,

where v, and v, are the mean collision frequency of a particle with the boundary and with
another particle respectively, and V|, the velocity of the moving boundary.

14



Figure 1.1: Experimental set-up of the VKS experiment, where a large volume of liquid Na is set
into turbulent motion by means of rotating impellers at frequencies f; and f5 to study the effect of
turbulent fluctuations on the dynamo action (Figure taken from [2]).

e Turbulent thermal convection [7]. Let us consider a fluid confined between two infinite horizon-
tal plates separated by a distance h. The temperature of the lower and upper plates are fixed at
Ty and T,, respectively, with the temperature difference (T; — T,) > 0. When the temperature
gradient (T, —T,)/h is strong enough to overcome the dissipative losses due to viscous friction,
the fluid stratification is unstable to small velocity perturbation and it starts to moves. In the
BOUSSINESQ aproximation the motion of an incompresible fluid obeys

0
p {a—;’ + V'VV] = —Vp + pvV2v + pgadTe,,

and the local temperature 07'(r,t) follows the advection-diffusion equation

pC, {ag_tT + v-V&T] = \VT,

where p, o, v, C), and X are the fluid density, thermal expansion coefficient, kinematic viscosity,
heat capacity and thermal conductivity respectively, and ¢ is the acceleration of gravity. Each
coefficient, in this approximation is independent of the local temperature. The buoyancy force

is modelized f(r,t) = pgadT (r,t)e,, where e, is a unit vector along the vertical (generally z)
axis. Multiplying the equation of conservation of momentum by v(r,¢) and integrating over

15
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Figure 1.2: a) Granular gas with NV inelastic particles confined in a volume V. The moving boundary
injects energy constantly to the system by collisions. b) Collision rule for two inelastic particles
interacting as hard spheres.

the volume, Eq.(1.1) is satisfied with
v? N
FE = p/ 7dr, Py = pag/ 0Tv,dr, Py = ,01// wdr.
% % %

When the buoyancy force is much larger than viscous friction, convection develops in the system
in a random and fluctuating way. This regime is called turbulent convection and develops when
the Rayleigh number Ra = pC,gah®(Ty —T,)/(vA) > 1. In this regime, large fluctuations of
velocity and temperature are observed, as it is shown in Fig.(1.3).

Electronic systems [9]. In a simple electronic dipole composed of a resistance R and a ca-
pacitance C', an electromotive force £(t) must be applied to generate the mean motion of the
electrons of the conductor, creating a current ¢ which flows through the resistance, as shown in
Fig.(1.4). Macroscopically, the continuity equation for the measured tension U(t) over a closed
circuit, reads

e(t) =U(t) + Ri(t),
where the rate of change of the charge Q(¢) of the capacitance is given by
dQ(t) _ dU(t)
=C =i(t).
dt a =0
Multiplying the continuity equation by U, we can rewrite the expression as Eq. (1.1), with

1
E= §U27 Pinj =7elU, Puss = 7U2a

where v = 1/RC is the inverse of the charging time of the RC dipole. We will take this
simple system as a canonical example of a dissipative system and explore further the statistical
properties of the fluctuations of these global quantities in later chapters.

16



Figure 1.3: A shadowgraph showing the spatial distribution of thermal plumes in 3-D turbulent
convection (Figure taken from |8])

As shown above, we can often discriminate injection and dissipation of energy per unit of time.
However, it is important to notice that the choice of what is defined as the injected power and
dissipated power is arbitrary. In each system under study we will be very clear on the choice of these
operators.

It is straightforward to show that, in order to maintain a dissipative system whose energy evolution
is described by Eq. (1.1) in a stationary state, a certain amount of power P,,; has to be injected into
it. Power is generally transfered from the forcing device (for instance, rotating discs in turbulent
swirling flows [2], a vibrating plate in a granular gas [6], a heating plate in turbulent convection [10],
a moving wavemaker in wave turbulence [3]) into the system that will make use of the accessible
injected power to excite its internal degrees of freedom and later dissipate it, if it can. Dissipation
usually takes place at scales much smaller than the injection scale [1| and time-scales much shorter
than the correlation time of the injected power.

The statistics of P;,; and Py, can display remarkable differences. This is mainly due to the fact
that dissipation is always defined positive Py, > 0, while the injected power can display negative
and positive events, depending on the type of driving force acting on the system.

1.1.2 Stationary States

In a stationary non-equilibrium state, global quantities, such as the energy of a system FE, flucutate.
We suppose, from now on, that these observables have statistically well-defined averages. This means
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Figure 1.4: Electronic RC dipole submitted to an electromotive force (t).

that for a time 7" larger than the internal correlation time 7, of its fluctuations, the temporal average

1 t+T
E =71 [ B,
T J;
does not change with respect to 7" in the limit 7" — oo. In this limit, we will discard the index 7" in

the time-averages and we will simply write (F), independent of time.

Following the reasoning in Section 1.1, a balance between the injected and dissipated power
must be achieved in order to neglect the mean rate of change of F. Hence, several constrains and
relationships between F;,; and Py, have to be satisfied for a dissipative system to sustain a steady
out-of-equilibrium state. These constraints are related to the statistical properties of these quantities,

such as their averages (Piss),{Pinj) or rms fluctuations op,,;, op,, , where ox = 1/(X?) — (X)? for
a given variable X.

In certain cases their fluctuations display values that are several times larger than their average
values. Their statistics also present large deviations, even when they are averaged over the entire
volume of the system or its boundaries |2]. Therefore, in this type of systems, the usual tools of
equilibrium statistical mechanics do not apply, or can only be applied when the injection of energy
into the system can be regarded through the scope of the Fluctuation-Dissipation theorem [11].

Averaging over time Eq. (1.1) leads to <E> = (Pynj — Puaiss) = 0 .We can see that, in order to
maintain the system in a statistically stationary regime,

<Rn]> = <Pdiss> )

where the brackets () stand for time average and we suppose that the system is, in a statistical sense,
ergodic. From the definition above, (R) = 0, which means that all the injected power is somehow
dissipated by the system. This point is crucial: physically, the system itself chooses the way to
dissipate its excess energy input. Even more, it chooses the way to relate the rms fluctuations of
P;,; and Py, and by doing so, it fixes the rms fluctuations of the energy £, as we will show in the
following parragraph.

1.1.3 Statistical properties of the energy flux in frequency domain

As shown above, the mean values of both injected and dissipated power have to be balanced in order
to maintain the system in a stationary out-of-equilibirum state. But what about the fluctuations of
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such quantities? What relationships can be extracted for their fluctuations? How do these relations
control the energy fluctuations? These questions can be partially answered by looking carefully into
the spectral properties of P;,; and Pys. For that matter we define the Fourier transform of the
fluctuating variable X (¢) as

X(w) = % / X(t)e “tdt,

and X (w)* = X(—w), where X (w)* stands for the complex conjugate of X (w). When taking the
Fourier transform of both injected and dissipated powers, we have eliminated their mean values using
that their averages cancel each other in the steady state.

This procedure enables us to relate the statistical properties in frequency domain to the ones
in time. For that matter we define the cross-correlation function of the statistically stationary
fluctuating variables X (¢) and Y'(¢) by

Cxy (8, 1) = (X @)Y () — (X) (V).
It follows that in a statistically stationary state
o Cxy(t,0) = Cyx(0,—t) (time translation)
o Cxy(t,t')=Cxy(|t —t'],0) = Cxy (|t — t'|) (stationarity)
e [Cxx(0)] > |Cxx(t)| (maximum correlation at the initial time)
e lim; ., Cxy(t) — 0 (events with large time lag are statistically independent)

This function indicates the degree of statistical dependence of a variable (or variables) at different
periods of time. It can be related directly to the the spectral properties of their Fourier transforms
by means of the Wiener-Khinchin theorem [11| which states

1 [T

Sx(w) = 111_{205 TCxx(t)€_iwtdt. (12)

which simply means that the power spectral density Sx(w) of the variable X (¢) defined by

~

(X (@)X ()7) = Sx(W)d(w - ),

is the Fourier transform of its autocorrelation function Cx x(?).

In different dissipative systems, it is possible to estimate the rms fluctuations and typical time
scales of the large scale (low-frequency) forcing of the system, related directly to the energy injection
mechanism, but no direct information can be given on the dissipation mechanism and its intrinsic
dynamics. Furthermore, cross-correlation functions of both global quantities cannot be deduced
from first principles. This means that global relationships between F;,; and Py, are of paramount
importance to probe the internal energy transfer mechanisms and intermediate dynamics between
injection and dissipation.

We apply the former definition of power spectral density and correlation functions to the energy
balance equation. Taking the Fourier transforms of Eq. (1.1), the energy balance in frequency
domain reads

—iwE(W) = Pyj(w) — Paiss(w). (1.3)
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We can deduce from Eq.(1.3) an interesting relationship between the typ1cal time scales of injec-
tion and dissipation and their rms values. Multiplying Eq.(1.3) by Pm]( )+ szss( )*, the equation
reads

~

—iw B (w) (Pinj(w)* + Paiss(w)*) = | Pinj (W) | = | Paiss(w) [ + Pinj (W) Paiss (w) = Pinj(w) Paiss(w)*. (1.4)

This lengthy expression can be simplified by taking w = 0. Due to the fact that both variables
are real, we have Pm](O) = ij (0)* and szss(o) szss(o)*; which eliminate the crossed products.

This leads to the zero-frequency equality of the power spectral densities of both variables |18mj(0)|2 =
| Puiss(0)]?, or, written in time-domain using the Wiener-Khinchin theorem,

/0 (P (1) P (0)) — (Pany)?)dt = / T (Pass(t) Pass (0)) — (Passa)?)dt. (L5)

In order to extract direct information on the rms fluctuations, we can assume that the autocor-
relation functions of the injected and dissipated power have exponentially decreasing behavior as
CpipyPon; (1) ~ 0, ™75 and Cp,,, p,,., (1) ~ 0, e/ by doing so, we obtain the relationship

2 2
O-Pinj TPinj - aniss TPgiss> (]‘6)

where ox and 7x are the rms and correlation time of the variable X. This relates both correlation
times to the standard deviations of the injection and dissipation. In that sense, their rms values are
fixed by the constrain of Eq.(1.6).

All the above relationships can be derived by integrating directly Eq. (1.1) in the long time limit.
It is instructive to deduce the later relation between the zero-frequency spectrum of Pj,; and Py,
in the stationary regime as follows |12]

Thuing = [ [(Pas®Pos(0) — (Paca)?]
— /0 N [<(E(t) + Puiss (1)) (E(0) + Pdiss(O))> - <Pd,~ss>2] dt
= {(B(00) ~ BO)(E(0) + Paes(0)) + /0 ) [ Putss () (B(0) + Paiss(0) ) — (Paiss)? ]
= (E) ()~ BOPuO) + [ [{Pass OE0) + Pa(t)) — (Pae)”]
_ /Ow [{Piss(£) Paiss (0)) — (Puiss)?] dt

= O2PdissTdi85 (1.7)

where we have only used the stationarity of the system.

We have shown that the two quantities, P,; and Pyss, and their fluctuations drive the dynamics
and control the statistical properties of the internal energy E of an out-of-equilibrium system in a
steady state (<E> = 0). In a statistically steady state, they are related by equations such as (1.6).
Although experimentally, we cannot impose the form of dissipation the system will use to eliminate
the excess of energy given by the injected power, it is an interesting task to modelised P4 in simple
systems, satisfying the previous results.
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1.2 Constant Dissipation

The simplest choice of dissipation in an out-of-equilibrium system is the case where the dissipated
power Py, is constant and no dynamical considerations are taken into account for its fluctuations.
This functional form is not completly unphysical: in granular gases it has been shown that in the
elastic limit, the dissipated power can be taken as a constant [6]. Naturally, for a given type of
injection operator Pj,; (which we will call I from now on), the dissipated power Py;ss cannot remain
constant for an infinite ammount of time and it must eventually develop dynamical fluctuations
in order to satisfy Eqgs.(1.1) and (1.6). Anyway it is an interesting question to study this type of
dissipation form.
For the case of constant dissipation, the energy balance reads

dE
o = 1) =) =01I(),

where the energy fluctuations are related only to the autocorrelation function of the injection oper-
ator, beacuse R(t) = dI(t). Although it is the simplest differential equation, in terms of stochastic
processes, it has several aplications describing different physical processes such as brownian motion
[13] proposed by Langevin or effective diffusion in hydrodynamic turbulence [14] proposed by Taylor.
Eq. (1.1) can be formally integrated, to compute E(t fo — Piss(u))du = fo u)du. We can
fix the zero energy level at will and by doing so, the mean value of the energy (FE), Wh1ch will be
fixed at zero for simplicity.

1.2.1 Energy Fluctuations

The energy fluctuations can be calculated directly from Eq.(1.1) integrating it twice, giving the
expression

(E*) = lim 2/ dt'/o (R(t")R(s)) ds, (1.8)

t—oo

which relates them directly to the time-integrated autocorrelation function of the forcing term R(t).
By the same arguments, we can calculate the n-th moment of the energy (E™), but we will focus
mainly on the rms fluctuations.

The fluctuations of global observables in a stationary state must remain bounded. To main-
tain the energy fluctuations bounded, we must impose certain conditions on the time-integrated
autocorrelation of R(t). As before, assuming an exponentially decreasing time correlation function
Crr(t') ~ % exp (—|t'|/ Tr), Eq.(1.8) reads at a fixed time ¢,

(E?) (t) = of7(t/Th — 1 + exp (—t/Tr)). (1.9)

For short times compared to the correlation time of the forcing t < 75, (E?), which is related
directly to the energy fluctuations, grows as o%t? (balistic limit) and for long times ¢ > 7z they grow
as o%7gt (diffusive limit). For both of these limiting behaviors, the rms value of E diverges in the
asymptotic limit ¢ — oo.

One way to eliminate the divergence of the moments of E is to impose [* (R(0)R(s))ds =
o%7r = 0, meaning that the zero frequency part of the power spectral density |R(w = 0)[2 must
be zero. This can be understood from Eq. (1.8), arguing that if the integral of the autocorrelation

function decreases fast enough we can separate the two integrals: one related to the zero-frequency
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Figure 1.5: a) Functional form of the normalised power spectral density (|}A€(w)|2/0§%TR as a function
of the normalised frequency w/7g. b) Inset: Log-Log plot. The dashed line shows the asymptotic
behavior |R(w)|?/o%Tr — w? close to w = 0.

part of the power spectral density and another that grows linearly in time. This is just the diffusive
limit for long times, as it was already shown above. It is a strong assumption, because using the fact
that the autocorrelation function is exponentially decreasing we can see from Eq. (1.9) that the rms
value will not only be bounded, but actually zero. This means that the autocorrelation function of
R(t) does not behave as simply as a decaying exponential in any way. Using Eq. (1.1) and taking

the Fourier transform |E(w)|? = |R(w)[?/w?, and integrating it in w-space, we get
o [ RW)P
(E*) = /_OO 5. (1.10)

__ With this expression we can study the rms fluctuations of ' by means of the spectral properties of
R(w). If we assume that the forcing rms fluctuations (R?) are bounded and knowing that |R(0)|? = 0,
we can assume that

1ir%|§(w)|2/a}2{7‘3 — w®
lim |R(w)>/o%mp — w (9 (1.11)

with «, 5 > 0. Including this in Eq. (1.10) and impossing bounded rms fluctuations of the energy, we
see that a > 2 to prevent divergences at zero frequency (that is, the diffusive limit). Indeed, due to
the fact that R is real and assuming that it is bounded when ¢ — oo, we can expand in series its power
spectrum close to w = 0. From |R(0)|> = 0, we can assume that |R(w)|* ~ 047r((w?/73)+O0((w/78)")
when w — 0. The typical shape of |1§(w)|2 following this limit in frequency is shown in Fig. (1.5).
Although all of these calculations are made for the case of constant dissipative power, the general
relationships drawn for R(t) and E(t) can be applied for any type energy flux that satisfies Eq. (1.1),
for instance when the dissipative power is proportional to the energy of the system, as we will study

in the next parragraph.
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1.3 Linear damping

Let us take Eq.(1.1) and assume that the dissipated power Py, is proportional to the energy of
the system E o Pyss, with a coefficient of proportionality with units of frequency called damping
rate, much like the case of a damped brownian particle [13] or water surface waves in incompressible
viscous fluids [15]. The balance equation (1.1) then reads

dE—(t) =1(t) — v E(t) (1.12)
dt

where the damping rate 4’ does not depend on the energy of the system and will be regarded
as a constant in the following calculations. It is straightforward to show that in the steady state
(E) = (I) /+' and the initial conditions are lost after a characteristic time of order 4/~!. Furthermore,
due to the linearity of 1.12, we can integrate it directly to solve the linear differential equation. That
means that for a given injection power process, all the cumulants and moments of the energy are just
the integrated cumulants and moments of I with a certain weight function. This weight function is in
this case a decreasing exponential exp|—~'t|where the damping rate takes the role of a characteristic
correlation time of the dissipative process.

1.3.1 Energy Fluctuations

From the linear system, we compute the solution simply as

t
E(t) = / I(the E=ar
0

where the initial condition of the energy are neglected in the stationary regime when a time of the
order of 1/4" has passed. For the second moment (E?), the expression reads

t—o0

(E?) = lim /0 t /0 () () € D D gy, (1.13)

In the case where the autocorrelation function of I behaves exponentially, and assuming station-
arity of the system, we have Ci;(t) = o?exp (—t/717), where o7 = op,,; and 77 = 7p, .. Computing
now (E?) for the stationary regime, we get

o7y <I)2 o?Ty
(B?) = L+ —5 = - +(B)? (1.14)
Y 7 Y

From the later equation, we can compute the standard deviation of F, which is simply o =
or\/7r/7'. For higher moments, i.e., (E") ,n > 2, we have to know in advance how the n-point
correlation function of I behaves. For instance, the third order moment (E3) can be written as

t—o0

lim /0 t /0 t /0 ) T(0) T (w)) e O ducduduo

where we need explicitly the form of the 3-point correlation function of I.

In the frequency domain, we can also extract some interesting conclusions relating the power
spectral densities of both the energy and the injected power. Taking the Fourier transform from
Eq.(1.12), we have

~

—iwE(w) ++vE(w) = I(w).
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From the absolute value of the Fourier transform of the energy |E(w)|2, we find

5 I(w)]?

|E(w)* = 27 (1.15)
which means that the autocorrelation function of E is given by the Fourier transform of Eq. (1.15),
and, using the Wiener-Khinchin theorem, we also have

/_ T UEWEO) — (B == [ (1@10)) - (1)),

oo /7 —0o0
which is just Eq. (1.6), written for a dissipated power proportional to the energy. In fact, supposing
exponentially decreasing autocorrelation functions for both observables, this gives

0% = o1/,
Thus, in the case where Py is proportional to E, the main parameters controling the energy
fluctuations are the zero-frequency component of the power spectral density of I and the damping rate

~', which acts as an impedance to the energy flux input. This type of dissipative power dependence
on the energy will be further studied in the next chapter.

1.3.2 Injection and Dissipation Correlations

Time and space correlations are indeed present in out-of-equilibrium systems and have important
effects on the dynamics of the internal degrees of freedom. Using (1.12) we can also study the cross-
correlation functions of injection and dissipation. The non-zero correlation of both observables is
clear from the fact that F and its moments depend linearly on I, mainly because

Crpys,, (t) = (1(0) Paiss () — (I)" = /0 (LO)I() = (D)*)e " at'.

In the case of exponentially decreasing autocorrelation functions, this is just the integration of two
decreasing exponentials with caracteristic times 7; and 745, = v 1.

Straightforward calculations lead to the function Crp, () = o7 f(t), with

v'11 /
)= — L (exp|—t/71] — exp[—+1]),
(t) = 2 (explt/m] = expl 1)
which is always possitive, as shown in Fig.(1.6). It has a maximum that decreases when ~'7; grows.
This means that I and Py, lose their statistical dependence when their time scales begin to separate.
We can also show that the correlation time ¢*/7; for the pair of variables, i.e. where Cjp,, _ is

maximum, grows logarithmically in the normalised time variable ¢/7; as a function of v/7;, as shown
in Fig.(1.7).

1.4 Conclusions

In this Chapter we have shown several examples and simple systems where the energy balance
equation takes part in describing the interaction of injected power P,,; = I and dissipated power
Pyiss when a dissipative system is maintained in an out-of-equilibrium stationary state. Although
dissipation is hard to measure (and in some cases even not accessible), certain relationships can be
sorted out, by acknowledging the fact that the injected power furnished by the forcing device has to
be dissipated. Correlation times and standard deviations of both observables can be related and, in
some cases, even restrictions for them can be given.
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Inset: Log-log plot of f(t).
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Chapter 2

Injected Power into randomly forced
dissipative systems in stationary
out-of-equilibirum states

In this Chapter we study the statistical properties of the injected power I into a dissipative system in
the case where the forcing driving the system into a steady out-of-equilibrium state can be modelised
by a random Gaussian noise with a characteristic time scale. In Section 2.1 and Section 2.2 we
set the theoretical background for the calculation of the injected power fluctuations in this simple
model. In Section 2.3 we study experimentally this type of forcing in an electronic RC circuit, where
the random forcing is externally controlled. The probability density function (PDF) of the injected
power displays exponential tails and a cusp close to I = 0. This PDF can be computed and is generic
since it appears in several systems driven out of equilibrium, as we wil show in Section 2.4.

2.1 Langevin equation with random forcing

The injected power [ provides a permanent energy input into a dissipative system, in order to
maintain it in a dynamical state, different from the one at equilibrium. It has been often consid-
ered theoretically as a constant input parameter in out-of-equilibrium systems (for instance in the
approach of Kolmogorov of fully developed turbulence [1]). However, even when the number of
components or degrees of freedom of the system under study is large, I can fluctuate strongly and
rearding it as a constant is nor realistic neither suited for its description.

[ts mean value (/) > 0 cannot be fixed solely by the external forcing: it depends on the impedance
of the system. As shown in the previous chapter, its rms fluctuations have to satisfy certain constrains
in order to maintain the forced system in a statistically stationary out-of-equilibrium state. In certain
simple limits, it controls the internal energy fluctuations and its higher moments. It is then an
interesting question to study the statistical properties of the injected power I and its relation to the
internal energy fluctuations.

To do so, we will study one of the simplest dissipative systems, described by a linear Langevin
equation. Although it is the canonical example of fluctuations in equilibrium statistical mechanics
|2] describing the thermalization of a brownian particle, it can also be envisioned as a strongly
out-of-equilibrium system [3|, as we will show below.

We will use a simple model where the response of the system to a random forcing follows the
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linear Langevin equation

du(t)

S = () + 1), 21)

as one of the simplest dissipative system, where v(¢) is the response of the system (for instance, the
velocity of a damped particle [4], v is the damping rate coefficient and f(t) is a random forcing. This
modelisation only assumes that the response of the system is proportional to the forcing (mainly that
the rms fluctuations of v are proportional to the rms fluctuations of f). Eq. (2.1) is clearly dissipative
and can be written as an energy balance equation by multiplying it by v(¢). The energy of the system
E = v%/2 is pumped by the injected power I = fv and later dissipated, Pys = yv* = 2vE. In a
stationary out-of-equilibrium state, dissipation is proportional to the energy of the system, therefore
the general relationships presented in the previous Chapter hold.

This simple system was first studied as a simple dissipative system by Farago [3] for forcing f
which is a gaussian white noise (with zero correlation time) and later for a colored noise (non-zero
correlation time) with a given autocorrelation function. Here, we will take the forcing f acting
on the system to be an Orstein-Ulhembeck (O-U) type of noise with an exponentially decreasing
autocorrelation function satisfying, thus

df (¢)

= = M)+ ). (2.2)

where ((t) is a gaussian white noise with zero mean value and autocorrelation function (¢(¢)((t') =
Do(t—t"). Here, D is the noise intensity and 6(¢) is the delta function satisfying (t) = [, 2(t')d(t —
t')dt', when t € 2 and zero otherwise. In that sense the forcing f and the response v follow the same
type of equation. For the forcing f satisfying Eq.(2.2) the autocorrelation function is (f(¢)f(t')) =
D o= t—t'|

’ Both variables f and v are by no means statistically independent. This comes from the fact that
(I' = (fv) is positive in order to maintain the system in an out-of-equilibrium state. Given the
linearity of the Eq. (2.1), we can calculate explicitly (I).

We will study the injected power fluctuations in this system in the next section. We will see that
they present large exponential tails and a cusp near I ~ 0. Given the fact that the system is in a
stationary state and both variables are gaussian, we will also calculate explicitly the injected power
PDF, as shown in the next section.

2.2 Calculation of the Probability Density Function of the In-
jected Power

Supposing that the forcing f on the system is a random gaussian noise with zero mean and due
to the linearity of Eq.(2.1), so will be v. The fluctuations of both variables can be described by a
joint Probability Density Function (PDF) P(v, f,t), which can be calculated from the Fokker-Planck
equation [6] of the system. This procedure is explained in the Appendix. In the stationary limit,
P(v, f) reads

1 1
= ex —
2mo,0 (1 — r2)1/2 P

P(v, f) 2y (vz/ag —2rvf/(ou0f) + fz/aff) )

2(1—r

Here o, and o are the rms fluctuations of v and f respectively and r is the normalised correlation
coefficient r = (vf)/(0,0¢). From Eqgs.(2.1) and (2.2), we can compute directly these coefficients as
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functions of D, A and v as

D
gr = ﬁv (23)
D
v = PEUWASENY 2.4
7 \/ 227(A+7) (2.4)
and
A U R (2.5)
OuOf v+ A

The normalised correlation coefficient r is also the normalised mean injected power into the dissipative
system. This coefficient must be positive (in order to inject energy into the system) and smaller than
1 due to the Cauchy-Schwartz identity |5] (fv) < /(v?) (f?). Integrating directly the expression of
P(f,v) to calculate the mean values of v or f gives (v) = (f) = 0.

From the expression of the joint PDF, we can integrate directly the PDF of the injected power
I. To do so, we change variables from v and f to I = fv and u = v, for example. The calculations
are straightforward, giving the expresion for the PDF of [

R e (=) (26)

where C' = (70,071 —12)7! is a normalisation constant and Koy(z) is the zeroth order modified
Bessel function of the 2nd kind. In the normalised variable X = I/[(1—7?)0,0;], we can see that the
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only parameter that controls the assymetry of the PDF is the correlation coefficient r, related directly
to the mean dissipated power (D) = (I). For a given value of r, we show in Fig.(2.1) the typical
shape of the PDF of the injected power fluctuations for a system described by Egs. (2.1) and (2.2).
Knowing the PDF of the injected power, all of its moments and cumulants can be directly computed,
as it is shown in the Appendix. For instance, the first 4 moments are (I) = r, (I?) = 1 + 2r?,
(I3) = 9r + 6r3 and (I*) = 9+ 72r% + 24r%.

For any value of r € (0, 1), the cusp at zero can be also deduced from the asymptotic behavior of
Ko(x), because lim, o Ko(z) ~ —log(z). The PDF displays large exponential asymmetric tails and
a cusp near I = 0. We can estimate both exponential tails using the assymptotic behavior of

lim Ko(z) ~ exp(—x),

which means that the PDF of X can be computed, using the steepest descent method as
yexp (rX —|X|)
VIX]

with C” a normalisation constant. We refer to the Appendix for this calculation. From ths approxi-
mate expression both exponential tails are

P(X)=C (2.7)

P(X) — exp(—(1—-7)X) for X >0 (2.8)
P(X) — exp(—(1+7r)|X]|) for X <O0. (2.9)

The limiting cases where » = 0 and » = 1 can be understood as follows. When r = 0, both
variables v and f are statistically independent and no correlation between them exists. In this case
the PDF of X is symmetric with respect to zero (see Fig. (2.1)), as it is for Ky(|X|) which behaves as
an exponential function for large X. In this limiting case no mean injected power enters the system,
hence it cannot be viewed rigorously as an out-of-equilibrium system. When r = 1, both variables
are statistically dependent in the sense that v o« f and the PDF of X is the PDF of a squared
gaussian random variable, therefore it follows a y-square distribution of 1 degree of freedom. In this
case the y-square distribution displays an exponential tail for positive events and no negative events
occur.

2.3 Injected power into a simple experimental system: RC
circuit

To test the later theoretical results, we can use a simple physical system: an electronic circuit with a
resistor of resistance R in series with a capacitor of capacitance C', which is submitted to a stochastic
voltage ((t), as shown in Fig. (2.2).
The voltage continuity equation, applied to the circuit reads (see Chapter 2)
0

Vg TV =), (2.10)
where RC = ~v~!'. The quasi-gaussian stochastic forcing ((t) is generated by a Spectrum Analyzer
(Hewlett-Packard HP 35670A). This noise is low-pass filtered at a cut-off frequency A fixed to 5 kHz,
unless specified otherwise. The control parameter of this system is the noise amplitude D defined
by the constant value of its power spectral density, as an analogy to the white noise limit. C' is
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I(t) ~ L(t)v(t) )
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Figure 2.2: Electronic RC dipole submitted to a stochastic voltage ((t).

fixed to 1 puF, and R can be varied between 200 €2 and 10 k2 leading to values of v from 50 Hz to
10 kHz. The output V(¢) of the RC' circuit is multiplied by the random forcing ((¢) by means of
an analog multiplier (Analog Devices AD540). The resulting voltage V' (¢)((t) is proportional to the
injected power (as it was shown in Chapter 1) and it is acquired with a Digital-to-Analog Acquisition
card (AT-MIO-16X) at 100 kHz sampling frequency for 10 s, with a resolution of 0.3 mV. This
simple system mimics the Langevin equation of a brownian particle, submitted to a random forcing.
Multiplying the latter equation by V() leads to the same fundamental balance equation (Eq. (1.1)),
where the energy of the system E(t) = $V(¢)?, I(t) = v¢(t)V(t) and Pyss(t) = 4V (1)* = 27E(1).
The analog multiplication gives directly ((¢)V(¢), which is proportional to I(t).

A typical temporal trace of the normalised injected power I/(I) is displayed in Fig.(2.3). Qui-
escent periods with a small amount of injected power are observed and interrupted by bursts where
I(t) can take both positive and negative values, although (/) >0. These fluctuations are large with
respect with the mean value, equal to (I)=6.6 x 1072 Vrms? Hz.

The aim is now to study the probability distribution function (PDF) of these injected power
fluctuations in the RC circuit.

2.3.1 Statistical properties of the Injected Power

We study in this section the statistical properties of the injected power through its probability density
function. The PDF of the injected power, I, is shown in Fig.(2.4) for different values of the noise
amplitude D, and the damping rate . For all values of D and v, the PDFs exhibit two asymmetric
exponential tails and a cusp near I ~ 0. As shown in Fig.(2.4), the PDF asymmetry increases
strongly with v at fixed D. Moreover, the extremal fluctuations increase strongly with D at a fixed
7.

At a fixed value of v, the PDFs of I are plotted in Fig. (2.5) for 9 different increasing noise
amplitudes. As shown in the inset of Fig. (2.5), all these PDFs collapse on the same curve when
plotted in the centered-reduced variable, (I —(I))/o;, where oy is the rms value of I, and (I) its mean
value. Such a collapse means that all the moments of I scale as ;. As shown in Fig.(2.6), o, (as well
as (I)) scales linearly with D. This linear dependence with D of the moments of I can be recovered

31



301

I/<I>

2.2 2.25 2.3 2.35 2.4
T[s]

Figure 2.3: Temporal trace of the normalised injected power I/(I) in the RC circuit over 0.5 s (D=
1.56 x 1073 Vrms? /Hz,y = 200 Hz, A=5 kHz). (I)—6.6 x 1072 Vrms® Hz.
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Figure 2.4: Probability density functions of the injected power I for two different noise amplitudes
(D =17.55x107% 1.56 x 107% Vrms?/Hz), and damping rates (y = 200, 2000 Hz).
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by dimensional analysis from the linear Langevin Eqs. (2.1) and (2.2). Due to the linearity of this set
of equations, the rms fluctuations of the forcing oy are proportional to D, and the rms fluctuations
of the forcing o, are proportional to the ones of the of, and hence o, o< oy. Consequently, I oc D,
and all of its higher order moments follow a similar scaling (I)" oc D™. Following this reasoning, the
slopes of the exponential tails scale as D!, so when the noise amplitude D is doubled, the typical
fluctuation scale of I is doubled.
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w

Figure 2.5: Probability density functions of injected power, I, for D = 0.06 (+) to 1.56 (>) x 1073
V2 /Hz, for v = 200 Hz. Inset: Probability density functions in the re-scaled variable (I — (I))/a7;.

The noise amplitude D is now fixed in order to study the effect of the damping rate v on the
injected power fluctuations. For different values of v, (I) and o are plotted in Fig.(2.6). Both scale
as power laws of v with two different exponents. As they scale differently with v, no collapse occurs
when the PDFs of I are plotted in the centered-reduced variable for differents values of v. However,
as displayed in Fig.(2.8), both the exponential tails of positive and negative values of I show power
law dependences with 7. The slope of the positive exponential tails scales like ~ y~1-65%0-05 whereas
the negative one scales like ~ 4~ 133%905  This means that the probability of having negative values
of injected power decreases faster than the probability of having positive ones as the system becomes
more and more dissipative. As 7 increases, the correlation time of the voltage V (t) decreases, making
the random voltage ((t) and the voltage V' (t) more and more dependent of each other, increasing
their correlation coefficient r = (I)/oyo.. Therefore, as v is increased, the negative fluctuations of
the injected power tend to zero.

Taking into account both the effects of D and ~, the PDF of the positive values of I behaves, far
from the cusp at I ~ 0, as

1
Similarly, the PDF of the negative values of I behaves as
1
P_(I) ~ exp (OK_W) (212)
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Figure 2.6: Top Left: Mean (I) and standard deviation o; of the injected power as linear functions
of the noise amplitude D. v = 200 Hz. Top Right: Mean (/) and standard deviation o; of the
injected power as a function of the damping rate v. D = 0.75 x 1073V?/Hz and A = 5 kHz. (—):
linear best fits of slopes 1.9 V and 1.59 V| respectively. Bottom Center: Scaling of the mean (I)
and standard deviation o7 with the cut-off frequency . D = 0.75 x 1073V?/Hz and v = 200 Hz.(—):
linear best fit of slopes 0.11 V and 0.56 V, respectively.

where a4 are two constants.

The experimental shape of the distribution of injected power can be compared with the prediction
of Eq.(2.6). Here, there are no adjustable parameters. This is shown in Fig.(2.7) for two different
values of v. The computed PDFs display a cusp at I = 0 and exponential asymmetrical tails for large
values of I in good agreement with the experimental shapes. As shown in Fig.(2.7), increasing the
damping rate v with all the other parameters fixed leads to more and more asymmetrical PDFs with
less and less negative events. The asymmetry then increases when the damping rate ~y increases.
The asymmetry or skewness of the injected power distribution is then controlled by the damping
parameter 7, or said differently, on the mean dissipated power.

Let us now have a look on the scaling of first cumulants ((I) and o;) with the parameters D,
and . For D and ~ fixed, we study the effect of the the random noise cut-off frequency A on (/) and
or. As shown in Fig.(2.6), when A is varied from 3 kHz to 40 kHz, the mean injected power slightly
increases with A, whereas o; scales as the square root of A.

Thus, one has experimentally that the two first cumulants of the injected power can be written
as a function of D,~ and A as

(I) ~ Dy and oy ~ D"\, (2.13)
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Figure 2.7: PDFs of I/ (I): Comparison between experiment (—) and theory (——) for two different
values of the damping rate v = 2000 Hz (% = 0.45) (blue) and v = 200 Hz (%;< = 0.15) (red).
The cut-off frequency A is fixed to 10 kHz.
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Figure 2.8: Scaling of the PDFs of the negative values (left) and the positive values (right) of injected
power I, for 9 values of D, and 10 values of v at fixed A= 5 kHz.
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All these exponents are measured with a precision of 40.05. Thus, the noise amplitude D is found to
drive the scale of the injected power fluctuations whereas the damping rate  controls the asymmetry
of the PDF of I for a fixed correlation time A~!.

Theoretically, one can calculate the mean and rms values of I directly from the PDF of Eq.(2.6)
(or from the set of Eqgs.(2.1) and (2.2) by direct integration). They can be written, in the stationary
limit, as|6]

(I) 272%, (2.14)
or = 72»/?731/2' (2.15)
In the limit 7/A << 1, Eq. (2.14) yields
(I) ~ D?, (2.16)
which does not depend on the cut-off frequency A, and Eq. (2.15) yields
op ~ D32\2 (2.17)

The range of v used experimentally is between 50 and 2000 Hz, and the frequency cut-off \ is
in the range from 3 kHz to 40 kHz. This leads to /A ~ 0.1 in the worst case. The first two
cumulants of Eqgs. (2.16) and (2.17) derived from the O-U process thus are in good agreement with
the experimental results of Eqgs. (2.13).

2.4 Application to various systems

The typical shape of the PDF of I can be found in several systems submitted to a random forcing.
Even when the forcing is not completely gaussian, some features are generic, being mainly the
exponential tails and cusp near zero, the sole contol parameter is the mean injected power. We
present some of these systems in the following section.

2.4.1 Wayve turbulence

Wave Turbulence deals with the statistical steady state of a set of weakly nonlinear interacting waves,
whose properties will be explained in Chapter 6. To drive this state, a constant input of energy must
be supplied. Theoretically, only the mean flux of energy (/) has been considered and is seen as a
control parameter. However, experimentally large fluctuations of I appear and, moreover, the mean
flux is determined by the system itself balancing injection and dissipation. Here, we present two
wave turbulence experiments where this point is studied in the frame of random forcing.

Wave Turbulence experiments in water and mercury:

A wavemaker is used to generate waves at the surface of a fluid that can display out-of-equilibrium
stationary states such as wave turbulence |7|. The velocity V(t) of the wave maker and the force
F4(t) applied by the moving blade of the wavemaker are measured simultaneously. The velocity
V(t) of the wave maker is measured using a coil placed on the top of the electromagnetic shaker (B
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Figure 2.9: PDF on the power injected by the random vibrations of a wavemaker into the surface
wave turbulence for experiments in small (black) and large (red) container of mercury (from |[7]).
Data are normalized by their mean value (I) = 0.05 W. The forcing is a gaussian low frequency noise
of bandwidth [0,6] Hz. Dashed line fits correspond to the formula (2.6). Vertical full and dashed
lines show the corresponding average and most probable value. Inset: Temporal trace of the injected
power over 3 s and (/) = 0.05 W.

& K 4809). This shaker drives the wavemaker with a low-frequency gaussian random noise. The
induced voltage generated by the moving permanent magnet of the vibration exciter is proportional
to the excitation velocity. The force F4(t) applied by the electromagnetic shaker to the wave maker
is measured by a piezoresistive force transducer (FGP 10 daN). Both signals display statistics close
to gaussian of zero mean value.

For a given forcing with a low-pass filtered bandwidth, the rms value of velocity is proportional
to the applied tension driving the shaker and does not depend on the fluid density p. The force rms
fluctuations, on the contrary, increases with increasing fluid density. The power injected into the fluid
by the wave maker is I(t) = —Fg(t)V (t) where Fg(t) is the force applied by the fluid on the wave
maker. This value generally differs from the measured one, F4(t)V (t) because of the piston inertia,
comparable in some cases with the one of the fluid (in the case of water) which is been pushed. The
mean values of Fr(t)V (t) and F(t)V () are the same, though. Keeping this in mind, we have also
measured the acceleration of the piston V to deduced the force exerced over the wavemaker from
Newton’s law

MV = Fu(t) + Fg(t),

for the piston of mass M. In the case of mercury, MV is negligible and I(t) can be estimated
accurately by —F4(t)V (t). In the case of water, inertia has to be taken in to account in computing
the fluctuating values of the injected power.

The fluctuating injected power displays bursts and large fluctuations with respect to the average
injected power (I). Figure (2.9) shows the PDF of the injected power for two different experimental
configurations. Here, the main change in the experimental conditions is the size of the containers. For
the computed curves, the working fluid is mecury (density p = 13.6 x 10* kg/m?, kinematic viscosity
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v= 1.2 x 1077 m?/s and surface tension o= 0.4 N/m). Once again, we see a cusp at [ ~ 0 and
asymmetric tails. Using the acquired traces of both F4(t) and V(t), we compute the mean injected
power and their correlation coefficient r. For the small container r» ~ 0.6 and for the large container
r ~ 0.7. Using this information we can compare these PDFs with the computed ones (Eq.(2.6)).
There is a good agreement between theoretical and experimental results, although we can see that in
the smaller container the tails slightly depart from exponential fit. There is no asjustable parameter
being used in this comparison.

Wave Turbulence experiments in elastic plates:
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Figure 2.10: PDF of injected power into the bending elastic wave turbulence, from [9] (N. Mordant,
Private Com.). Data are normalized by their mean value and the 4 curves have been shifted by a
factor 3 for clarity. The forcing is a gaussian low frequency noise of bandwidth [0, 15] Hz. From
bottom to top (I) = 0.64, 0.33, 0.124 and 0.022 W. Dashed line fits correspond to the formula (2.6).
Inset: Temporal trace of the injected power over 2 s and (I) = 0.64 W.

Bending waves on an elastic plate can also display wave turbulence. It has been theoretically
predicted[8] and experimentally measured|9] that these waves can interact non-linearly between them
to achieve a nonequilibrium steady state in thin elastic plates. Measurements of the injected power
to maintain this out-of-equilibrium steady state have been performed, as in the experimental set-up
described above. A 2 x 1 m? steel plate, 0.4 mm of thickness (Young modulus F= 2.0x10'" N/m?,
density p—7.85xg/cm? ) is pinched on its top (short) side and hangs under its own weight. The other
three sides are free except from the two bottom corners which are loosely held by springs of low
stiffness, only to prevent too large excursions of the bottom of the plate. A vibrator type V406/8
from LDS is fixed at a point located 40 cm from the plate bottom and in the middle of the plate in
the horizontal direction. This vibrator can move normally to the plate to excite bending waves. The
forcing excitation here is a low-frequency gaussian random noise of bandwidth restricted to 15 Hz
for example. The forcing necessary to excite the bending waves is recorded by a force probe of type
NTC from FGP sensors and an accelerometer 4393V conected to a charge amplifier 2365, both from
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Figure 2.11: PDF of the renormalized power, X = 1_(3;'/7”;%}0)2, injected by a random forcing into the
GOY shell model. The random force is modeled by the OU noise with 7. = A™! equal to 1 (blue line)
and 20 (red line) whereas other parameters: the rms value of the forcing oy = 7.1- 1072, the number
of shells N, = 20 and the viscosity v = 4.0 x 1079, are keept constant. The dashed and dot-dashed

lines are respectivelly the exact formula (2.6) and the approximated expression (2.7).

B & K. Both the recorded force F,(t) and velocity V' (¢) display statistics close to a gaussian and the
rms fluctuations of V' (¢) are proportional to the ones of F,(t).

In a similar way as in |7], the injected power I(t) can be estimated by the product —F,(t)V ().
Figure 2.10 shows the PDF of the injected power I for two different values of the rms value of the
force. The typical features appear (a cusp at I = 0 and exponential asymmetrical tails). In this case,
the larger is the rms value of the force, the larger is the asymmetry between positive and negative
events of the PDF. Also we can see a small departure from the exponential tails of the PDF for large
events of injected power. AS before, no adjustable parameter is being used for this comparison.

2.4.2 Other systems

The same type of statistics can be found in other complex systems with a larger number of degrees of
freedom. It can even be found in systems where the probability distribution functions of the variables
use to compute the injected power are not gaussian (as in the case of turbulent convection). We
describe in the following section some examples of such systems.

The GOY shell model

The shell models in hydrodynamics have been introduced to mimic some aspects of the dynamics
of fully developped turbulence in wave number space. A few tens of discrete modes are simulated
with suitable short range interactions in order to reproduce the turbulent spectra. We choose here
to study energy flux in the GOY shell model which have been optimized to mimic turbulence and
turbulent intermittency [10]. The GOY shell model describes the energy cascade through a set of
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Figure 2.12: Left: PDF of the renormalized dimensionless local components of the heat transport,
X =aJ;/(1 = (a{J;))?) with a = 1/(0,,067), near the side wall of a convective cell in the turbulent
regime (Ra=2.6 x 10%) extracted from [12]. Blue dots show the horizontal component whereas red
dots show the vertical ones. The dashed and dot-dashed lines show respectivelly the relations (2.6)
and (2.7). The unknown coefficient « is used as a fitting parameter. Right: PDF of the spatial
fluctuations of the heat flux at Ra = 10® (blue) extracted from [14]. Continuous red line corresponds
to relation (2.6) where r is used as a fitting parameter

differential equations

du, 0 1-46

ar ik (U:L-FIU:H-Q - 5“2—1u;+1 - TU;—zu:ﬁq—l) + fo — VEnUy, (2.18)

where u, is the complex amplitude of the mode n and (*) stands for complex conjugate, k, = 274
stands for the shell wave number, and f,, is the force applied on the shell n. The dissipation at each
shell is given by vk2u,, v being the kinematic viscosity. In absense of forcing and dissipation this
set, of equations conserve the energy
N
1 2
i=1

and depending on the value of 6, intermittency occurs in the system. @ is related to the second
conserved quantity of the set of equations (which is quadratic in u, ), when no forcing nor dissipation
are taken into account.

Instead of the usual constant forcing we use a random one. Such a forcing does not modify the
energy cascade of the shell model. The random forcing is once again chosen as an O-U type of noise,
in order to be able to keep the characteristic time scale of energy injection larger than dissipative
ones. This random force is applied to the 4th shell of the model, and the injected power I(t) is
calculated as the real part of wjf(t). At this stage, the PDF of both f(¢) and u4(t) are gaussian. The
PDF of the injected power I is shown in Fig.(2.11). For both plots of Figure 2.11, we just change
thie correlation time 7. = 1/), keeping constant the rms value of the forcing, o;=7.1 x 1072, the
total number of shells, N, = 20, and the viscosity, ¥ =4.0 x 107°. In this simulation, we have used a
Runge-Kutta method of order four and the time step was set at 2x107°. The asymmetry increases
with ..
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Turbulent Convection

The same type of statistics was also found for the turbulent heat flux in convective transport. The
studies on turbulent convection have been focused since a long time only on the relation between the
mean temperature difference, AT = (T;—T,), and the heat transport, ), or in dimensionless variables
between the Rayleigh number Ra (defined in Chapter 2) and the Nusselt number, Nu = Qh/(AAT).
Only recently measurements have been performed on the fluctuations of the heat flux [11, 12, 13, 14].

The heat flux can be estimated as the product ot two random quantities: the velocity compo-
nent v;(r,t), either vertical (parallel to the temperature gradient) or horizontal (perpendicular to
the temperature gradient), and the temperature perturbation d7(r,¢). These quantities have been
estimated locally in mid-height of a Rayleigh-Bénard experiment close to the boundary of the cell
[12], or by a Langrangian probe advected by the convecting fluid [13]|, or in numerical simulation
where the spatial fluctuations can be measured [14]. In all these cases, the PDF presents the same
shape. We show on the left part of Fig. (2.4.2) the 2 components of the dimensionless local heat
flux, Ji(r,t) = v;(r,t) x 6T (r,t), measured by Xia [12| at mid-height of the convection cell close to
the lateral walls where a convective large scale wind provides most of the heat flux. In contrast to its
horizontal counterpart, the average of the vertical component of this flux, (J.(r,t)), is not expected
to vanish since there is an average heat flux from the bottom to top of the cell. The heat trans-
port in the horizontal direction (z—axis) is more than ten times smaller, (J,(r,t))/(J.(r,t)) = 0.06,
therefore the PDF is almost symmetrical. This can be simply understood from the fact that the
vertical velocity v,(r,t) is pumped by the temperature difference 67'(r,t), therefore spatio-temporal
correlations between both variables must be large, as we can see from Fig. 2.4.2. On the right part
of this figure, we present the instantaneous spatial fluctuations of the vertical heat flux estimated
by numerical simulation in a large aspect ratio cell for a large value of the Rayleigh number Ra[14].
It is astonishing that, although in several studies the temperature fluctuations have been found to
display large events that do not follow gaussian statistics, the PDF of the normalised local heat flux
Ji(r,t)/(J;(r,t)) displays exponential tails following the simple expressions (2.6) or (2.7), where the
sole parameter is its mean value related directly to the correlation between velocity and temperature
fluctuations.

2.5 Conclusions

In this Chapter, we have studied the probability distribution function of the injected power in out-
of-equilibrium systems when the forcing acting on the system is a random gaussian noise. The
probability distribution function (PDF) of I(t) displays a cusp near I ~ 0 and asymmetric expo-
nential tails. This typical PDF shape has been observed in more complex dissipative systems (such
as in granular gases, wave turbulence and convection). We have studied experimentally in a sim-
ple electronic system the dependence of I(f) with respect to the damping rate rate. The relevant
parameters of the system can be easily changed in our simple experiment. Using a simple model
(two coupled linear Langevin equations) we can deduced the shape of the distribution of fluctuations
of I. The sole control parameter in this approach is the correlation correlation coefficient r related
directly to the mean dissipation, driving the asymmetry of the distribution of I(¢): the larger the
mean dissipation, the larger is the asymmetry of the PDF.
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Chapter 3

Injected power fluctuations and the
Fluctuation Theorem in dissipative systems

This Chapter is devoted to probe the validity of the Fluctuation Theorem (FT) in an experimental,
and therefore dissipative, system driven out-of-equilibrium in a stationary state. The Fluctuation
Theorem describes the asymmetry of distribution of a fluctuating global quantity such as the injected
power I, averaged over a time 7 much larger than its typical correlation time 7.. In that sense, the F'T
relates directly the injected power fluctuations and the internal energy fluctuations when a dissipative
system is set in an out-of-equilibrium stationary state. The experimental device used to test the F'T
is the simple electronic RC circuit described in Chapter 2.

The Chapter is divided as follows: in the first part (Section 3.1) we recall what the FT states
and the hypothesis that it necessitates for its application to a dissipative system. In the second part
(Section 3.2), we experimentally test the FT in an electronic RC circuit forced by a quasi-gaussian
random noise. We find out that in this simple system it does not hold. We test the F'T'" also in wave
turbulence experiments performed in fluids and elastic sheets as shown in Section 3.3.

3.1 Fluctuation Theorems and their application to dissipative
out-of-equilibrium systems

A dissipative system set in a statistically stationary out-of-equilibrium state necessitates a constant
influx of energy. This point has been discussed in-extenso in Chapters 1 and 2, where the statistical
properties and the distribution function of the injected power fluctuations have been studied in simple
examples (for instance when the dissipated power Py is constant or proportional to the internal
energy F) and related to the internal energy fluctuations of the system under study. A pertinent
question is if there is a suitable way to describe these fluctuations and how the relationships that we
have found can be extended to dissipative systems forced strongly out of equilibrium in a statistically
steady state, where there is no external control on the injected and dissipated power fluctuations.
We know that in equilibrium statistical mechanics, the distribution function P(O) of an observable
O in thermodynamic equilibrium, is a gaussian centered around its mean value (O),

2
9o

PO)~ e |27, (3.1)

with oo the standard deviation of O, which, as the number of degrees of freedom of the system
N grows, goes to zero ~ N~'/2. This is a consequence of the central limit theorem: the sum of a
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large number of independent random variables, each one of them having a finite mean and standard
deviation, will be approximately normally distributed. In an isolated system (or a system in contact
of with a thermal bath at temperature T') consisting of a large number of non interacting particles, the
energy of the system at any instant of time E(t) can be written as the sum of the kinetic energy of each
particle which fluctuates due to thermal agitation. For a large number of particles, the distribution
function of the energy will follow Eq. (3.1). When a system is set in an out-of-equilibrium state, this
is usually not the case for the distribution functions of its global observables.

In this context, theoretical approaches to the problem of distribution functions in out-of-equilibrium
systems have been given in recent years. Universal distributions, such as Gumbell, y-squared[1]| or
other distributions [2] have been proposed to describe quantities in systems forced strongly out-
of-equilibirum or into turbulent-like states. Although they seem to fit accurately certain sets of
experimental or numerical data, there is no generalization of these distributions to a larger class of
dissipative systems. In that sense, instead of searching for "universal" distribution functions, the
attention has been focused on fluctuation relations.

Fluctuation relations have received much attention, since the early work of Nyquist and Johnson
[3] and of Callen and Welton [4] on the fluctuation-dissipation theorem, which relates the out-of-
equilibrium behavior of a system from its reversible fluctuations in thermodynamic equilibrium.
Although the relationship between equilibrium fluctuations with irreversible behavior was already
found by Einstein in his theory of brownian motion [5], it was not given rigorous mathematical proof
until the works of Onsager [6] and Kubo [7]. Later, they where expanded to the nonlinear regimes
[8], or as conections between equilibrium states through out-of-equilibirum processes 9], but always
in the context of equilibrium distributions or small perturbations of them.

Far from equilibrium, there has been theoretical advances in fluctuation relations. These relations
describe mainly the asymmetry of the distribution function of the global observable O averaged in the
long time limit 7 — oo, which is much larger than the autocorrelation time 7. of O. The smoothing
or running average of O, O, defined as

1 t+7
O.(t) = 2 / Ot (3.2)
T J
is used to compute the asymmetry function [10]
A P(e)
= lim —1 .
ple) = lim ~“log [P(—e)}’ (33)

where € = O, /(O) is the normalized observable which follows a distribution P(e). This function is
thus an indicator of the asymmetry of the distribution function of the averaged normalised observable
€. By computing the running average O,, we smear out the large fluctuations or transient dynamics
of the system. It is clear that by averaging in an interval of length 7, the fluctuations of O, will
decrease strongly. In the assymptotic limit 7 — oo, one would expect € to converge to 1, and its
fluctuations to be distributed as a gaussian

P(e) ~ exp[r(e — 1)?/207], (3.4)

where 01100 o)
T t _
i [ O@00) - (0)
L N O
is the temporal integral of the autocorrelation function of O, and by the Wiener-Khinchine theorem,
the zero-frequency component of its power spectrum density |O(w)|?.

dt’
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The asymmetry function p(e) is the starting point to study the Fluctuation Theorem (FT).
The FT (also called the Gallavotti-Cohen relation) [11, 12, 13| was first introduced in a numerical
simulation where a newtonian fluid was subjected to an external shear[8]. Later, a mathematical
proof was given [14]. It states that,

ple) = Be, (3:5)

which means that in the long time limit p(€) loses the temporal dependence on 7 and only depends on
€ linearly. The constant (3, independent of the averaging time 7 and value of the normalized observable
€, is related to the internal energy fluctuations and therefore related directly to the "temperature"
of the system. Therefore the FT can relate the computed probability density function P(e) of the
measured observable € to the internal fluctuations of the system, accessing information that otherwise
could not be accessed. To do so, large negative and possitive fluctuations of € must occur.

It is important to recall the hypothesis under which the FT is valid. First, for the application
of the FT the internal dynamics of the system under study must be microscopically reversible in
time. This point means that inverting the temporal evolution of the system leaves the equations of
motion of the inner degrees of freedom unchanged. The second hypothesis is that the system must be
dissipative, contracting the phase space. Lastly, the dynamics on the phase space should be chaotic.
This is an analogy to ergodicity in equilibrium statistical mechanics, where the available phase space
is completely occupied and invariant measures can be defined and used to extract and compute
averages of observables [11, 12, 13|. The type of systems where these hypothesis are satisfied are very
special: they can interchange dissipation with injection just by changing t — —¢. Experimentally, a
system that fulfills these restrictions are very hard (not to say impossible) to find.

The relation of Eq.(3.5) has been tested experimentally in granular gases [15], turbulent flows
[16], liquid crystals [17], electric dipoles [18], mechanical oscillators [19] and colloidal particles [20|
and also numerically in granuar gases |21]| and turbulent flows [22]. In all the different studies, for
long averaging times, the linear relation between e and p(e) has been observed, but for a small range
of e. We will study experimentally the fulfillment of Eq.(3.5) in a simple system where large values
of € can be reached (e ~3), in the next section.

The PDF of P(e) for large averaging 7 can be defined also by means of the Large Deviation
Function (LDF) f(e). It is generally defined as

f(e) = lim ™ Jog [P (e = 0;:/{(0))], (3.6)

T—00 T

and it describes how the fluctuations of € with respect to (¢)=1 behave as the averaging time 7/7.
in the smoothing average becomes larger and larger. Developing Eq. (3.3) using the definition of the
LDF leads to

ple) = fe) = f(=e). (3.7)

Developing Eq. (3.7) up to first order in €, thus taking into account only the terms close to € ~ 0,
leads to

ple) =~ 2f'(0)e,
which easily satisfies the Gallavotti-Cohen relation of Eq. (3.5). It is just needed that the LDF has

a linear part f(e) = ae + g(€), where g(e) is a nonlinear function of the normalized variable e. For
instance, if the PDF of ¢ is similar to Eq. (3.4), the LDF is f(¢) = (¢ — 1)?/202 and the relation of
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Figure 3.1: Left: Typical temporal traces of e = I./ < I > for the 7/7.=0 (blue), 13 (red) and 63
(black) for v = 1/RC = 500 Hz. Right: Standard deviation o /(I) as a function of the average
normalised time 7/7. for v = 1/RC = 500 Hz. Best fit is o7, /(I) ~ (7/7.) 7%

Eq. (3.7) gives p = 2¢/0?, satisfying the FT with 3 = 20.2. The linear aproximation of the LDF as
an explanation of the linearity found in experiences and numerics was first conjectured by Aumaitre
in his PhD thesis |21] and then predicted in a Langevin equation in a dissipative regime by Farago
[10].

3.2 Experimental test of the Fluctuation Theorem in an elec-
tronic RC circuit

We will test experimentally whether the F'T' is satisfied in a simple dissipative system maintained in
an out-of-equilibrium steady state. For this matter, we will continue to use the electronic RC circuit
of Chapter 2. As it was explained before, this simple circuit can be viewed as a mimic of a brownian
particle strongly forced out -of-equilibrium. The forcing is still a random Gaussian noise with zero
mean and a characteristic correlation time 1/A where X is the frequency cut-off of its power spectrum
density.

The smoothing average of the injected power I is computed from the previous data of I as

1 [t
Ly =1 / )t (3.8)
T Ji
where 7 stands for the time of average of the signal, which is several times the correlation time 7,
of the injected power I. For our experimental set-up, the correlation time 7, is the inverse of the
cut-off frequency, 1/), which is now fixed to 10~ s. We show a typical temporal trace of ¢ = I /(I)
in Fig.(3.1), as we increase the averaging time. We can see how, by increasing the averaging time 7,
the fluctuations around the mean, (¢) =1, decrease their value. The rms fluctuations decrease with
7/7. as a power law ~ (7/7.)7%/2, just as in the case of the central limit theorem. With this data,
one can compute p(e).
First, it should be noted that our simple system is not time reversible, therefore the hypothesis
used to derive the FT are not fulfilled in this system. However, we will try to test the relation
Eq.(3.5) with our experimental data.
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Figure 3.2: PDF of I../(I) for various values of 7/7. = 0, 5, 10, 50, 100 and 200 at a fixed value of
v = 2000 Hz. The straight line (—) correspond to I/(I) = 0 and the dashed line (——) to I, = (I).

Fig. (3.2) displays the PDF of time-averaged injected power I,/(I) when 7/7. is increased.
Several features appear. First, the negative injected power events decrease with increasing 7 until
they disappear for 7 2 57.. Second, when 7/7, is increased, the PDF shape for negative values of
I./{I) changes from an exponential shape to a Gaussian one, whereas the exponential shape of the
positive part is quite robust. Only when 7 > 7., the PDF shape close to the maximum tends towards
a gaussian, as one would expect from the central limit theorem. In Fig.(3.2), when 7/7. increases,
the PDF most probable value €* (i.e., where the PDF amplitude is maximum) increases slowly from
I./{I) =0 to 1 (the mean value of the injected power). This dependence of €* is shown in Fig. (3.4)
as a function of 7/7,. We will see below that this dependence is very important with respect to the
possible fulfillment of the FT.

The question that needs to be addressed is what happens when € is far from zero. The experi-
mental values of the asymmetrical function p(e) are shown in Figs. (3.5) and (3.6) for two different
values of v = 1/RC, as a function of ¢ with 0 < e < 3. The accessible values of € are large with
respect to the later experimental studies. For small €, p(¢) increases linearly as expected, then p(e)
saturates when € is increased further. For each value of 7/7., the beginning of the saturation occurs
for a critical € value, smaller than the average (¢)=1. The saturation value of the curve corresponds
the most probable value of the PDF of € as we can see Fig. (3.4)). For values of ¢ < €*, the linear
fit of Eq. (3.5) is satisfied, but for values € > €*, the asymmetric function departs from Eq. (3.5),
as it is shown in Fig. (3.4). After that point there is a change of behavior of the PDF: for values of
€ larger than the most probable value €* the PDF behaves exponentially, contrary to the smoother
behavior of the PDF ¢ smaller than €* (see Figs. (3.2) and (3.3)). Moreover, increasing v at a fixed
value of 7/7, leads to decreasing available values of ¢ necessary to probe the FT, as it is displayed
in Figs. (3.2) and (3.3). With these PDFs we compute the asymmetry function p(e), as displayed
in Figs.(3.5) and (3.6)). It comes from the fact that when v is increased, the number of negative
injected power events, € < 0, decreases (y controls the skewness of the PDF at a given 7. ~ 1/)).
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We stress the fact that the damping rate 7, and therefore the mean dissipation, is not chosen in this
simple experiment in an ad-hoc manner to satisfy time-reversibility. The smoothing of the signal
around (I) also decreased the number of available negative events.

In most of the previous experimental and numerical tests of the Fluctuation Theorem ( as the
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ones in the references above), the linear relationship between e and p stated in Eq. (3.5) has ben
observed. As explained above using Eq. (3.7), this is due to the small range of explored ¢ < 0.8
at high 7/7. < 20. In our experiment, large range of ¢ (up to 3) is also available even for high
7/7, ~20. This allows us to test in a deeper way the FT. As explained above, the FT works only
for € values smaller than the most probable value as it is shown in Fig. (3.4). Above this value, a
saturation occurs, due to the different behaviors of the PDF. Large events of injected power are not
described by the FT, and lead to the observed saturation of p(e). To further investigate this point we
test the F'T in other systems with a larger number of degrees of freedom and more complex internal
dynamics. A larger range of € has been reached experimentally in a different experimental device in
wave turbulence experiments. With this larger available range, the F'T' was tested, founding, again,
that it was not satisfied. We show these results in the following section.

3.3 Experimental test of the Fluctuation Theorem: Wave Tur-
bulence experiments

We have also studied the validty of the F'T in more complex systems, with a large number of degrees of
freedom. As we have already explained in the previous section, the probability distribution function
of the injected power I(t) necessary to excite the turbulent-like regime of surface wave turbulence
(in fluids) and bending wave turbulence (in elastic sheets) displays exponential tails and a cusp close
to I ~ 0. With the recorded fluctuations of I(t), we computed the normalised smoothing averages
¢ = I, /(I) and their probability density functions P(e) for different averaging times. We show the
main results with respect to the fulfillment of the F'T for these experiments.
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3.3.1 Wave Turbulence experiments in fluids

Following [23|, we present the probability density function of € for 4 different values of 7/7. =1, 3,
11 and 50, shown in Fig.(3.7). The correlation time of the injected power is 7. =0.03 s, calculated
from the autocorrelation function of I(¢). As 7/7. grows, the PDF of the normalized running average
becomes smoothly peaked around ¢ = 1, as it converges to the LDF of the averaged normalized
variable. The convergence to the asymptotic shape of the LDF is slower than in the case of the
electronic circuit, taking averaging times of the order of 7 ~ 507, to converge closely to the LDF.
As in the case of the RC circuit, the amount of negative events becomes negligible as 7/7. grows.
With the PDFs computed for different averaging times, we calculate the asymmetrical function p(e),
displayed in Fig.(3.8). We found that the FT is not fulfilled, i.e it does not follow Eq. (3.5), when
large values of € are achieved. For a given value of 7/7., as € grows, the function p(e) smoothens
and the linear behavior is not fulfilled. Increasing the averaging time shortens the available € range,
which will not surpass the average value (e)=1. In this small range, as explained in Section 3.1, the
linear behavior of p(€) in € is recovered, as a consequence of the expansion of the LDF of € close to
€ ~0.

3.3.2 Wave Turbulence experiments in elastic plates:

In bending wave turbulence over elastic sheets, the injection of energy is needed to excite the
turbulent-like regime. Using the temporal traces of the injected power I(t) taken from the ex-
periment by Mordant [24], we have also studied the statistics of the injected power I, averaged over
a time interval 7. The correlation time of the injected power in the experimental set-up described in
|24] is 7. = 0.06 s. This correlation time is of the same order of magnitude as the frequency cut-off
of applied force on the elastic sheet fg..e calculated from the autocorrelation function of I(t). We
show, in Fig.(3.9), the computed asymmetrical function p(e). We found that the FT is not fulfilled
when large values of € are achieved, as in the previous example of suface wave turbulence. Increasing
the values of €, the asymmetrical function departs from linearity instead of being linear in € as for
small values with respect to the mean (¢)=1. We show also the value of p(e) for the instantaneous
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Figure 3.9: Plot of p(e)/7. = L log [PP((_ez)] for 0<7/7.<31.

fluctuations of the injected power. Due to the exponential behavior of the PDF, the linearity holds.

Comment on the Fluctuation Theorem and Instantaneous Fluctuations: In Fig.(3.9), we
have shown the behavior of p(e) as a function of the averaging time 7/7.. For all values of 7/7.>0, the
asymmetrical function does not follow the relation of Eq.(3.5). But for the instantaneous fluctuations
of I(t), a fluctuation relation is satisfied. Taking into account the probability distribution function
of the injected power described in the previous chapter

P(I) ~ exp[rl/o,o;(1 —12)] x Ko(|I|/o,0:(1 —1%)),
we can calculate the "instantanteous" asymmetrical function p;,s (1) as

P(I) 2r
P(_I)] - 1, (3.9)

- o,0p(1—12)
7 is constant. If we use the definitions of 07 = D/2), 0} = D/2\y(A + 1) =

2r
oyoy(1—r2
07/7(A\+7) and r = \/v/(v + A) the expression of Eq.(3.9) can be written as

2
o\’

pinst(]) = IOg[

where

Pinst (I) =

where ) is the inverse of the correlation time of the injection and 02/2 = F is the internal energy
of system. In that sense, we can estimate the energy of the system, by computing the slope dp”;is;m

and the correlation time of the injected power.
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3.4 Conclusions

In this Chapter we have experimentally studied the possible application of the Fluctuation Theorem
(FT) on a simple dissipative system: an electronic RC circuit excited by an stochastic voltage. The
FT has been probed by measuring the asymmetrical function p(e) with e = I./(I), and I, the
smoothing average on a time lag 7, much larger than the correlation time of the injected power. In
this simple experiment, large fluctuations of € have been observed (e ~ 3) even for long averaging
time (7/7. ~ 20). We have found out that the F'T is only satisfied for small values of € with respect to
the most probable value of the its distribution function. For larger values, the asymetrical function
is no longer linear with € but saturates. Thus, the F'T does not hold for the large values of € even at
large 7/7,. This disagreement is not a particular feature of this electronic system, but seems to be
generic in several other systems, such as two different wave turbulence experiments, as soon as large
fluctuations of € are experimentally achieved.
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Fluctuations in Wave Systems
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Chapter 4

Fluctuations in Surface Waves

In the present Chapter we review some basic results about waves at the interface between a horizontal
fluid layer or between two inmiscible fluids. These systems are used as tools to study the properties
of out-of-equilibrium stationary states that can develop from interacting waves. We will start by
giving the working frame of wave propagation in Section 4.1, defining the dispersion relation and the
wave equations of motion.

4.1 Wave motion

Waves can propagate over interfaces. We can observe them in different systems such as bending
waves in elastic membranes and sheets [1, 2], Rayleigh waves or Love waves at the surfaces of elastic
solids |3] or Rossby waves at the surface of the ocean [4]. We are used to see wave propagation every
day at fluid surfaces as it is shown in Fig. 4.1, where the disturbances propagate at different speeds,
with different wavelengths oscillating at different frequencies.

The way to relate these parameters, when the wave amplitude is small with respect to the wave-
length, is through the dispersion relation of surface waves

Wk, {0)) = w, (4.1)

which relates the pulsation frequency w with the wavevector k of a wave and the parameters of the
fluid {#} which enable wave propagation, such as its density p, surface tension o, dielectric constant
€, etc. We will assume the fluid that sustains surface wave propagation is homogenous and isotropic,
so the pulsation w only depends on the modulus of the wave vector |k| = k. This relation describes
also the phase c¢,(k) = % and group ¢, = a‘g%k) velocities at a given wave vector. In this first
approximation, we will not be concerned by viscous damping, as explained in the following sections.

The dispersion relation is also related to the restitution forces that sustain waves. In the next
paragraph, we compute the dispersion of the surface waves in a fluid of depth h, in presence of gravity

and surface tension.

4.1.1 Grayvity-capillary waves

Waves are driven by gravity effects, when the fluid balances its inertia with the action of gravity that
tries to keep its surface in its equilibrium flat possition with a heavier fluid under a lighter one. In
contrast, waves are driven by capillarity when the restoring mechanism balances the curvature effects
of the fluid surface and its inertia. The equations of wave propagation come from the fluid equations
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Figure 4.1: Ripples at the surface of water.

of motion when the interface dynamics are taken into account. To wit, we consider the case of two
inmiscible and inviscid fluids indexed by 7 = 1, 2. We will assume that the fluids are contained in a box
of height 2h = hy + hy and unbounded in the orthogonal coordinates r = (z,y). n(r,t) corresponds
to the surface elevation between them, p; is the density of the bottom fluid (—h; < z < 1), p2 the
density of the upper fluid (n < z < hy) with p; > py and o the surface tension coefficient between
the two fluids. The velocity fields vi(r,t) are governed by the incompressible Euler equations

V'VZ‘ = 0,

+v;- Vvi] _ _Vn +g, (4.2)

Pi

aVi
ot

where the first equation is the flow incompressibility condition and the second equation is just the
momentum conservation. Here, Vp; is the pressure gradient across the fluid of density p; and g is
the acceleration of gravity, pointing vertically in the Z direction. The normal velocity of the fluid
should be zero at the solid boundaries of the container, which means

Vl(Z: —hl)'ZZVQ(Z:hg)'ZZO, (43)

where we have chosen the normal to the solid boundaries in the Z direction. At the interface between
the fwo fluids, the velocity fields v; must satisfy the kinematic continuity condition

where v; is evaluated at the interface z = n(r,¢) and V stands for the gradient in the r coordinates.
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Figure 4.2: Local amplitude perturbation n(x,y,t) of the interface (at z = 0) between two inviscid
inmiscible fluid layers of depths h; and hy. The fluid densities are p; and ps respectively.

The propagation of waves is a dynamic phenomenon. Therefore, we need a dynamic condition
over the force balance across the interface to explain the mechanism of wave propagation. In absence
of viscous stresses, this is given by the pressure difference Ap = p; — ps between the upper and lower
fluid, normal to the free surface. This pressure jump across the interface z = n(r,t) is given by the
Laplace force related to the principal radii of curvature R; and Rs, namely,

1 1 VJ_U
A p— —_— —_— = — . 4-
P U<R1+Rz) NV TRV ) (45)

where the last term is just the mathematical expression of the mean curvature xk = (R% + RLZ) of the

surface 7(r,t) at the point r.

When the surface is in equilibrium, it rests flat. In this state the the velocity fields are zero and
pressure fields follow the hydrostatic solution of Eq. (4.2), i.e. p{? = —p;gz. As the interface is
deformed, the hydrostatic solution does not hold. The velocity fields generate deformations across
the surface, which in turn create a dynamic pressure component. These disturbances must satisfy
Egs. (4.2) and the boundary conditions (Egs. (4.3) and (4.4)). We will simplify the problem by
assuming that the perturbed velocity fields are irrotational Vxv; = 0. By Thompson’s theorem [1],
this is true for all times when the fluid is inviscid. The irrotational condition means that v; can be

determined from a potential function ¢; as v; = —V¢;. Therefore, Eqs. (4.2) can be written as
_v2¢2 = 07
9¢; Vil Vi
S v/ (ST U 01 B [ 4.6
[ 5% T o PRl (4.6)

where the first equation is just the definition of an harmonic field and the second is Bernoulli’s
equation of energy conservation. This condition is fulfilled over the whole fluid, including its free
surface. The whole condition can be rewritten as a first integral of the hydrodynamic problem,
namely as

09, n |Véil?
Plor P2
with B a constant that can be introduced in p; or in ¢; to renormalise its value, given the fact that
only pressure differences and velocities V¢; are important in the dynamical evolution of disturbances.

Now, we can state the problem in terms of only two types of variables: the potential functions ¢;,

+pi + pigz = B,
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which generate the pressure differences and velocity fields inside the fluids and n which relates the
pressure jump across the fluids. We write the kinematic

0¢;
8t +VJ_¢Z Vin= o (4.7)
and dynamic
efer 8¢1 B Vin
(pr = p2)gn + pa—g= — g+ [pz|V¢2| — iV ?] = =0V - (ESNUBLE (4.8)

conditions evaluated at the free interface z = n(z,y,t). In the former conditions, nonlinearities can
be neglected if we assume that the disturbances across the interface are small with respect to the
wavelength (V7 < 1). In this linearized case, the evaluated fields at the interface z = 0 for small
amplitude of the perturbations satisfy

o _ 99
ot 0z

0 0
(pr— p2)gn+oVin = { Of2 ¢1] o=

ot Mot (4.9)
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Figure 4.3: Adimensional dispersion relation (g o

of the adimensional wave vector (ﬁ)l/zk‘.

To study wave propagation and the dispersion relation, we consider sinusoidal disturbances of the
interface n(r, t)=nyexpi(k, - r — wt) and of the potential functions ¢;(r, z,t)=f;(z) expi(k, - r — wt),
where k| is the orthogonal wave vector and |k;| = k; = k. The separation of the potential
functions in orthogonal and vertical components is related to Eq. (4.3), which states that their
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normal derivative to the solid boundaries are zero. From the harmonic definition of V2¢; = 0, the
potential functions satisfy the equations

dz?
subjected to the boundary conditions f1(z = —h;)’ = fo(z = hy)’ = 0 with ()’ the derivative with

respect to the z coordinate. The equations for both f;(z) are of second order, therefore, two constants
are needed to calculate the full solution. Using the boundary conditions, we can write

_ ,ocoshk(z+ hy) _ ocoshk(z — hy)
fl(z> —J1 COShkhl ) f2(2) —J2 COSh]{Jhg )

— ]{72f2(2> = 0,

where f can be traced back to the initial surface perturbation 7y, using the dynamic condition of
pressure difference. Through the kinematic condition of velocity continuity normal to the interface
(Eq. (4.4)), we have

—iwng = f{ky tanh (khy) = —fJky tanh (khs).

These relationships, coupled to pressure jump across the interface of Eq. (4.9), gives the dispersion
relation

2 (1= p)gk+ ok’
p1 coth khy + py coth khy’

(4.10)
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Figure 4.4: Adimensional group velocity (5—;)1/ ¢, (k) for gravity-capillary waves as a function of the

adimensional wave vector (ﬁ)l/ %K.

With this expresion we can relate the wavelength A = 27” with the pulsation frequency of a

perturbation w = w(k). The above relation displays several interesting limits. When ps/p; < 1, the
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dispersion relation reads

w? = {gk‘ + ik?’] tanh kh;.
P1

This is the typical case of a liquid-vapor interface (such as air-water or nitrogen-mercury interfaces,
used in the following chapters). The first term on the right hand side is related to gravity and
the second to capillary forces. The multiplicative term tanh (khi) is related to the effect of the
characteristic penetration length of the wave (which in this case is of the order of the wavelength)
on the propagation of a wave in a finite depth layer h; of fluid.

From this expression, we can see there are two cross-over lengths. One, where the effects of both

p19

to the wavelength. For infinite depth (kh; > 1) the multiplicative term is constant. In this regime,
the waves with wavelengths larger than . propagate with a pulsation frequency w, = \/gk and are
called gravity waves. The phase velocity c,(k) = @ = +/g/k, that is, the velocity at which a
front of constant phase ¢ = k, -r — w(k, )t propagates, is larger as the wavelength is larger. The
group velocity ¢,4(k) = 8“556]“) = \/¢g/4k, that is the velocity at which a wave modulation in amplitude
propagates, is twice as small as the phase velocity. This means that waves with large wavelength
propagate faster than waves with smaller wavelength.

When the wavelength is smaller than [., the dispersion relation reads w(k) = (;’—1)1/215’/2. The

waves that follow this relationship are called capillary waves. The phase velocity c,(k) = % =

(%)1/21451/2 is larger as the wavelength is smaller. The group velocity ¢, (k) = 8“5%’“) = %(;’—1)1/21451/2 is
larger than the phase velocity. Therefore, as a wave packet containing wavelengths smaller than [,
propagates, its shape changes as the small wavelengths propagate faster than the larger ones. Surface
waves on fluid surfaces are dispersive because of this latter fact: wave packets do not maintain their
shape as they propagate.

When we take into account wavelengths that are comparable to the fluid depth of the layer hy, the
dispersion has to take into account this fact. In this limit, tanh kh; ~ khy and, hence, we can express
the pulsation frequency as w(k) = /ghik. With this expression, we can see that wave propagation
is non-dispersive for large wavelength with a constant velocity ¢, = ¢, = v/gh..

We can also calculate the dispersion relation by energy considerations, given the fact that waves
transport energy, as well as momentum. To simplify the calculations we consider the limit where

p2/p1 < 1, so we can neglect the upper fluid. The energy F of the system can be written as a kinetic

contribution
02
K=p [ Sav,
v 2

U:plg/de—l—a/ dA,
1% oV

where V' stands for the volume of the fluid of density p; and OV its free surface. We will use the
equipartition of energy K = U, where U stands for the average over a period of the wave oscillation.
This approach will only be valid in the small amplitude aproximation, as it will be discussed in
following sections. The gravitational term of the potential energy can be rewritten as

U
Ug:plg/dr/_h zdz:plg/nzdr—i-Ug,
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and a potential contribution



where U, g is constant. The surface component of potential energy can be expressed as

UC:o—/\/l—l—WnPdr: %/\V’r]|2dr+U3,

where, as before, U? is constant. Therefore, the equipartition of energy then reads,

7 2 1
/ dz/%dr = 5/[p1gn2 + o|Vn|?] dr (4.11)
—hy

for kinetic and potential energy averged over a wave period. We can use the solutions of Eqgs. (4.3)
and (4.4), to relate both the potential and interface disturbances. This approach can be useful to
estimate also the bulk dissipation of the fluid in the small viscosity limit, as we will will see next.

4.1.2 Viscous effects in gravity-capillary waves

When we take into account the viscosity effects in the fluid, we cannot assume the flow to be potential
everywhere. Even for small values of the kinematic viscosity v, vorticity, which is just the curl of
the velocity field V xv is non-zero. It is generated in small and shallow layers close the boundaries
where the velocity field suffers strong shear. The penetration length ¢, that is, the typical size of the
boundary layer where the fluid is not potential can be estimated by balancing the temporal derivative
of the velocity field %—‘t’ and the viscous term V?v in the Navier-Stokes equation as § ~ /v/w.
Using the same simple analysis one can estimate the bulk dissipation in the fluid. To do so, we
assume that viscosity is low, therefore we can neglect the boundary layer contribution to the kinetic
energy. Also, for simplicity we can assume that we are in the "deep layer limit" khy > 1, where the
flow does not reach the bottom. In this limit, the dissipation rate of the energy + can be estimated

by v = £ Les = P;K The dissipated power by viscous stresses Py is given by

1
Puiss = iply/vezzjd‘/?
where e;; is the second order tensor related to the symmetric part of the velocity gradients. Since we
have assumed that the viscous layer is negligible and thinner than the layer depth, we can express

Pdiss as )
1 8% _
diss 2,017/ /V (0:13,8:17] ) av 8p11/k’ /V Qb dV.

Therefore, the dissipation rate is just v = 2vk?. Using the Navier-Stokes equation, we can also
estimate the surface layer contribution g = (vk2)*?w;, "/? to the damping of surface waves, which is
of higher order in the viscosity, and can be neglected in the present analysis|7]. As for the boundary
layer contribution ~p, it can be found from dimensional analysis, when one balances the dissipated
power over the bondary of depth ¢ with the kinetic energy of the fluid in the layer. Taking ¢ as the
characteristic scale where the velocity field gradients and v, its characteristic value, the dissispated
power due to viscous stresses per unit of area is Py ~ p1vvg /0. The kinetic energy per unit of area,
on the contrary, is going to be integrated over a characteristic distance [ as ~ pjv2l. In the small
viscosity limit, § < [ we will not get any contribution of the boundary layer dissipation rate for a
deep layer layer of fluid £h; > 1, because the waves only penetrate close to the free surface over a
distance of the order of the wavelength. For shallow layers, that is, in the limit kh; < 1, the wave
generated flow reaches the bottom of the fluid and therefore the typical length [ is of the order of the
fluid depth. In this case, the dissipation rate related to the boundary layer is yg ~ v/dh; ~ \/vw/hy.
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Chapter 5

Fluctuations in Parametrically Excited
Surface Waves

We present in this chapter two experimental studies on the statistical properties of the local ampli-
tude fluctuations of parametrically excited waves at the surface of a fluid layer. We recall first the
mechanism of parametric amplification of surface waves by means of a simple amplitude equation
of the envelope close to the instability threshold. In Section 5.1, following these theoretical consid-
erations, we present our experimental studies. First, in Section 5.2, we study the local dynamics of
wave amplitude fluctuations in an out-of-equilibrium stationary state refered to as defect-mediated
turbulence, where defects appear over the pattern of standing waves. We describe this turbulent-like
regime and characterize its appeareance by means of the qualitative changes of the PDF and PSD
of the local wave amplitude. Then, in Section 5.3, we present an experimental study on the effect
of spatio-temporal fluctuations on a set of parametrically amplified surface waves. An underlying
vortex flow generated by a periodic Lorentz force takes place over the bulk of a conducting fluid (in
this case mercury) acting as the source of these fluctuations. For that matter we measure both the
local wave amplitude and velocity field of the parametric surface waves. We show that the main
effects of these spatio-temporal fluctuations are to increase the threshold value of the parametric
instability and also to decorrelate the wave amplitude in different places over the container, making
the parametrically amplified mode lose its coherence over the container.

5.1 Parametric Amplification of Surface Waves

The fundamental idea behind parametric amplification is the temporal or spatial modulation of the
frequency of an oscillator or a wave to achieve an exponential growth of their amplitude. It was first
experimentally studied by Faraday [1|. He realized that a set of surface waves on a layer of fluid
appear when the container was vibrated periodically at a given frequency. In his experimental set-up,
a set of standing waves oscillating at half the forcing frequency (twice the period T' of the forcing)
appeared over the whole surface, when a threshold value of the control parameter (the vibration
amplitude) was surpassed. These waves formed a pattern with different geometries, depending on
the frequency and amplitude of the forcing. This instability was then given theoretical background
when Mathieu|2] studied the motion of an oscillating elliptic membrane. It has become clear that
parametric resonance is involved in several processes and areas of physics, ranging from optical and
electronic parametric amplification to Bragg scattering in periodic lattices and energy bands in solid
state physics|3].

65



To ilustrate this phenomenon in surface waves, we write the evolution equation for the amplitude
Nk (t) of the mode with wave number k and pulsation wy given by the dispersion relation. Benjamin
and Ursell[4] have shown that n,(t) follows a Mathieu equation

1k (t) + wi(1 4+ Ty cos(Qt))ni(t) = 0, (5.1)

in the linear aproximation for vanishing kinematic viscosity v (negligible viscous layer 6h ~ /v/w?).
Here, w? satisfies the dispersion relation of surface waves, I'y is the parametric forcing amplitude and
Q) is the forcing frequency. In the case where the aceleration of gravity is modulated sinusoidally
Gerf(t) = g + acos(Q2t), as it is in Faraday’s experiment where the container is shaken. I'y can be
written as T'y, = ak/w} for a deep layer of fluid|5].

Following the experimental findings of Faraday regarding the subharmonic behavior of the stand-
ing surface waves, we choose 0 = 2(wy + A), where A is called the detunning and represents the
mismatch between the eigenfrequency wy of the surface wave of wave number & and the subharmonic
frequency of the standing wave pattern /2. The first mode of wave number k. to be amplified is
the one with the smallest detunning at a given critical forcing amplitude 'y, . Close to the instability
onset v = eI’y (¢ < 1) of the flat surface we can derive an assymptotic normal form for the amplitude
of the mode with wave number k. by writing 6 = ¢A. Here ¢ is a small parameter associated with
the time scale separation between the fast time scale ¢ ~ wk_l (related to the wave pulsation period
of oscillation) and the slow time scale T = et which corresponds to the instability growth rate. We
expand

ne(t) = A(T)ei%t + Z(T)e_’%t + h.o.t.,

where A(T) is a complex amplitude, A(T) is its complex conjugate and higher order terms (h.o.t.)
close to the instability threshold. The variable A describes the slow dynamical evolution of the
envelope of the standing wave pattern at frequency €2/2. Applying what is called a solvability
condition, i.e. a condition to eliminate from the solution 7(t) secular terms that grow on a time
scale of the order ~ et, we find the evolution equation of the slow time dynamics of the envelope

OpA = —iSA + z’%Z.

Phenomenologically, we can add the effect of dissipation in the limit of vanishing viscosity as A = e\
and nonlinear saturation by symmetry arguments to the lowest order in the developement in powers
of €. In that case, one can write a phenomenological equation for the evolution of the nonlinearly
saturated wave amplitude

OrA = —(/\+i5)A+i%Z+ﬁ|A|2A, (5.2)

where (3 is a complex number associated with nonlinear renormalization of the amplitude (real part
of 3) and frequency (imaginary part of 3). This equation is known as the complex Ginzburg-Landau
equation with parametric forcing and has been extensively studied in several out-of-equilibrium
systems|6]. It can be rigorously calculated for the parametrically forced pendulum, where all the
coefficients can be computed. The threshold value of the instability is found by balancing the
the forcing term 7 coming from the parametric forcing with the dissipation and detunning. A
straightforward calculation gives the instability threshold curves v2 = A? + 2. When the normalized
control parameter € = (v — 7.)/7. is larger than zero, the flat surface becomes unstable to small
perturbations and a mode of wave number k. grows and invades the whole space. A set of standing
waves appear oscillating at a frequency /2, forming a pattern. For working fluids such as mercury
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and water, the pattern geometry is made of squares. Depending on the sign of the detunning A, the
nonlinearly saturated wave amplitude behaves differently as € grows, as it is shown in Fig. 5.1. For
positive detunning, the behavior of the nonlinearly saturated wave amplitude A is supercritical and
there is no coexistance with the flat solution A = 0. For negative detunning, A behaves subcritically
and there exists a hysteresis loop that connects the nonzero and the flat solution. In the particular

case where A = 0, the real part of 5 = 0 and quintic terms must be taken into account to saturate
A.

AY
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|
1 (/) @ e = _ _ ____. A
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Figure 5.1: Left: Parametric instability curves curves for the Mathieu equation as it is written in
Eq. (5.1) for different values of 'y, © and wy. Right: Instability curve close to the first parametric
resonance curve for the reduced parameters v, and .

This simple approach deals with the case of the amplification of one single mode. When the
forcing amplitude is larger than threshold, a set of wave numbers k& close to k. can be also amplified.
It was shown experimentally that secondary instabilities develop in parametrically amplified surface
waves either at zero wave number (drift instability|7]) or at finite wave number (oscillatory instability
of the k. mode|8]). Further increase in the control parameter will lead to a larger ammount of mode
coupling that can be taken into account in Eq.(5.2) to the lowest order in e by adding a spatial
coupling of the form adxxA. Here, v is a complex number associated with diffusion (real part of
«) and dispersion (imaginary part of a) and Ox is a large scale derivative associated with the wave
number mismatch Ak = k— k.. It is in this context that the amplitude evolution displays interesting
and complex dynamics, such as kinks, domains, localized structures and turbulent-like regimes|9|.
This last type of regime will be the focus of the next section, in which we study experimentally the
local dynamics of the standing waves in the turbulent-like regime called defect-mediated turbulence.

5.2 Defects and Defect-mediated turbulence in parametrically
excited surface waves

As the normalized control parameter € increases, more and more modes within the gap of wave
numbers k+ Ak are amplified and nonlinearly interact. If the gap k+ Ak is large enough, this mode-
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Figure 5.2: Real Re(A) (blue) and imaginary Im(A) (red) parts of the complex amplitude of the
local wave pattern for e = 1.41. The locations where A ~0 correspond to defects.

coupling dynamics will generate a fluctuating state where large fluctuations of the wave amplitude
occur, large enough to make A approach zero in certain places at a given time. The transition from
the stationary deterministic state where the complex amplitude envelope A is constant to a regime
where spatio-temporal fluctuations of A occur, is achieved when the wave system is forced strongly
in an out-of-equilibrium state by increasing e.

There are several of these out-of-equilibrium states or turbulent-like regimes|[10] that develop when
cellular structures in dissipative systems are present, such as the pattern state of the parametrically
amplified Faraday standing waves. Cellular structures in dissipative systems range from periodic
fingers in directed solidification to oscillatory patterns in chemical reactions to convection rolls|9]. In
all these cases, the amplitude envelope of the periodic field can be described by an evolution equation
simlar to Eq.(5.2). For the complex amplitude envelope, the turbulent-like regime can be dominated
either by phase or amplitude fluctations. In the case of phase turbulence[l11], the amplitude of the
wave pattern weakly depends on phase fluctuations. Therefore, no singularities in the amplitude
take place, just small modulations related to the phase dynamics. When this separation between
phase and amplitude dynamics no longer persists, the turbulent-like regime starts to be driven by
imperfections in the pattern. The characteristic time scale of their dynamics is slow with respect to
the typical time scale of the standing waves oscillation. Furthermore, their large scale fluctuations
interact with the small scale of the underlying pattern, transfering the local perturbation from one
place of the surface to another one. This is the so called defect-mediated turbulence[12]|, where the
zeros of the wave amplitude appear at random over the pattern.

We study experimentally the dynamics and statistics of the zeros of the amplitude in the standing
wave pattern. We present the experimental set-up in the following paragraph and the measuring
techniques used to study the local amplitude dynamics.
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5.2.1 Experimental set-up and measuring techniques

sinus at /2 Phase sensitive A(t)

detection

h(t) »
g:lﬁ)ée Acc. P C

Frequency
synthesizer

Figure 5.3: First experimental set-up: Waves at the surface of a water layer are parametrically am-
plified by periodic modulation of gravity which is measured by means of a piezoelectric accelerometer
The local wave amplitude is measured by a capacitive gauge and later demodulated with a phase
sensitive device at the subharmonic forcing frequency.

The schematic representation of the experimental set-up is shown in Fig.5.3. A 100 x 100 mm?
Plexiglass container is filled with a 4 mm layer of water (density p ~ 10® kg/m?, kinematic viscosity
v =~ 107% m?/s and surface tension o ~ 4.0 x 1072 N/m). In order to prevent evaporation of the fluid,
the container is sealed with a Plexiglass plate and its temperature is controlled by circulating water
at 20 = 0.1 °C coming from a thermal bath (Lauda RC6 Chiller). To amplify parametrically the
waves at the surface of the fluid, the whole container was mounted over an electromagnetic shaker (B
& K 4809) driven by one of the two outputs of a frequency syntheziser (HP 8904 A). This provides
a clean sinusoidal acceleration g.rr = a cos(2m ft), where f is the excitation frequency and a is the
maximum acceleration, proportional to the applied voltage V. We have chosen f = 60 Hz as the
excitation frequency, although we also tested higher frequencies between 60 and 120 Hz. There is
no qualitative difference in the pattern or in the local dynamics of the pattern defects. The vertical
acceleration modulation g.sf is measured by a piezoelectric accelerometer (B & K 4803) fixed to the
vibrating container, using a charge amplifier (B & K 2635).

The local wave amplitude is measured by two capacitive wire gauges, 0.1 mm in diameter, which
are placed on one diagonal of the container, each one 2 cm away from its center. Screwed to the
Plexiglass plate, they plunge perpendicularly to the fluid at rest. This technique, used mainly to
measure the local height of quasi-static fluids, was applied to wavy liquids in an experiment of
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wave turbulence |13]. The measuring principle of the local wave amplitude uses the fact that the
capacitance of a annular capacitor, which plunges into a fluid, is proportional to the local height of
the submerged part. The insulation (a varnish) of the wire gauge is then the dielectric of the annular
capacitor with the wire as the inner conductor. The outer conductor is the fluid itself. For dielectric
liquids, the measuring principle still holds, although the nature of the outer conductor is not clear.
For an annular capacitor submerged in a dielectric liquid of dielectric constant ¢4, the capacitance
C' depends on g4/¢g, ¢ being the permitivity of vacuum, and linearly on the submerged length [,
that is, the local fluid level. We have measured the capacitance C' of the wire gauge with the help
of a low-cost homemade analogic multivibrator acting as a capacitance meter with a response time
of 0.1 ms. It can measure capacitances up to 200 pF. Depending on the dielectric constant of the
fluid used to generate the waves, the linear sensing range and proportionality coefficients change. We
have experimentally computed the proportionality coefficients for 3 different fluids (water, 4 = 88¢y,
ethanol, 4 = 10g( and silicon oil, ¢4 = 2¢), as shown in Table (5.2.1).

Fluid Dielectric constant ratio £4/e0" | Proportionality constant [mm/V]|
Water 88 20.15
Ehanol 24.3 0.12
Silicon Oil (PDMS) 2.2-2.9 0.02

For water-air interface the linear sensing range of the sensor allows waveheight measurements
from 0.1 mm (the wire diameter) up to 2 cm with a 20 mm/V sensitivity. It can be also applied
to fluid-fluid interfaces, as long as the dielectric ratio stays large (as it will be seen in the next
chapter). Another important point is the dynamical range of the capacitance meter. The output
of the multivibrator is low-passed filtered at 13 kHz with a Butterworth filter of order 6, but the
dynamical content of the surface height fluctuations is also filtered at lower frequencies (fgss ~100
Hz) by the dissipation of small scale waves at the meniscus, which is of typical size of 2 mm. For
our working dynamical range, this measuring technique was previously checked with measurements
performed with eddy current displacement transducers or with an optical determination of the local
slope of the surface|[14]. The temporal capacitance fluctuations are not polluted by the water meniscus
motion formed at the local wire gauge.

Increasing the forcing amplitude a above a threshold value a., the flat surface is no longer stable to
small pertubations and a square pattern of standing waves appear through the Faraday instability|1].
The temporal response to the sinusoidal gravity modulation at excitation frequency f of these waves
is subharmonic. The surface waves make a pattern of squares with a wavelength A of 4 mm at
f=60 Hz. This is confirmed by optical observation with a stroboscopic light driven at f/2. At this
frequency, no effect of the meniscus on the internal dynamics of the pattern was observed.

Taking the output of the capacitance meter, we have demodulated the local wave amplitude h(t)
at the subharmonic frequency as

h(t) = A(t)e'2! + A(t)e "2 + r(t),

where w = 27f, A is the complex amplitude envelope and A its complex conjugate and r(t) are
higher frequency components. The higher harmonics in 7(¢) are at least two orders of magnitude
smaller than the main subharmonic response when the pattern is fully developed. To extract the
slow dynamics of the envelope A we have used a phase-sensitive detection device (SR 830) driven by
a carrier signal at frequency f/2. The carrier signal is taken from the second output of the frequency

"Values taken from HTTP://WWW.ASIINSTRUMENTS.COM/ TECHNICAL/DIELECTRIC%20CONSTANTS.HTM
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synthesizer to avoid spurious detunning between the harmonic and subharmonic modulations. In the
demodulation process, the carrier and local wave amplitude signals are analogically multiplied. The
product of both signals is low-pass filtered with a Butterworth filter of order 8 and a time constant
of 100 ms and amplified. The resulting complex amplitude is separated in real and imaginary part.

The sampling frequency used to acquire the slow amplitude fluctuations is set at 1 kHz (unless
stated differently, as shown below), to ensure a good resolution of the amplitude singularities. We
show in Fig. (5.2) typical temporal traces of the real and the imaginary part (Re(A), Im(A)) of the
complex amplitude envelope A in the dynamical regime of interest where large fluctuations in the
wave pattern occur, making possible the rough cancellation of both Re(A) and I'm(A), i.e., forming a
defect. In this experimental configuration, defects are lines dividing two regions where the amplitude
in one region is in phase opposition from the other. In terms of the local wave amplitude a defect
is a line where the envelope passes through zero, i.e. A = 0, which means both the imaginary and
real part of the complex amplitude are zero. These separation lines cross the container from one
wall to the other along the pattern in every direction: from the upper to lower wall, from left to
right or running through the diagonals of the container. The passage of these phase jumps along
the separation line is measured punctually by the capacitive gauge. The resolution of the capacitive
gauge is of the order of 0.1 mm.

5.2.2 Experimental results

Now, we describe the appearence of defects in the pattern of standing waves. Fixing the excitation
frequency f at 60 Hz and increasing the reduced control parameter € = (a — a.)/a. from negative
to positive value, the first instability of the system occurs, where the standing parametric waves
appear, oscillating at half the frequency of the forcing. At the threshold e = 0, only the subharmonic
component in the wave system appears with a defined wave number k. = 27/ (A ~2 mm) given
by the dispersion relation w. = w(k.) = wf. At this frequency, there is no observable detunning
between the eigenfrequency w,. and mf[15]. This means that no slow modulation of the complex
amplitude appears. Hence, demodulating the local wave amplitude response provides the constant
amplitude of the envelope of the pattern. Increasing e further, secondary instabilities develop, as
described in the preceeding section, either at zero wave number (the so called drift instability where
the pattern "drifts" in a given direction at constant speed) or at finite wave number. This later
secondary instability is known as an oscillatory instability, and it occurs at nonzero wave number
k.. In our experimental set-up, due to the boundary conditions of the cell, it is this later type of
secondary instability that appears, at a very low frequency df ~ 1 Hz (in this case 30 or 40 times the
period of the basic pattern). Jf is of the same order of magnitude of the frequency associated to the
bandwith Ak related to the finite size L—100 mm of the container Ak ~ 27 /L. These low-frequency
oscillations appear one after the other as higher harmonics of 6 f when ¢ is constinously increased.
There is a strong hysteresis in the control parameter in the oscillatory regime. For instance, the first
hysteretic loop (in between oscillations at 6 f and 2Jf) ranges from € =0.7 to 0.9. In the process
from the stationary amplitude regime where A is constant to the slowly oscillating one, no phase
turbulence is observed. This is confirmed by extracting the local phase dynamics ¢ of the complex
amplitude envelope A (¢ = arg(A)). No abrupt fluctuations in its time derivative ¢ are found, as
it should be in the case of a phase-turbulent regime[16|. This is due to the fact that parametric
instabilities have a strong phase-locking between the forcing modulation and the system response.
For larger values of ¢, the regime where secondary instabilites dominate, defects appear in the wave
pattern, as described above. We measure the local passage of a defect over the capacitive gauge by
measuring in the temporal trace these singular points where A vanishes. A typical trace of a defect
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profile in the wave pattern is shown in Fig. (5.4).
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Figure 5.4: a) Temporal traces of the real and imaginary part of A(t) showing the passage of a defect
(Re(A) = Im(A) = 0). b) Temporal trace of |A(t)], and the corresponding modulus of the phase
derivative |¢(t)|. In this plot, |¢()| has been multiplied by 0.05 to make it visible in the same scale
as the amplitude fluctuations.

The points where Re(A) = Im(A) = 0 are the points where the phase ¢ is ill-defined and a
discontinuity appears. This singularity is removed when it reaches the boundaries of the cell or when
it collides with another one, therefore acting as a dynamical mechanism to eliminate fluctuations
from the system. There is a strong correlation between the extrema of the phase derivative gb(t)
and the points where |A(t)| reaches its minima. The profile of a defect determined with this local
measurement technique is asymmetric, due to the intrinsic dynamics of the defect: it passes through
the capacitive gauge at non-zero speed, and through its propagation changes the wave pattern by
moving the singularity in the phase till it will reach one of the boundaries of the cell or another
dislocation, thus vanishing. At this excitation frequency (f = 60 Hz), the passage time 7 of a defect,
i.e., the amount of time the amplitude |A| takes to go from its mean value to zero and back, is of the
order of 0.1 s, an order of magnitude smaller than the oscillation period of the amplitude modulation
described above (1/5f ~ 1 s). In this regime, several defects can go through the capacitive gauge,
each one with a different velocity arriving from different sides of the container.

The nucleation of a defect is a random event, happening at different places over the pattern. As
we increase the control parameter, the time it takes to generate a defect that crosses the capacitive
gauge decreases. In this state, we can study the statistical properties of the wave amplitude when
this type of singularities control its dynamical evolution.

We show in Fig.(5.5) the probability distribution function (PDF) of the normalized amplitude
|A| / (|A]) . Close to zero the PDF shuts steeply to zero. This shows that the time of passage of defects
is very small, and that they are isolated and singular events. It presents a maximum close to (A) /2

72



T T T T T T
o [T~ o >k PDF(A]/ <|AP>
100 - R : = = =exp( 0.69%A|/ <|A]>)[]
F
~ * -
z % -~ ~ ~ - 4
i 0 - ~ -~
> ¥ 10 *
E H
O 10" - |
o 2 é W
ER £
10t * |
. Re(AYo(Re(A) *
Im(A)/(Im(A)) %
% ‘ g
3 2 1 0 1 2 3 ¥
XI5 (X) *
| | | | | |
0 05 1 15 2 25
|Al/<|A|>

Figure 5.5: PDF of the normalized amplitude fluctuations |A|/ (|A]) for € = 1.41 (stars) and an
exponential fit (dashed line). Inset: PDF of the normalized real (blue) and imaginary (red) parts of
A for € = 1.41. Normalized normal fit in dashed black line as an eye guide. Here, (A4) = 0.15 mm.

and an exponential tail for amplitude fluctuations close to (A). For large fluctuations (|A4| / (|A|) > 2)
the PDF goes to zero abruptly, due to the fact that no cusps, burst or ejection of dropplets are seen in
the experimental set-up: the wave pattern has still finite amplitude fluctuations. This is in contrast
to the statistics of large amplitude events in the complex Ginzburg Landau equation with parametric
forcing used to describe parametric waves [5, 6]. The theoretically predicted PDF is long-tailed
and extreme fluctuations related to bursts or pulses are possible. Here, the wave pattern cannot
explore large ampltiude events without wave breaking through dropplet ejection, which we avoided.
Cusps cannot occur because the wavelength of the basic pattern is smaller than the capillary length
V/77/pg ~ 2 mm, which prevents the formation of blow-up singularities [17].

The probability distribution functions of both the normalized real Re(A)/o(Re(A)) and imaginary
Im(A)/o(Im(A)) parts of the complex amplitude do not present exponential tails, as we show in the
inset in Fig. (5.5). Here o(z) stands for the standard deviation or rms fluctuations of the fluctuating
variable x. The kurtosis of both variables is close to 2, and a small degree of negative (positive)
skweness appears for the real (imaginary) part. Furthermore, the real and imaginary components of
A cannot be regarded as independent variables either because the computed correlation coefficient
< Re(A)Im(A) > Jo(Re(A))a(Im(A)) is close to -0.9. This means that a distribution for wave
amplitudes such as the Rayleigh distribution ~ |A|e~|4*/2 [18], that takes into account the probability
density function of the modulus of a gaussian variable, cannot fit the experimental PDF of |A|, even
if the PDF of Re(A) and Im(A) where gaussian due to the large correlation between Re(A) and
Im(A).

We focus now on the dynamical description of the fluctuating wave amplitude. The appearence
of defects changes the dynamical behavior of the wave pattern amplitude, as we can see from its
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Figure 5.6: PSD of the local wave amplitude |A| for ¢ = 1.41. The slope (in red dashed line) is close
to —5.0. Inset: PSD of the local wave amplitude |A| for ¢ = 0.84. The first harmonic peak is at
0f =0.87 Hz. Here, the excitation frequency fixed at 60 Hz, the pattern is oscillating at 30 Hz and
0f ~ 1 Hz.

power spectral density (PSD) in Fig.(5.6). In the regime dominated by the secondary oscillatory
instabilities (in this case oscillatory instabilities related to the box size), the PSD of the amplitude
fluctuations is peaked at df and its harmonics (see inset of Fig. (5.6)). As € is increased, defects are
created in the system and a power-law type of power spectral density for |A| over one decade appears
for frequencies larger than 0 f. The frequency band where this spectrum is observed is larger than
1/7 ~ 10 Hz. Therefore, the dynamics of the complex amplitude in presence of defects is responsible
for the scale-invariant spectral fluctuations. The computed slope is close to -5.

For smaller frequencies than 6f the spectrum displays a power-law behavior ~ =, related to
slow modulations of the large scale wave amplitude. Large acquisitions of the order of a day have
been made for this matter in order to resolve up to the mHz. At large frequencies compared to  f a
peak at f/2 appears with a bandwidth of the order of 10 Hz. It is the harmonic component of the
basic pattern that oscillates at f, shifted to f/2 due to the phase-sensitive detection. This takes in
account the mode coupling between the harmonic and subharmonic components, mediated by the
appearence of the imperfections in the wave pattern.

The power-law spectrum does not result from the filtering technique. To test this fact we have
changed the order of the Butterworth filter and the time constant of the phase sensitive detection
device, but maintainig the dynamical range in order to resolve the power-law spectum. No qualitative
nor quantitative change was observed. Also, the PSD cannot be deduced from just the singularities
of the derivative of |A| when it aproaches zero. In that case its PSD would be the one of local
derivative discontinuities, i.e., f~*. Kuznetzov [19] has proposed several power-law spectra to take
into account singularities in surface waves, depending if there are point or line singularities, or if they
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propagate at a given velocity. He predicts a power-law spectrum f~° when line singularities (A = 0)
propagate at constant speed, but in our case the dynamical variable is the modulus of the envelope
amplitude |A|. Therefore no simple relationship can be made between the experimental result and
the theoretical prediction. To wit, we have changed the sampling frequency from 1 to 5 kHz. No
substantial difference in the slope has been observed. The resolution of the defect core does not affect
the slope of the spectrum either. This is confirmed when the excitation frequency is changed from
60 to 120 Hz to make the wavelength smaller.

These two separate statistical indicators, the PDF and the PSD of the local wave amplitude,
show the qualitative change in the behavior of the parametrically excited surface waves when defects
dominate their dynamics in a stationary out-of-equilibrium state. Their interaction with the wave
pattern mediate the propagation of wave amplitude fluctuations from one place of the container to
the other. When € grows larger and larger, more defects will randomly appear over the wave pattern,
speeding the propagation of these fluctuations. This out-of-equilibrium stationary state is termed
defect-mediated turbulence.

We have shown in this section that when a large number of modes in the wave number band
k. + Ak are parametrically excited, fluctuations of the local wave amplitude are strong enough to
break locally the wave pattern and force the wave amplitude to vanish, forming a defect. In this
out-of-equilibrium state of the wave system, no control over the wave amplitude fluctuations can be
achieved. To study the case where fluctuations of the the parametric surface waves can be controlled,
we present the next experimental study.

5.3 Spatio-temporal noise in parametrically excited surface
waves

The calculations on the first section consider the case of the deterministic growth of the nonlinearly
saturated amplitude when the forcing amplitude is close to its threshold value and no fluctuations
are taken into account. A problem of both theoretical and practical interest is how parametric
resonance is modified when the pump, i.e., the spatial or temporal modulation, is noisy. Ounly a
handful of experiments have been performed [20, 21, 22, 15] to study such an effect and in each case
the fluctuations of the pumping mechanism are temporal. To gain insight on the effect of spatio-
temporal fluctuations on these parametrically amplified surface waves, we have developed a source of
spatio-temporal noise by means of a periodic Lorentz force |23]|. This force, acting on a conducting
fluid (in this case, mercury) creates an underlying vortex flow that interacts with the parametrically
amplified surface waves.

)



-----{ PC

Frequency amp. amp.
synthesizer A A A

ik GG I

Figure 5.7: Second experimental set-up. Waves at the surface of a mercury layer are parametri-
cally amplified by periodic modulation of gravity which is measured by means of a piezoelectric
accelerometer. The local wave amplitude and velocity fields are measured by inductive sensors and
potential-difference probes. A constant DC current is imposed to the mercury layer through two
copper electrodes which generates a Lorentz force F; due to a periodic magnetic field generated by
an hexagonal array of magnets of alternating vertical polarity.
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Figure 5.8: Second experimental set-up. Up: Bottom of the container, where an array of periodically
alternating polarity magnets are positioned in an hexagonal array. On opposite sides of the cell two
copper electrodes are used to drive a DC current in the mercury layer. Bottom: Mounted container
on the electromagnetic shaker, showing the sensors (1) Vivés probes, (2) piezoelectric accelerometer,
(3) inductive sensors and (4) capacitive wire gauges.
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5.3.1 Experimental set-up and measuring techniques

We describe the second experimental set-up in this section. A schematical picture of the experimenal
set-up is displayed in Fig. (5.7). A Plexiglass container of 70 x 70 mm? is filled with mercury (density
p = 13.6 x 10" kg/m?, kinematic viscosity v— 1.2 x 1077 m?/s and surface tension o= 0.4 N/m)
up to a height of 5 mm. At the bottom of the cell, alternating vertical polarity magnets (5 mm in
diameter) were placed with a 1 mm gap between them on an hexagonal array (6 mm in wavelength),
as depicted in Fig. (5.8). The magnetic field strength at the surface of the fluid on top of a magnet
is 500 G. Two nickel-barnished copper electrodes were glued at opposite sides of the cell, to be in
contact with the mercury layer. A fine layer of nickel was deposited over them to ensure no chemical
reaction between mercury and copper. The surface stayed clean of impurities (amalgams of Ni and
Hg) for as long as two months. To avoid oxide formation, the surface is kept clean by maintaining
the fluid in a nitrogen-filled atmosphere. Through the copper electrodes, a DC current I generated
by a power-supply (Agilent E3336A 20 V - 7 A), is applied to the conducting fluid. This gives
rise to current density j, and therefore a Lorentz force F;, = j x B. The container is temperature-
regulated by circulating water 20.0 £ 0.1°C by means of a thermal bath (Lauda RC6 Chiller). As
in the previous experimental device, an electromagnetic vibration exciter (B & K 4809) driven by
a frequency syntheziser (HP 8904 A), provides a clean vertical sinusoidal acceleration (horizontal
acceleration less than 1 % of the vertical one). The effective gravity in the reference frame of the
container is then g+acos(2m ft), where g is the acceleration of gravity, a is proportional to the applied
tension V' and f is the excitation frequency. The vertical modulation of the acceleration is measured
by a piezoelectric accelerometer (B & K 4803) fixed to the vibrating container and a charge amplifier
(B & K 2635).

The surface wave amplitude is measured by two inductive sensors (eddy-current linear displace-
ment gauge, Electro 4953 sensors with EMD1053 DC power supply). Both sensors, 3 mm in diameter,
are screwed in the Plexiglas plate perpendicularly to the fluid surface at rest. They are put 0.7 mm
above the surface. The sensors are located on one of the diagonals of the container, 30 mm away
from each other about the center. The measuring mechanism of the eddy (circular)-current linear
displacement gauge used to measure the position or displacement of a conducting metal at a distance
x relies on electromagnetic induction [24]. Two coils, called primary (or reference) coil and sec-
ondary (or sensing) coil, are positioned one over the other without touching. An alternating tension
is imposed over the primary at high frequency (the operating range is in between 50 kHz up to 10
MHz). The eddy or circular currents induced in the conducting material produce a magnetic field
which opposes the one on the sensing coil. This effect is larger the closer the conducting material is
to the sensing coil, due to the fact that the change in the magnetic impedance is larger. Although
generally the relationship between the coil impedance and the distance x to the conducting material
is nonlinear, for the sensors used in this experiment, the sensing range is linear in very small range
of x. The type of inductive sensors used in this experiment is of the shielded type, allowing it to be
embedded in a metal socket, as shown in Figs. (5.8) and (5.9). The linear response of these inductive
sensors in the case of a wavy liquid metal surface has been checked in a previous study [25]. The
linear sensing range of the sensors allows distance measurements from the sensor head to the fluid
surface up to 1.27 mm with a 7.9 V/mm sensitivity. A capacitive measurement can be also made,
but the sensitiviy of the capacitive wire gauge is orders of magnitudes smaller than the one of the
inductive sensors. The greatest advantage of inductive sensors is that they are not perturbative as
the capacitive wire gauges. In contrast, the main disadvantage is that inductive sensors average the
local fluctuations over 3 mm, which means that fluctuations with length scales that are smaller than
3 mm cannot be resolved. This is the reason why we have chosen the wavelengths in the experimental
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set-up larger than 3 mm.
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A

Figure 5.9: Left: Schematic view of an inductive sensor. A Electromagnetic proximity sensor. B
Shielded and C Unshielded sensor. Figure taken from Fraden|24|, p.279. Right: Schematic view of
a Vives probe, where the potential difference AV averaged over the distance [ is proportional to the
averaged electric field [ v x B -dL

In addition, the local velocity fluctuations of the flow can also be studied in this experimental
configuration. They are measured in two points 20 mm from the closest wall, 35 mm the farthest
one and 50 mm away from each other by means of Vivés probes |26]. As shown in Fig. (5.9), these
probes are made by two electrodes made of copper and separated by a distance (=3 mm, that plunge
2 mm into the fluid and are isolated completely from the liquid metal, except at the end, where the
electrical contact is made. A small cylindrical magnet (5 mm in diameter) is placed 5 mm above the
electrodes, generating a magnetic field strength of 500 G at the electrical contact point. The whole
system 1is integrated into a cylindrical rod that is screwed to the Plexiglass plate. The measuring
principle relies on Faraday’s law of induction. When an element of conducting fluid in presence of a
magnetic field B passes with velocity v in between the wire electrodes, an electric field e is generated

following
/e~dl:/V><B-dl,
l !

which in turn creates a small tension difference at the end of the wire electrodes. The magnetic field
of the magnet in the Vivees probe does not affect the qualitative behavior of the velocity fluctuations
of the flow. In this approximation we have not taken into account neither the constant nor the
induced currents in the conducting fluid, which can generate also an electric field. The explanation
is as follows: the DC component is eliminated by high-pass filtering the potential difference and
the induced currents are negligible given the low speed of the vortex flow (low magnetic Reynolds
number R,,). For velocity fluctuations of length scales larger than [, the voltage difference measured
between the electrodes is proportional to the velocity fluctuations v; which are orthogonal to the
vertical magnetic field By [27]. A small tension proportional to v1 Byl of the order of a few microvolts
is amplified by a factor 10° and acquired with the amplitude fluctuations and the acceleration signals.
The DC component of the signals are filtered out in the acquisition. This filtering eliminates the
problem of constant eddy currents in the inductive sensors and the large DC component in the Vives
probes. To resolve statistically the temporal fluctuations of the measured quantities, the sampling
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frequency is fixed at 500 Hz and the acquisition time is set 800 s, much larger than the typical time
scales of the acquired signals.

5.3.2 Experimental results

We present in the following section the experimental results of the effect of the spatio-temporal
fluctuations due to the underlying vortex flow on the standing surface waves. To do so, we start
by describing both cellular flows separately. We start by describing the properties of the local wave
amplitude and velocity profile of the parametrically amplified surface waves.

Parametrically amplified surface waves

Subjecting the container to a periodical modulation of gravity, surface waves can be amplified para-
metrically. These parametric waves respond subharmonically to the modulation. In this experimental
configuration the modulation frequency f is fixed and the modulation amplitude a is changed. At a
given threshold amplitude a., the flat surface becomes unstable to small perturbations and stationary
surface waves appear. We observe a square pattern of standing waves without defects.

The choice of the excitation frequency f =23.8 Hz is two-fold: to have no time-dependent ampli-
tude (an eigenmode of the container) and a comparable wavelength to the one of the magnetic field
B (A = 6 mm), larger than the diameter of the inductive sensor, which is 3 mm. We have explored
a frequency range (20 < f < 30 Hz) in which the wavelength of the pattern and the one of the
periodic Lorentz force are similar. The wavelength of the parametrically amplified waves is roughly
8 to 10 times smaller that the size of the container. The frequency difference between two successive
resonance tongues is about 1 Hz. By tuning the excitation frequency within a 1 Hz interval, it is
easy to work in the vicinity of the minimum of a resonance tongue, without detunning between the
excitation frequency and the natural oscillation frequency of the surface waves. We show in Fig.
(5.10) the bifurcation diagram of the wave amplitude (hy) of the parametrically amplified surface
waves. Its dependence on the reduced control parameter € = (a — a.)/a. is

<h1> ~ 61/4,

as reported elsewhere [15].

Given the fact that the surface deformations are generated by the cellular flow in the bulk of
the fluid, the velocity field also saturates nonlinearly and can be used to study the threshold of the
parametrically amplified waves. To our knowledge, this is the first measurement of the local velocity
field in parametrically excited surface waves. The bifurcation diagram of this signal is shown in
Fig.(5.11). The nonlinearly saturated velocity field grows as

<U1> ~ 61/27
in contrast to the local amplitude dependence.

Both the local wave amplitude and velocity field present the same threshold value for a., showing
the growth of one single mode over the container and no distinguishable hysteresis loop is found in
the bifurcation diagrams for h; and v;. Increasing e further, more modes are excited. For large e,
e > 0.5, the unstable mode is no longer stationary and low-frequency (large-scale) modulations of
both fields appear due to secondary instabilites as explained in the previous section.This complex
regime was not studied here. To compute the bifurcation diagram of each variable X (¢) we have used
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Figure 5.10: (a) Bifurcation diagram for the wave amplitude (h;) as a function of a. (b) Bifurcation
diagram for (hy)" as a function of € = (a — a.)/ae.

the Fourier coefficients at f/2 of the signals, by taking

Y

T
Xw=nf)= lim '%/_TX(t)e“ﬁdt

T—o00

where T is the acquisition time, much larger than the oscillation period 7/f (T'f ~ 10%). This
proccedure is simply a phase-sensitive detection of the Fourier component at the oscillation frequency
f/2.

This weakly nonlinear regime, with a stationary nonlinearly saturated standing wave, will be
studied when fluctuations in space and time are added to the wave system, through an underlying
vortex flow.

Vortex flow

We investigate now the effect of the periodic Lorentz force Fy on the surface and in-bulk fields. The
mechanism of the formation of the flow is the following: when a constant current / is applied through
the liquid metal in the presence of a periodic magnetic field B, a periodic Lorentz force ¥y, =j x B
sets the fluid in motion. In this experimental setup up, given the fact that the waves at the interface
have very small amplitude with respect to the depth of the mercury layer, the density current j can
be estimated as j = (I/S)e, where S=3.5 cm? is the surface crossed by the current and e is a unitary
vector pointing normally from one electrode (the cathode) to the other one (the anode).

The velocity field v of the flow can be estimated balancing the Lorentz force F; that works as
the motor of the motion of the fluid and the convective acceleration p(v - 57)v in the Navier-Stokes
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Figure 5.11: (a) Bifurcation diagram for the velocity field (v;) as a function of a. (b) Bifurcation
diagram for (v;)” as a function of € = (a — a.)/a.

equation
ov
p §+(v~v)v =—vp+prAv+Fy,

where p is the fluid density and v its kinematic viscosity. The order of magnitude for such velocity
fluctuations at the forcing scale (the magnetic field wavelength \) for a typical DC current [ ~ 1
A is 5 cm/s and the Reynolds Number Re is of the order of 100. Even at low Re, the velocity
field creates deformations on the free surface. Both surface and in-bulk fluctuations present large
amplitude events and low-frequency fluctuations, as it is shown in Fig. (5.12). We study in the next
paragraphs their statistical properties.

Probability density functions : To study the statistical properties of the local response of the
fluid to the periodic Lorentz force, we compute the probability density function (PDF) of both the
local surface amplitude given by one of the inductive sensors h; and the velocity field fluctuations
given by one of the Vivés probes v;. The other two sensors display similar behaviors. For the acquired
signals, at a given value of the DC current I, we show their computed PDFs in Figs. (5.13) and
(5.14). Increasing the value of I, larger and larger events in local height and velocity occur. The
standard deviation or rms value of local surface fluctuations o(h;) increases with increasing current,
as do the rms of the velocity fluctuations o(v;). The growth rate is linear in I for the latter and a
small departure from linearity is measured in the former (left inset in Figs. (5.13) and (5.14)).
When plotted in the rescaled variables hy/o(hy) and vy /o(vy), all the PDFs collapse on one curve
(see right inset in Figs. (5.13) and (5.14)). No clear asymmetry is found in the normalized PDFs
of both variables. A slight departure from the statistics of a normal variable was observed in both
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Figure 5.12: Typical traces of the the normalized local amplitude (h; /o (h;) and heo(hs)) and velocity
(vio(vy) and ve/o(ve)) for I=5 A. Here o(h) =0.04 mm and o(v;) =8 cm/s

signals (the computed kurtosis is 3.2), but not large enough to discard gaussianity.
Contrary to the case of a nonlinearly saturated amplitude, these fluctuations are statistically
independent. We can corroborate this fact by measuring their normalized covariance

v = (vr) [/ (R3) (vD),

where () stands for time average. This coefficient relates the degree of statistical independence of one
variable to the other. We show in Fig. (5.15) the evolution of this statistical indicator as a function
of I for different pairs of observables. Increasing I, increases the normalized covariance of the local
wave amplitude measured at two different points (h; and hs) from 0.1 at 1 A till 0.25 at 8 A. In
contrast, the normalized covariance for v; and vy fluctuates slighlty arround 0.1 for any value of I, as
it is also observed for the pair v; and h;. In that sense, the vortex flow creates locally independent
surface and in-bulk fluctuations over the container.

Power spectral densities : As [ is increased, low-frequency fluctuations dominate the response
of the fluid motion due to the Lorentz force. This can be seen in the power spectral densities (PSD)
of both the local amplitude h; and velocity field vy, as shown in Fig. 5.16. For the amplitude
fluctuations, the spectra display an exponential behavior and no power-laws for the PSD are found,
even for large values of I. In the case of the velocity field, the spectra are not exponential and it
follows a power-law close to -5/3. This corroborates the fact that even at the low Re values achieved
in this experimental set-up, the flow remains highly fluctuating and chaotic.

When [ is less than 1 A, there are clear peaks related to the lower normal modes of the container,
acting as cavity modes for the excited surface waves generated by large amplitude fluctuations. At
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Figure 5.13: Probability density functions of the local amplitude fluctuations h; for different values
of the current intensity I between 1 and 10 A. The arrow shows the sense of increasing current. Left
Inset: Loglog plot o(hy) as a function of the current intensity /. Best fit slope is 1.2. Right Inset:
Probability density functions of the rescaled local amplitude fluctuations hy /o (hy) for different values
of the current intensity I between 1 and 10 A. In dashed, Gaussian fit.

higher values of I, this coherent response is lost. Rescaling the frequency by the typical turn-over
time of the vortex \/o(v1) ~ 0.1 s and the PSDs of the normalized variables hy/o(h;) and vy /o(v)
by its inverse frequency, we can try to collapse all data on one single curve, as shown in Fig.(5.17).
For the local wave amplitude fluctuations, in the explored current range (1 A < I < 10 A), there is
a large dispersion for small values of I, due to the strong persistance of the cavity modes. As stated
above, this coherent response is lost once the forcing is large enough (I ~ 5A). On the other hand,
all data for the velocity spectra can be collapsed on one single curve.

Parametric surface waves in the presence of spatio-temporal noise: vortex flow effect

Let us now study the effect of the periodic Lorentz force Fy on the growth, saturation and statistics
of parametrically forced surface waves. The wavelength of the standing wave pattern is chosen to
be of the same order of magnitude as the one of periodic vortex flow, forced at wavelength A =6
mm. This is done to maximize the effect of the vortex flow fluctuations over the global stationary
mode. Therefore, for moderate values of I, the electromagnetically forced vortex flow can be seen
as a source of spatio-temporal noise on the standing surface waves. In presence of the vortex flow,
the local wave amplitude and velocity field of the surface waves fluctuate strongly as shown in Fig.
(5.18). The subharmonic response of both fields decreases as I is increased, till it is lost completely,
as we will show below.

The low-frequency and large amplitude fluctuations related to the vortex flow described above
persist when the modulation of the gravity is switched on and interact with the small scale cellular
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Figure 5.14: Probability density functions of the local velocity fluctuations v, for different values
of the current intensity I between 1 and 10 A. The arrow shows the sense of increasing current.
Left Inset: Loglogo(v;) as a function of the current intensity I. Best fit slope is 1.0. Right Inset:
Probability density functions of the rescaled local velocity fluctuations vy /o(v;) for different values
of the current intensity I between 1 and 10 A. In dashed, Gaussian fit.

flow of the Faraday waves, as we can see from the PSDs of the variables h; and v, shown in Figs.(5.19)
and (5.20), respectively. As the forcing increases, the low frecuencies of the spectra dominate and
the subharmonic response decreases. This interaction between the parametrically excited waves and
the vortex flow also modulates the amplitude of the subharmonic response, increasing the growth
of the bandwidth around f/2, as shown in the insets of Figs.(5.19) and (5.20), till the subharmonic
response dissapears under the noise level of the fluctutations generated by the Lorentz force.
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Figure 5.16: (a) Power spectral density (PSD) of the local wave amplitude fluctuations b, for different
values of the current intensity / between 1 and 10 A as a function of the frequency F. (b) Power
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Figure 5.20: Power spectral density PSD the normalized local velocity field fluctuations vy /o (vy)
for different values of the current intensity I = 0 to 2 A as a function of the normalized frequency
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frequency is 23.8 Hz.

When the current [ is increased, the critical acceleration threshold a.(I) of the subharmonic
response, shifts to higher values as shown in the bifurcation diagram of local wave amplitude (Fig.
(5.21)) and velocity (Fig.(5.22)) fluctuations. As done before, we use the Fourier coefficients at f/2
to compute the bifurcation diagrams. No distinguishable hysteresis loop is found in the bifurcation
diagrams for both fields. The corresponding critical value of a.(I) is the same for both the sub-
harmonic local wave amplitude and velocity responses, showing that the parametrically amplified
waves develope over the whole container. At a given value of €(1) = (a — a.(I))/a.(I), the local
wave amplitude increases with the current. This is due to the large values of a.(I)/a.(0). Locally,
fluctuations of the vortex flow can be small enough to let the surface waves explore large amplitude
events. This is not the case of the local velocity fluctuations, where the nonlinealy saturated velocity
field remains of the same order as before. The dependence on the dimensionless parameter () for
the nonlinearly saturated fields continues to hold on average: (e(I)'/* for the local wave amplitude
and €(1)'/? for the velocity field), although there is a large dispersion on the rescaled bifurcation
diagram.

Now, we describe from these measurements the effect of the underlying vortex flow on the growth
of the parametrically amplified surface waves. One clear effect is that the local pattern losses its
coherence when we increase the flow intensity. We show in Fig. (5.23)a the normalized covariance
for the subharmonic response of the wave amplitude and velocity fields. Increasing I for a given
value of a > a.(0), (the parametric waves are indeed present) decreases the normalized covariance of
the subharmonic response, decorrelating the fields at different places in the container. This effect is
stronger between the local amplitude and the velocity fields. In that sense, the vortex flow breaks
locally the pattern structure.
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Figure 5.21: Bifurcation diagram of the local wave amplitude of the subharmonic response for I =
0.0 (o), 0.5 (O), 1.0 (%), 1.5 (¢) and 2.0 (%) A. the excitation frequency 23.8 Hz.

To further prove this point, we calculate the spectral coherence magnitude

Cag(f) = [ @EDYUN VD P,

where Z(f) and y(f) stand for the Fourier transforms of x and y at frequency f. This coefficient
relates the possibility of two waves to produce interference between them at a given frequency. In this
case we choose that frequency to be the one of the subharmonic response. We show its dependence
on I in Fig. 5.23b. As in the case of the normalized covariance, increasing I for a given value of
a > a.(0) decreases the spectral coherence of the subharmonic response till it reaches zero. In that
sense, the vortex flow prevents the wave to maintain its structure over the whole container.

These two indicators relate the degree of statistical dependence of two fluctuating quantities (in
this case local amplitude and velocity fluctuations). Taking into account the previous measurements
and the fact that both the normalized covariance and spectral coherence magnitude are decreased
when the vortex flow intensity is increased, we can think of this type of forcing as a spatio-temporal
noise on the set of parametrically excited surface waves.

The last part of this experimental study is devoted to the effect of these spatio-temporal fluctua-
tions on the instability threshold value. From the bifurcation diagrams of the local wave amplitude
and velocity field, we compute the threshold value a.(I) as a function of I in the range [0,2] A, as
shown in Fig. (5.24). The variable (a.(I) — a.(0))/a.(0) increases roughly linearly with /. From
this curve we can see that the threshold value of the subharmonic waves can be shifted by 20 % for
I =2 A, with a rather small value of the vortex flow intensity (o(v1) ~ 5 cm/s). This large change
in the instability onset means that we cannot see the change of the threshold value just as a renor-
malization of the eigenfrequency of the waves due to noise effects solely, but also as the appearence
of an effective viscosity that grows with I as the underlying flow increases. We do not attempt to
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The excitation frequency is 23.8 Hz.

increase farther the value of 1. This will make the vortex flow fluctuations comparable to the largest
peak value of the Fourier amplitude of the subharmonic response, i.e., it cannot be viewed as noisy
spatio-temporal fluctuation of the cellular flow, as we can see from the insets of Figs. (5.19) and
(5.20). This restriction avoids the exploration of larger values of I.

5.4 Conclusions

In this chapter we have presented two separate experimental studies of out-of-equilibrium states where
stationary surface waves non-linearly interact among themselves or with a vortex flow. In the first
experiment, a defect-mediated turbulent regime has been studied. The statistical properties of the
local amplitude of the stationary parametric waves through their PDF and PSD have been studied.
The probability density function of the local wave amplitude reveals no long-tailed distribution for
large fluctuations. It decreases strongly to zero for |A| > 2 (|A|), showing the finite character of
the amplitude fluctuations. The power spectral density of these fluctuations displays a power-law
with an exponent close to -5 for frequencies in between ¢f (the secondary oscillatory instability
frequency) and f/2 (the basic pattern oscillation frequency) over one decade. This scale-invariant
behavior is interpreted as the signature of defect-mediated turbulence in the wave system when these
singularities start to dominate the amplitude dynamics. Although corroboration of this fact was
made by mere optical observation with a stroboscopic light driven at f/2, spatial Fourier analysis
should be performed in order to study experimentally the long-range interaction of defects in this
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type of systems.

In the second experiment, we have studied the effect of a vortex flow on the fluctuations of
the local wave amplitude and velocity field of a set of parametrically excited surface waves at a
fluid surface. The vortex flow is generated by a periodic Lorentz force F;, = j x B in the bulk
of a liquid metal (mercury). When the sole excitation is the parametric pumping, the standing
wave pattern developes and stationary surface waves appear over the fluid surface. When the sole
excitation of the fluid motion is the vortex flow, the statistical properties of the surface waves were
studied separatetly. The PDFs of local wave amplitude h; and velocity field v; are roughly normal
with their standard deviations growing linearly with the strength of the flow. The PSDs of the
temporal fluctuations of the wave amplitude are found to be exponential and the PSD of the velocity
fluctuations display a power-law. Also, the normalized covariance between the acquired signals was
computed as a function of I, staying always below 0.2. This means that the correlation length of
the forcing (vortex flow) is much smaller than the size of the container (which is comparable to the
correlation length of the pattern structure). As a remark, these measurements indicate that this
type of forcing cannot generate coherent waves and therefore phenomena such as propagation of
wave trains or wave turbulence may not be displayed in the presence of an underlying flow.

Later, we have shown experimentally that the vortex flow can act as a source of spatio-temporal
noise on a parametrically excited set of waves at a fluid surface. Its presence decorrelates the surface
waves over the container. Indeed, the normalized covariance p,, and spectral coherence magnitude
C,y at the subhamonic frequency f/2 decrease strongly in presence of the underlying flow as [ is
increased. The main effect of the vortex-wave interaction is the growth of the threshold of the
parametric instability. The large growth of parametric instability onset cannot be accounted solely
by the nonlinear change in the eigenfrequency of the standing pattern due to the nonlinear coupling
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with the flow. Therefore, to increase the threshold, the vortex flow mean effect is to increase the
effective viscosity the surface waves perceive. It also modulates the amplitude of the subharmonic
response, making hy; and v; fluctuating quantities.
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Chapter 6

Fluctuations in Capillary Wave Turbulence

This last chapter is devoted to wave turbulence. In this state, a set or weakly nonlinear surface
waves interact randomly between themselves, developing a stationary state where fluctuations in
wave amplitude occur that cannot be described by equilibrium distributions. We will focus mainly
on experimental studies on wave turbulence at air-fluid (or fluid-fluid) interface when the effect of
surface tension is important.

In the first section, we give a short overview of the theoretical background of wave turbulence
and the handful of experimental studies made so far on the subject, particularly on a set of studies
of gravito-capillary wave turbulence performed in laboratory experiments. Later, we describe our
experimental devices used to study capillary wave turbulence. Then, we present the experimental
results.

6.1 Wave Turbulence

It was established 40 years ago that a set of weakly coupled dispersive waves can develope an out-
of-equilibrium steady state called wave turbulence[l]. In this state, the wave amplitude A(t) of the
mode with wave number k, fluctuates due to the weakly nonlinear interactions with other waves and
a statistical description of the wave system properties (such as the fluctuations of energy, momentum
and other conserved quantities for the wave system) must be used. The equations of motion are
typically of the form

dA;
dt

+iswidy =) / Liglsion AR AR AR AN S(ky + ko + ks + ... —K)dkios. vy (6.1)

where the s; are equal to £ in such a way that A = Ay and A, = A}. This equation has two main
contributions to the evolution of Ay: the oscillation related to the typical pulsation frequency of the
waves (iswxAj) and the nonlinear interaction term, which relates the local interaction of a number
N of waves with wave number k; and amplitudes Ay’ through a scattering matrix L5/ "% - which
only takes into account the wave vectors which satisfy the resonance ki + ks + k3 + ... + ky = k.
Theoretically, the equations of evolution of the amplitudes Ay come from a Hamiltonian, which is
nonlinear in Ay. There is no dissipation taken into account in the theory, at least in a transparency
window in between the injection scale (usually set at k =0 or at the scale of the system) and the
dissipation scale. In wave turbulence theory, the dissipation scale is usually set at k — oco. In the
deduction of this type of equations, certain hypothesis have been used, namely the homogeneity and
isotropy of space, locality of the interactions (which means that the wave vectors that can interact to
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contribute to the evolution of Ay are the ones that satisfy the resonance condition described above
in the so called resonant manifold) and a certain degree of ergodicity in order to take averages in
space and relate them to the temporal averages.

The strength of the theory comes from the possibility of describing the evolution of the wave
amplitude in terms of the density distribution of wave numbers ny, which is related directly to the
second moment (AxAf,) = md(k — k') of the fluctuating wave amplitude Ay. It is important to
notice that higher moments of the wave amplitude (Ay' A2 AP®...) can be written as a function of ny
only, because there exist an asymptotic closure for the problem [3].

The distribution ny displays a slow dynamical evolution (the pulsation frequency is eliminated
from the effective dynamics and enters as a condition of resonance of the wave set), given by the
small nonlinear interaction between waves of different wave numbers, at slow time scales with respect
to the fast dynamics of the dispersive wave system. The separation between the fast (linear) and
slow (nonlinear) time scales makes possible to describe the evolution of the wave system to an out-
of-equilibrium state by a means of a kinetic equation for nyx. The kinetic equation has the form

e = 73 [ ok — ki = ko) (e, = + 1)
k;
2| L3z 1P6(k — ky — ko) (nacnue, — nig, (i + 1, ) ) )0 (wie — wie, — Wiy ) Ko, (6.2)

for 3 interacting waves, for instance [1]. It takes into account only the second moment of the wave
amplitude. The higher moments of the amplitude are computed as a function of ny, and that is used
to compute the kinetic equation.

The density distribution evolves by a resonance processes between waves to a stationary state.
The number of interacting waves depends on both the dispersion relation wy = w(k) = w(k) and the
order of nonlinearity of the expansion of the interaction terms between waves. The kinetic equation
in wave turbulence posseses, very much like the Boltzmann equation for a diluted gas, an ‘H theorem
that drives the system in an irreversible way to the thermodynamic equilibrium (characterized by
the Rayleigh-Jeans distribution). An important point of this theoretical developement is the fact
that the kinetic equation can support non trivial solutions, different from those of thermodynam-
ics equilibrium. Zakharov [2] proved that there are out-of-equilibrium solutions that describe the
transport of conserved quantities like energy from the large scale of the injection of energy to the
small scale, where energy is dissipated. Within this inertial bandwidth of wave numbers a power-law
density distribution is a solution: ny; ~ k=%, with a > 0 the Kolmogorov-Zakharov exponent which
depends on the type of dispersion relation and the number of nonlinear interactions. By analogy
with the energy cascade in fully developed hydrodynamic turbulence [4| these solutions are named
Kolmogorov-Zakharov’s spectra (KZ). KZ spectra have been theoretically predicted for gravity and
capillary surface waves |5, 6], Alfvén waves in astrophysical plasmas [7], ion waves in plasmas [§|,
nonlinear optics [9], bending waves in thin elastic sheets [10] and so forth. Moreover, numerical
simulations show the realisation of wave turbulence regimes with KZ power-law spectra in gravity
[11] and capillary [12] wave turbulence.

Even though wave turbulence has been theoretically and numerically studied in several physical
systems, experimental evidences of the appearence of this out-of-equilibrium state are scarce. KZ
spectra have been observed in atmospheric science [13], surface capillary waves |14, 15, 16/, internal
waves in the ocean [17] and spin waves in solids [18]. In all these experimental studies, there was no
control of the injection mechanism nor on its effect on the nonlinear interactions between waves.

Recently, a new set of experimental studies have been conducted on the subject of gravito-capillary
wave turbulence in laboratory |19, 20|. In these experiences, a capacitive wire gauge recorded the
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local wave amplitude fluctuations 7(t) of random waves forced at the surface of a fluid. To record
the local wave amplitude, we will use the same principle of capacitive measurement of |19, 20| in our
experimental study.

o N
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Figure 6.1: Laboratory gravito-capillary wave turbulence experimental set-up and a typical time
recording of the surface wave height, n(¢) at a given location during 50 s. (Taken from [19]).

6.2 Gravito-capillary wave turbulence in laboratory experi-
ments

To introduce the subject, we describe the experiment used in [19, 20| to study gravito-capillary wave
turbulence, as it is schematically shown in Fig.(6.1). Contrary to the case of parametric excitation
described in Chapter 5, surface waves are generated here by the horizontal motion of two rectangular
(10 x 3.5 cm?) plunging Plexiglas wave makers driven by two electromagnetic vibration exciters (B
& K 4809) via a power supply (Kepco Bop50-4A). The wave makers are driven with random noise
excitation, supplied by a function generator (SR-DS345), and selected in a frequency range 0-fyp
with fgrp in the range 4 to 6 Hz by a low-pass filter (SR 640). This corresponds to wavelengths
of surface waves larger than 4 cm. This is in contrast with most previous experiments on capillary
wave turbulence driven by a monochromatical excitation frequency (mainly parametric amplification
[14, 15, 16]). Surface waves are generated 2.2 cm inward from two adjacent vessel walls and the
local displacement of the fluid in response to these excitations is measured 7 cm away from the wave
makers. The size of the container is 200 x 200 mm? filled with fluid up to 20 mm.

From the acquired local wave amplitude fluctuations of 7 the probability density function (PDF)
and power spectral density (PSD) were computed, as shown in Fig.(6.2). For large forcing amplitudes,
when gravito-capillary turbulence is developed over the surface, the PDF of n is asymmetric. The
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Figure 6.2: Left: Probability density function of the local wave amplitude n for 6 different values
of the fluid depth, from h = 18, 35, 55, 80, 110, to 140 mm (see the arrow). The frequency band
is 0< f < 6 Hz. Inset: Same PDFs displayed using the reduced variable n/1/(n?). Gaussian fit
with zero mean and unit standard deviation (dashed line). Right: Power spectra of the local wave
amplitude 7 for two different driving amplitudes. The frequency band is 0< f < 6 Hz. Dashed lines
have slopes -4.3 and -3.2. Inset: The frequency band is 0< f < 4 Hz. Dashed lines had slopes of
-6.1 and -2.8. (Both figures are taken from [19]).

high crests (positive events) are more probable than the deep troughs (negative events). The mean
level of local wave amplitudes () ~ 0. In the rescaled variable n/4/(n?), all the PDFs collapse on
the same curve. This behavior does not change when the fluid depth is increased.

The power spectrum of the surface wave amplitude is recorded from 4 Hz up to 200 Hz during
a time period (~ 2000 s), large with respect to the smallest resolved frequency, in this case, 4 Hz.
When the forcing is small, peaks related to the forcing and its harmonics are visible in the low
frequency part of the spectrum, as it is displayed in Fig.(6.2) (left, lower curve). When the forcing is
increased, the peaks related to the forcing and its harmonics are smeared out. A power law type of
spectrum developes in a small band of frequencies. At higher frequencies, larger than 30 Hz, another
power law can be fitted with a different slope. This frequency f. corresponds to the transition from
gravity-driven waves to capillarity-driven waves and is related directly to the capillary length [.. At
this length both restitution forces have the comparable effect in the dispersion relation

w(k)? = gk + %k:?’,

for a deep layer of fluid of density p and surface tension o (see Chapter 4). From this relation, the
capillarity length is computed as [, = y/0/gp, giving a cross-over frequency f. = \/g/2m2l.. For the
working fluid, mercury, [, ~ 1.74 mm and f. ~ 17 Hz. These parameters keep the same order of
magnitude when the fluid is changed for water. The capillary length cannot be significantly changed
using other interfaces between simple liquids and air. It is at an intermediate scale between the size
of the experiment and the dissipative length. The theoretical value f. is in good agreement with
the experiment (see inset in Fig. (6.2)) for a low-frequency broad band forcing. At higher forcing,
there is a shift (see main Fig.(6.2)) which can be due to nonlinear interactions between gravity and
capillary waves, but that deserves to be experimentally and theoretically studied. At even larger
frequencies, larger than 100 Hz, the dissipation of surface waves takes place at the capacitive wire
meniscus.
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The experimental spectrum density was compared to the theoretically predicted KZ power spec-
tral density S,(f) which follows a power law depending on the resitution force acting on the wave
system. For surface wave turbulence, the predicted spectra [1]| are

S,(f) ~ €Bgf~* for gravity waves,

1/6
Sy(f) ~ e/ (%) 7176 for capillary waves, (6.3)
where € is the mean injected energy flux per unit of mass into the system. The exponent in the
spectra is related directly to the number of waves which take part in the scattering matrix L and the
dispersion relationship. For gravity waves, 4 waves interact in the resonant process, and for capillary
wave turbulence, 3 waves interact (unless certain symmetries are impossed to the system).
These spectra can be also found by dimensional analysis [21|. To do so, one can use

| sinar= ),

which has units of (distance)?, that we will write as L?. As df has units of inverse of time 7!,
Sy(f) ~ L*T*. The other parameters of the system have the following units g ~ LT72, (c/p) ~
L3772 f ~T ' and e ~ L3T~3. Using dimensional analysis, we assume that we can write the power
spectrum density as a polynomial function ¥ of the adimensional parameters of the problem called
IT;. The number of independent II; is given by the number of dimensional quantities of the problem
(in this case 5) minus their dimensional units (in this case distance L and time 7', i.e. 2)) |22]. Then
U can be written as
of

S 3r-3
Hl = 62/7;(‘/;]0_)3 = \II(HQ = g,ﬂg = g ']Ec ) (64)

In the wave turbulence regime, where the forcing applied at large scale is discarded (f/f. <1),
the surface wave turbulence spectrum of local wave amplitude S, (f) can be either driven by gravity
3p-3
lim \I’(HQ,H3) — \Ilgrav(i%
€

IIo—0

or surface tension

hm \I](Hg,Hg) — \Ifcap(ﬂ).

I13—0 €p

At this point, we cannot conclude on the behavior of the function ¥, and certain assumptions have to
be made. We mainly assume that the the number of interacting waves will fix the power-law behavior
of ¥ though the energy flux e: for IV resonant wave process, the spectrum S, (f) dependence on the

energy flux goes as ev-T. For gravity waves, the number of waves interacting in the gravity regime is
4 [21], the exponent of the mean injected power must be 1/3. Therefore U ,,,,(x) ~ 21/® and we get
S,(f) ~ e/3gf~%. For capillary wave turbulence, the number of interacting waves is 3 [21], therefore
Uoop() ~ 21/ and we get S, (f) ~ 61/2(%)1/6f_17/6.

An important result of the experimental study is the strong dependence of gravity wave turbulence
on the forcing amplitude: the smaller the amplitude of the forcing, the steeper the slope of the
computed power-law spectrum. The experimental value varies from -4 for large forcing amplitude
and small driving frequency band (fz+,=4 Hz) to almost -7 for small forcing amplitude and large
driving frequency ( f4:=06 Hz). When the forcing is not strong enough, harmonics of the forcing still
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appear over the experimental spectrum [19]. The transition from the forcing peak resonance to the
developed gravity wave turbulent state deserves further study.

For capillary wave turbulence, the situation is different. The experimental slope of capillary
spectra are close to the theoretically predicted one S,(f) ~ f~17/6. It is found to be independent of
the forcing [19]. We will further study this regime in this Chapter.

Comment on the relation between frequency (local) and wave number (spatial) mea-
surements: The experimental power spectrum density discussed in the previous section is deduced
from the recorded wave amplitude fluctuations of a local measurement. This spectrum, when wave
turbulence is developed in the surface wave system, displays two distinct frequency windows where
a power-law type of spectrum developes: at low frequency (in between fg4.;, and f.) a gravity wave
regime, and at high frequency (in between f. and fys), a capillary one. For each regime, a compari-
son between experiment and theory was made [19]. The point we would like to discuss briefly here
is the fact that the theoretical calculations of the power spectrum density are made on wave number
space |1] and not in frequency domain. As we are considering a statistically homogenous system in
space, it is natural to compute the moments and statistical properties of the wave fluctuations by
taking space averages. Nevertheless, from the experimental point of view, taking space averages is
quite a difficult task. On the contrary, time averages of local wave amplitudes are much accessible.
It is possible to relate both for stationary solutions in the linear regime as follows:

dk
np(w) o< k4 %n(k)

where np(w) is the time averaged density distribution, now written in frequency domain, and d is
the dimension of the space where waves propagate (in this case d = 2). This is done by assuming
the validity of the linear dispersion relation wy = w(k), where % is well defined. The fulfillment of
the dispersion relation in the weakly nonlinear regime is taken as a fact for the comparison between
theoretically and experimentally computed power spectrum densities. In what rests, we will assume

that the dispersion relation is valid.

6.3 Capillary wave turbulence

Capillary waves are ubiquitous in nature. They appear whenever the interface between two fluids is
perturbed. In the presence of another restitution force that can sustain surface waves (such as gravity
or a magnetic field), a competition between both will occur, generating naturally a crossover length
(in the case of gravito-capillary waves, it is the capillary length [.). When forced out-of-equilibrium,
their nonlinear interaction can produce a turbulent-like regime termed capillary wave turbulence.
Capillary wave turbulence is the assymptotic regime where dispersive capillary waves at the interface
between two fluids interact randomly through weak nonlinearities. This interaction generates an
out-of-equilibrium stationary state where the density distribution n; displays a power-law behavior
as a function of the wave-number k. In this subject, theoretical, numerical and experimental studies
agree in showing the appearance of a scale-invariant KZ spetrum. Even so, there are several aspects
of capillary wave turbulence that have not been properly addressed or compared between theory,
experiments and numerical simulations, for instance, the non-gaussianity of the wave amplitudes
[23], the nature and existence of intermitency in a wave system [20, 24] or the role of symmetries
and dissipation in the wave interactions [25, 26]. From the experimental point of view, gravity waves
have always been present in the former experiments [14, 15, 16|, and their nonlinear interactions with
capillary waves has not been taken into account theoretically nor experimentally.
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To adress these points, pure capillary wave turbulence must be studied. The main issue in ground
experiments in surface wave turbulence is the interaction between diferent types of waves acting in the
same system, such as the case of gravito-capillary wave turbulence. Through the characteristic scales
of each cascade, energy and other conserved quantities must be transported. This is done through
different processes, envolving different mechanisms. Therefore, to properly study pure capillary wave
turbulence, surface gravity waves must be either negligible or eliminated. In the following section,
we present two experimental configurations where this can be achieved.

6.3.1 Experimental set-up and measuring techniques

We present now the experimental devices used to study the statistical properties of the local wave
amplitude fluctuations in pure capillary wave turbulence at the interface between two fluids. To be
able to neglect gravity effects as spureous contamination of the capillary regime we designed two
different set-ups. The first experiment, realized in a low-gravity environment, allowed us to probe
the local wave amplitude fluctuations in a capillary wave turbulence regime and also parametrically
amplified surface waves in a spherical container. It is the first experimental report on low frequency
(large scale) capillary wave turbulence. The second laboratory experiment was performed using a
gravity-matching technique, where two inmiscible fluids of similar densities where superposed, elim-
inating the acceleration of gravity from the surface wave dynamics. In this configuration, capillary
waves in deep fluids display a symmetric distribution of amplitudes with respect to the equilibrium
level, in contrast to the gravito-capillary wave turbulence distribution of wave amplitudes.

Microgravity experiment

Before describing the experimental set-up, we first explain the procedure and the necessary consid-
erations to perform an experimental study in a low-gravity enviroment. Low-gravity enviroment is
achieved by flying with the specially modified Airbus A300 Zero-G aircraft (operated by Novespace
for the Centre National d’Etudes Spatiales [27] at Bordeaux, Merignac), through a series of parabolic
trajectories (~ 90) which result in low-gravity periods, each one of 20 £ 2 s. Two campaigns where
performed, separated by 6 months. In the first (last) second of the parabolic flight, the acceleration
of gravity decreases (increases) and transient effects can polute the experimental measurements. Due
to this fact they are not taken into account in the acquisition of data, and only 18 s are acquired.
The effective gravity g.ss in a typical trajectory is low with respect to the acceleration of gravity g
on ground g.s/g ~ 5 x 1072, Although small, fluctuations in g.;; occur, called g-jitters.

Experimental device: The dynamical part of the experimental set-up is depicted schematically
in Fig. (6.3). An inner container is partially filled with a fluid. The container geometry is either
spherical (15 cm in diameter) or cylindrical (15 cm in diameter, 18 ¢cm in length). Each container is
made of a wetting material (Plexiglas cylinder or glass sphere) to avoid that the fluid loses contact
with the internal wall of the container during the microgravity phases. According to its geometry, the
container is filled with 20 or 30 cl of fluid. This corresponds to an uniform fluid layer of roughly 5 mm
depth covering all the internal surface of the container during the microgravity phases. The inner
container is fixed inside an outer container which is made of polycarbonate (Lexan) and is air-tight
to avoid fluid leaks. Security standards have to be respected in order to performed experiments in
low gravity. As it is shown in Figs. (6.3) and (6.4), the whole system is put down on a rail and is
submitted to vibrations by means of an electromagnetic exciter (BK 4809) via a power supplied (BK
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Figure 6.3: First Experimental set-up: Microgravity experiment. A spherical or cylindrical cell is
filled with a fluid. The waves at the surface of the fluid are excited by a low-frequency (large scale)
forcing performed by an electromagnetic shaker. Local wave amplitude fluctuations are measured by
means of a capacitive wire gauge. Acceleration measurements were done by means of a piezoelectric
accelerometer and a charge amplifier. The fluid motion and local wave patterns are also recorded by
means of a camera and a videocamera.

2706). We have used two type of forcings: sinusoidal to study parametric instabilities and random
to study wave turbulence.

e In the wave turbulence case, the container is driven with random noise, supplied by the source
of a dynamical analyzer (Agilent 35 670A), and low-pass filtered in the frequency range 0 - 6
Hz by a low pass filter (SR 650). This corresponds to wavelengths of surface waves larger than
1 c¢m in zero gravity.

e In the case of wave patterns, the container is driven with a sinusoidal forcing at frequency f
in the range 10 < fy < 70 Hz, forcing amplitude dy of few mm corresponding to a container
acceleration 0.1 g < ag < 30 g.

In this chapter, we will focus mainly on random forcing. Further investigations of the dynamical
properties of parametrically excited surface waves are presented in the publication on the subject in
the Appendix. The local acceleration of the container is measured with a piezoelectric accelerometer
(B & K 4803), which is screwed on the container, and a charge amplifier (B & K 2635). The fluid
used is either ethanol or water. The local displacement of the fluid is measured with two capacitive
wire gauges, plunging perpendicularly to the working fluid in two different places. At the beginning
of each recording, great care was taken to have one wire gauge always plunging into the fluid in order
to avoid voltage jumps if the water dewets locally the wire. The sensor working mechanism, linear
dynamical range and response time were described in the previous chapter. In the first campain,
a dynamical signal analyzer (Agilent 35670A) is used to record the power spectrum of the surface
wave amplitude and the acceleration of the container during each microgravity phase. In the second
campaign, both type of signals are low-pass filtered with an electronic filter (SR650) at 4 kHz to avoid
aliasing and recorded simultaneously at 10 kHz using an acquisition card (National Instruments PCI
6052E) inserted into a PC. The fluid surface is visualized with a Nikon camera and recorded with
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Figure 6.4: Left: Outer container in the low-gravity set-up with inner spherical container.Center:
Experimental set-up mounted on aluminium rack on Airbus A300 Zero-G. Right: Outer container
in the low-gravity set-up with inner cylindrical container. (Photos taken with gravity (fluid is at the
bottom of the container).

a Sony video camera. The whole acquisition system and dynamical set-up is screwed into a rack
(136 cm x 76 cm x 143 cm) which is in turn screwed tight to the plane (see Fig. (6.4)). During
microgravity experiments and when no vibration is applied, we observe that the fluid crawls up the
sides of the container. The fluid then covers all the internal surface of the inner container due to the
capillary forces. Contrary to the common sense, no formation of a single sphere of fluid is observed
in the middle of the tank, due to these capillary effects and the relative small amount of fluid. A
roughly homogeneous fluid layer is then formed on the internal surface of the container, confining air
in its center. Over the homogeneous layer, capillary waves form and fluctuations occur.

Gravity-matching experiment

The second way to elimate gravity waves is to design a set-up where two superposed fluids with the
same (or almost the same) density p. In this configuration, complete (or almost complete) buoyancy
is achieved and the effective gravity of the system becomes negligible. In this configuration, the
surface waves have no prefered orientation with respect to the vertical and pure capillary waves
dominate. The effective gravity can be controled by means of the density difference related to the
Atwood number A = (p; — p2)/(p1 + p2) which acs in the dispersion relation of the surface waves in
deep fluid layers as

P2y =P T s 6.5
*) ,01+P2g p1+ P2 (6.5)

where p; is the density of the upper fluid, p; is the density of the lower fluid and o is the surface
tension. For A=0, the only restitution force is surface tension and capillary wave turbulence can
develope on the interface. In the case of equal depth of the superimposed fluids, the number of
interacting waves in the scattering matrix increases and therefore the theoretically predicted capillary
wave turbulence spectrum shifts its slope (as it can be seen in the publications in the Appendix).
This can be understood by symmetry arguments: the interaction term has to take into account the
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Figure 6.5: Second Experimental set-up: Gravity-matching experiment: A closed container is filled
with an oil/water mixture. The waves at the interface are excited by a low-frequency random forcing
performed by a plunging wavemaker driven by an electromagnetic shaker. Local wave amplitude
fluctuations are measured by means of a capacitive wire gauge.

2z — —z invariance, and no odd-terms can appear, changing the order of the nonlinearity of the
interaction term. This imposed symmetry may as well change the PDF of the local wave amplitude,
because no difference can appear between crests and troughs. The slope and skewness changes can
be checked experimentally. We present in the following section the experimental device we have
developed for this matter.

Experimental device: The experimental device used to study capillary wave turbulence is shown
in Fig. (6.5). A Plexiglass container (height h~=60 mm, length /=100 mm, depth d=80 mm) is
half filled with distilled water (density p; =1.00 g/cm?, kinematic viscosity v; =0.01 cm?/s) and
half filled with silicon oil (PDMS from ABCR GmbH & Co., density p, =0.96 g/cm?, kinematic
viscosity vy =0.07 cm?/s). The surface tension coefficient for the fluids interface is ¢ ~ 30 mN/m.
This value depends on the chemical origins of the PDMS, but it cannot be lower than 10 mN/m
|28]. The equilibrium interface position is measured at 35 & 2 mm. The capillary surface waves are
excited in first place by a rotating Plexiglass wavemaker whose blade is plunging in between both
fluids. The wave blade oscillated between to angles and its motion is controlled by a SSD motor
from Parvex driven by a random gaussian noise coming from one of the outputs of a HP 8904A
frequency generator with cut-off frequency fg.., = 3 Hz. At very low forcing amplitude, the motion
of the wave blade creates large bubbles. This is due to the wetting properties of the silicon oil on
the wave blade. Any small motion, produces bubbles of water in oil that are advected by the flow
generated by the wavemaker oscillation. We thus discarded this method. The method that we used
afterwards is also based on a wave-maker that plunged into the upper fluid, oscillating vertically
without approaching the lower fluid. The wave-maker is driven by an electromagnetic vibration
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exciter (B & K 4809) via a power amplifier. The random forcing, supplied by the source output
of a dynamical spectrum analyzer (HP 8904 A), is low-pass filtered to a range between 0-3 Hz.
We control the forcing amplitude such that no bubble is present in the cell. The excited surface
wave amplitude 7 is locally measured 4 cm away from the container walls by means of a capacitive
gauge, 0.1 mm in diameter. The measured capacitive fluctuations are proportional to the local wave
amplitude ones. They are sampled at 500 Hz during 300 s. The calibration and linear response of
this type of measurement is described elsewhere [19]. We checked the constant frequency response
of the wire probe for the water-oil boundary in a frequency band between 1 to 100 Hz by means of
an accelerometer solidary to the probe and a charge amplifier. The only noteworthy differences are
that in this case both the dielectrics are liquids of similar densities and similar viscosities. We used
the fact that the linear response of this type of measurement depends on the dielectric ratio of the
fluids, in this case eyarer/Eon ~ 40, giving good signal to noise ratio for this oil-water mixture.

6.3.2 Experimental results

We present now the experimental results on capillary wave turbulence in the two configurations
described above.

Microgravity experiment

In the low gravity phase, when the container (either the cylindrical or the spherical one) is excited by
a low-frequency random forcing, surface wave fluctuations appear over the fluid layer. Even in some
cases these fluctuations are excited solely by the g-jitters. In this experimental configuration, large
events occur where the amplitude 7 fluctuates strongly. From the acquired signal n(t), we compute
the power spectral density of 7, as shown in Fig.(6.6). One single power-law spectrum is observed
on two decades in frequency. Whatever the geometry of the tank (sphere or cylinder) and the large
scale forcing (random or sinusoidal), the exponent is found to be close to -3. This spectrum does
not depend on the large-scale forcing parameter. Wave turbulence theory predicts a f~'7/% scaling
of the surface height spectrum for pure capillary regime. This expected exponent is close to the
value -3 reported here. Kolmogorov-like spectrum of capillary wave turbulence is thus observed in
Fig. (6.6) over two decades in frequency. To our knowledge, this large range of frequencies has never
been reached with ground experiments for such large scales. The power spectrum in the presence of
gravity is shown for comparison in the inset of Fig. (6.6). It displays two power laws: f~> and f—3
corresponding respectively to gravity and capillary wave turbulence regimes. The capillary range is
limited at low frequencies f < f. = \/pg/2mw2l. ~ 20 Hz. The capillary length [. being of order of
a few mm for usual fluids, the critical frequency f. is in rough agreement with the one observed in
the inset of Fig. (6.6). Such a critical frequency corresponds to a wavelength of the order of 1 cm.
When g —0, the cross-over frequency between both regimes is then predicted to be pushed away to
very low frequency. For our microgravity precision, £0.05 g, the capillary length then is expected
to be close to cm, and the cross-over frequency of the order of 1 Hz, corresponding to wavelength of
the order of 10 cm. Thus, in microgravity, for our frequency range (4 Hz up to 400 Hz), the power
spectrum of surface wave amplitude is not polluted by gravity waves. At high frequency, the power
spectrum in the capillary range in microgravity (Fig. (6.6)) is limited at frequency about 400 Hz
due to the low signal-to-noise ratio. Note that the high frequency limitation is lower in the presence
of gravity (> 100 Hz) as it is shown in the inset of Fig. (6.6). This cut-off frequency is related
to the meniscus diameter on the capacitive wire gauge that prevents the detection of waves with a
smaller wavelength. In microgravity, this latter effect vanishes since the meniscus diameter becomes
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Figure 6.6: Power spectrum density of the local wave amplitude in capillary wave turbulence in
microgravity. Lower curve: Random forcing 0 - 6 Hz. Upper curve: Sinusoidal forcing at 3 Hz.
Dashed lines with slopes of -3.1(lower) and -3.2 (upper). Cylindrical container filled with 30 cl
of ethanol. Inset: Power spectrum density of the local wave amplitude in gravito-capillary wave
turbulence. Slopes of dashed lines are -5 (upper) and -3 (lower) corresponding respectively to gravity
and capillary wave turbulence regimes. Rectangular container filled with a 20 mm ethanol depth.

of the order of the size of the container. When the container is submitted to random forcing, we
observe an invariant-scale power spectrum of wave amplitude on two decades in frequency in roughly
good agreement with wave turbulence theory. An inconvenient of the low-gravity measurements
is the small acquisition time of the random wave amplitude fluctuations: in an average parabolic
flight, we have only ~20 seconds of dynamical fluctuations associated with capillary wave turbulence.
Statistical resolution is not sufficient to resolve correctly the probability density function of the local
wave amplitude when large events are present. To bypass this problem, we have performed another
set of experiments on ground using gravity-matching fluids.

Comment on parametrically excited waves and wave turbulence: When the container
is submitted to periodic excitation, two-dimensional subharmonic patterns with a given symmetry
(stripes or hexagons) develope on a spherical or cylindrical fluid surface for forcing strong enough to
parametrically excite the surface waves. In this periodic geometry, there are no boundary effects of
the waves with the container. We have noticed that their dynamical description cannot be simply
subscribed to parametric surface waves. A much more complex picture appears: the wave motion
results from the interaction between two instabilities (sloshing motion related to the global motion
of the fluid layer and parametric amplification). Note that the slope of the continuous part of the
spectrum is steeper in the presence of parametric wave patterns than for wave turbulence (Sn( f) ~
/% in Fig. (6.7) instead of f~* in Fig. (6.6)). This can be related to cusps of the spatial patterns
sweeping the sensor, due to the fact that the power spectrum density of a continous signal with
derivative discontinuities displays a f~* power-law.
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Figure 6.7: Left: Typical PSD of local wave amplitude fluctuations when sinusoidal forcing of
frequency fo =30 Hz is acting on the container, at acceleration value ap=1.16 g. Right: Subharmonic
patterns on the spherical surface of a fluid in microgravity.

Gravity-matching experiment

With the data acquired by the capacitive gauge, we calculate the probability distribution function
(PDF) of the local wave amplitude 7, as shown in Fig. (6.8) (main). We notice that (n) ~ 0 and
that its fluctuations are close to being symmetric with respect to n = 0. No exponential tails are
found. The kurtosis of the PDF is slightly larger than 3, but not large enough to exclude gaussianity.
For comparison, when replacing the upper fluid with air, we show in Fig. (6.8) (inset), the PDF for
the local wave amplitude when gravito-capillary wave turbulence developes. We see the asymmetric
tails (positive skweness) as it has been mentioned above. This contrast is a clear indication of
the symmetry imposed in the system: there is no external field (such as gravity) that breaks the
z — —z parity thus the surface perturbations are symmetric with respect to n = 0. It is unclear
if the fluctuations are indeed gaussian, but resolution of large events could not be made in the
present experimental set-up. As discussed above, the wave system has a very low Atwood number
A = (p1—p2)/(p1+p2). For the nominal densities of both fluids A=0.02, reducing the effective gravity
drastically. The dispersion relation for waves at the interface is, in the case of the deep water limit,
written in Eq. (6.5). One finds that in this system the capillary length [, = 271/ Ao /g(p1 + p2) where
the crossover from gravity to capillary regime takes place is an order of magnitude larger than for
liquid-air interface. This means that the frequency crossover between gravity and capillary regimes
fe =/ (p1 — p2)9/2(p1 + p2)l. is obtained at a frequency close to 3-4 Hz for our working fluids.
Therefore, when the frequency cut-off of the forcing is larger than f., the only KZ-type spectrum we
can observe is the capillary one. In Fig. (6.9) we show both the pure capillary (main figure) and the
gravito-capillary (inset) spectra. In the capillary-driven transparency window we can see only one
scale-invariant spectrum (for frequencies larger than the characteristic frequencies of the broad-band
forcing). The slope of the spectrum is roughly ~ f=27.

The experimental value of the slope is a point worth explaining. We can calculate theoretically
the slope of the spectrum in this configuration, as it is shown in the publication in the Appendix.
Another way to calculate the spectrum slope is to assume that the number of wave interactions
changes from 3 (as the case of the usual capillary wave turbulence) to 4, due to the imposed z — —z
invariance. Using dimensional analysis, we can write the power spectrum density S, (f) as a function
of the parameters of the system o, p1, pa, the average energy flux per unit of mass € and the frequency
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Figure 6.8: Probability density function (PDF) of the local wave amplitude 7 at the interface of
two inmiscible fluids with A—0.02 (in blue) and a parabolic fit (in red). Inset: Probability density
function (PDF) of the local wave amplitude 7 at the interface of a water-air interface with A=1 (in

blue) and a parabolic fit (in red).
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Figure 6.9: Power spectral density (PSD) for the local wave amplitude 7 at the interface of two
inmiscible fluids with A=0.02 (in continuous blue line). Best fit slope S, (f) ~ =% (in dashed red
line). Inset: Power spectral density for the local wave amplitude 7 at a water-air interface with A=1
(in blue) and the best-fit KZ spectra (in red) for gravity and capillary waves, as shown above.
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f. As before, S,(f) has units of L*T" and € has units of L*T~*. We can write S,(f) as a function of
the adimensional numbers of the problem. To wit, the power spectrum density of capillary waves in
this configuration reads

_(C 23 —7/3 _ p1—p2 pe
Slf) = (E) d X A= p1+p2’ U_f) (6.6)

where ®(z, y) is a polynomial function of two variables and we have used the definition of the Atwood
number A. We discard a dependence of ¥ in A and we asume that when A — 0, & — &4 constant
|22]. As it was explained in the beginning of the chapter, for 4-wave interactions, S, (f) depends on
the average energy flux per unit of density € (related directly to the mean injected power furnished
by the wavemaker) as €'/3. Therefore

o\ 23 s pe 1/3 o\ /3 s
5"<f>“<;) d (—f) ”(?) ;=

This result is close to the numerically computed PSD S, (f) ~ f~%7, where the error is, in the worst
case, 6%.

This slope, as in the previous experiments, is forcing independent. For the small forcing used in
this experimental set-up, no cusps over the wave crests were observed, which eliminates the possibility
of singularities polluting the spectral content of the signal. This stresses the fact that capillary wave
turbulence is a robust phenomenon.

Comment on the cut-off frequency of capacitive measurements : All through this Chapter
local capacitive measurements were performed in order to extract the local amplitude fluctuations
of the wavy fluid level in two experimental devices where gravity could be removed, or at least
neglected, from the surface wave evolution. These fluctuations present a power law spectrum with
a given slope over a certain frequency band, which is compared with the one obtained in ground
experiments in presence of gravity. The cut-off frequency of both computed spectra are different.
For gravitocapillary measurements, the frequency cut-off is close to 150-200 Hz, where a dissipation
slope, steeper than the capillary slope develops. This viscous dissipation takes place for small waves
that arrived at the meniscus of the fluid at the wire probe. The typical lengths asociated to the
cut-off frequency is at least a factor 5, calculated from the dispersion relation of capillary waves for
water. In absence of gravity, the capillary frequency f. goes to zero as ¢*/* and as the effective gravity
of the system goes to zero, close the capacitive wire the small amplitude waves are less atenuated.
As the meniscus gets larger and larger, the small amplitude waves are less damped as they approach
the wire, making the cut-off frequency larger and larger. In microgravity and gravity matching
experiments, the frequency cut-off was of the order of 400-500 Hz.

6.4 Conclusions

We have presented results about pure capillary wave turbulence regime in two different experimental
set-ups, where the effect of gravity can be neglected. The main feature of both experiments is the
power-law spectrum of the capillary waves, that display a slope independent of the forcing. The
experimental PSD of the local amplitude fluctuations shows a power-law behavior (S, (f) ~ f~39 for
the microgravity experiment and S, (f) ~ f~27 for the gravity matching experiments) which are in
farly good agreement with the theoretical predictions. In the microgravity experiment, parametric
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surface waves were also studied, although their behavior is not discussed here. In the gravity matching
experiment, the PDF of the local wave amplitudes is a gaussian, and no exponential tails where found,
which can be seen as a signature of the effect of the symmetry imposed on the system.
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Conclusions and perspectives

Conclusion

In this thesis, several studies have been conducted on the statistical properties of observables in dis-
sipative systems forced in statistically out-of-equilibrium states. In these states, observables whether
local (such as the local wave amplitude in a steady turbulent-like regime) or global (such as the
injected power necessary to maintain a system in a steady out-of-equilibrium state), display large
fluctuations. These fluctuations are, in some cases much larger than their average and their dis-
tribution often cannot be described by the usual tools of equilibrium statistical mechanics where
minimization principles can be used to construct equilibrium distributions. It is this lack of general
rule to approach out-of-equilibrium distributions and properties of observables that motivated this
work, where simple systems are used to probe and understand the statistics of out-of-equilibrium in
order to apply these results to more complex and nontrivial systems.

The first part of this thesis is devoted to the experimental and theoretical study of the fluc-
tuations of the injected power I necessary to sustain a statistically stationary state in dissipative
out-of-equilibrium systems. We have recalled in first place the main energy balance equation relating
the injected and dissipated power and given simple examples where the dissipated power P, can be
modelized to find relationships between internal energy fluctuations o and injected power fluctua-
tions o7 (Chapter 1). We have focused specifically in the case where the forcing driving the system
out-of-equilibrium is a random gaussian noise. We have shown that the shape of the PDF of the
injected power fluctuations displays exponential asymmetric tails and a cusp close to zero, its most
probable value. The PDF shape can be computed from a simple theoretical model which uses the
fact that both the large scale forcing f and the response of the system v are gaussian and correlated,
with (fv) = (I) > 0. The asymmetry of the injected power statistics is solely controled by the
mean injected power (I), and therefore by the mean dissipated power (Pyss) (Chapter 2). We have
experimentally studied one of the simplest out-of-equilibrium system, an electronic RC circuit forced
by a random gaussian noise which displays such a distribution. Several other dissipative systems in
stationary states display such statistics of the injected power, even when a larger amount of degrees
of freedom are involved in the definition of injected power. Finally, we have experimentally tested
the Fluctuation Theorem (FT) in the simple electronic RC circuit (Chapter 3). The FT relates the
fluctuations of the injected power fluctuations I averaged over a time lag 7 (much larger than the
correlation time 7.) with the internal energy fluctuations. We have found out that in this simple dis-
sipative system the FT holds for small values of I/ (I), but later it breaks down for values of I../ (I)
larger than 1. Also we have tested experimentally the FT in a wave turbulence experience, where a
wavemaker excites the surface waves. By measuring both the force applied by the wavemaker on the
fluid and the velocity of the wavemaker, the injected power was computed. These simple systems
display large fluctuations of the global observable e = I../(I) larger than 1 for 7/7. ~ 20, making
them excellent candidates to study the fullfillment of the FT. We have found out that the FT does
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not hold in both cases.

The second part of this thesis is devoted to the experimental study of fluctuations in wave systems.
Here, we have studied the local wave amplitude fluctuations at the surface of a fluid. This set of waves
are excited by means of parametric amplification (sinusoidal vertical vibration of the container) or
large scale forcing (low-frequency vibration of wavemakers plunging into the fluid or low-frequency
vibration of the whole container). We present the main results in both cases:

e In the case of the parametric amplification of surface waves, the system developes a stationary
cellular pattern at the fluid surface. The cellular pattern oscillates at half the frequency of
the forcing fe,. Its geometry, for all working fluids (water or mercury) is squared and appears
over the whole surface of the fluid. This mode can present complex dynamical behavior when
the surface waves are nonlinearly coupled with another dynamical variable, such as a large-
scale flow or a turbulent-like flow. We have focused experimentaly on two situations. In the
first case, when the parametric amplification is much larger than the threshold value of the
control parameter, defects appear on the pattern (Chapter 5). We have measured the local
wave amplitude by means of a capacitive gauge. These defects are lines connecting two sides
of the container. The local value of the wave amplitude vanishes on a defect. We have studied
their local dynamics and shown that they appear after secondary bifurcations of the cellular
pattern. In the turbulent-like state called defect-mediated turbulence they change qualitively
the internal dynamics of the wave system. This effect can be seen in the PDF of the local
wave amplitude, which displays an exponential tail and non-gaussian statistics and also in the
PSD of the local wave amplitude, where a power-law spectrum ~ f~> appears as an indicator
of the genration of defects over the wave pattern. In the second case an underlying vortex
flow is superimposed on the parametrically amplified surface waves (Chapter 5). The vortex
flow is generated by a periodic Lorentz force F) which acts on the conducting fluid (mercury).
We have measured both the local wave amplitude by means of inductive sensors and also the
local velocity field by means of Vivés probes. The underlying vortex flow can be viewed as a
source of spatio-temporal noise. We have shown that these spatio-temporal fluctuations have
two main effects on the parametric surface waves: they locally break the global structure of
the cellular pattern and it increases the threshold value of the control parameter for parametric
generation of waves.

e In the case of large scale forcing, the nonlinearly interacting waves develope a statistically
steady state known as wave turbulence. We have conducted experimental studies on these out-
of-equilibrium states, where the local wave amplitude is measured. We have focused on the case
where the restitution force of the surface waves is solely capillarity and shown that capillary
wave turbulence is a robust phenomenon. In two independent experimental devices where
gravity can be neglected, (either in a microgravity environment where the effective gravity is
negligible or in a gravity-matching experiment performed with two superposed inmiscible fluids
of equal densities where gravity in the wave system is also negligible) a scale invariant PSD
of the local wave amplitude over two decades appears, with slope close to -3, as theoretically
predicted.

We must stress that the main results of this thesis are robust although the simplicity of the
experimental devices used to study dissipative systems. The main idea is to expand these results to
more complex systems such as fully developed turbulence, MHD systems or granular materials, where
not many experimental studies have been conducted to gain insight on the statistical properties of
observables (wheter global or local) in out-of-equilibrium states.
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Perspectives and open questions

Fluctuations of observables in dissipative systems sustaining out-of-equilibrium steady states are far
from being understood in the same way as fluctuations at thermodynamic equilibrium. There are no
generic tools to study such a complex problem, such as the ones of statistical mechanics can provide
for equilibrium, and thus in several situations ad-hoc approaches have to be used for each specific class
of systems. In this work we have experimentally studied the injected power fluctuations in a class of
dissipative systems where the forcing f can be modelised by a random gaussian noise of zero mean
following the dynamics of an Orstein-Ulhembeck process. This is an importante simplification: no
large fluctuations of f nor more complex temporal behavior are taken into account in this approach.
Even more, the relation between f and the response v of the system to the driving is linear and no
higher derivatives nor (temporal) memory effects where used to describe the dynamics of v. A more
detailed study on the effect of these changes on the shape of the PDF of the injected power I, such
as nonlinear corrections on the damping rate or memory effects, should give insight on the role of
large fluctuations in the out-of-equilibrium properties of internal degrees of freedom, such as the case
of intermittency in fully developed turbulence.

Regarding waves at the surface of a fluid displaying out-of-equlibrium steady states, we have
studied in several experimental devices their local amplitude dynamics and the effect of fluctuations,
whether external (by means of a superimposed underlying flow as a source of spatio-temporal noise) or
internal (by nonlinear interaction between excited modes at different characteristic scales) on their
statistics. Although interesting results have been found in parametrically amplified waves and in
capillary wave turbulence, they all concern local measurements (of wave amplitude or velocity field).
The relationship between one-point temporal measurements and spatially resolved measurements
rely on certain hypothesis such as the Taylor hypothesis in fully developed turbulence or, in wave
systems, the existence of a dispersion relation. Their validity needs to be tested in the nonlinear
regime, even the case where the slope of the surface waves is comparable to the wavenumber, and
spatio-temporally resolved measurements should be made to fully test wave turbulence theory and
the effect of small-scale fluctuations on parametrically excited waves. Furthermore, the dissipative
scale in surface waves should be studied, in order to understand their dissipation mechanism in the
case of a continuum of excited modes (as in wave turbulence) or a discrete set (as in parametrically
excited waves).
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Appendix A

Thermalization of the Langevin equation

We recall in this Appendix the equilibrium thermalization process of a brownian particule, described
by a Langevin equation using the Fluctuation-Dissipation theorem and we show how the simple
dissipative system used in Chapter 2 and 3 does not satisfy the Fluctuation-Dissipation theorem
when is forced out of equilibrium by a random gaussian noise with a non-vanishing correlation time.

A.1 Fluctuation-Dissipation theorem and thermalization

It is important to stress that the simple system governed by the Eqgs. (2.1) and (2.2)

P — () + 100,
PO _ sy +ca. (A1)

used in Chapter 2 and 3, where the forcing f(¢) is a colored noise, is strongly forced out-of-equilibrium.
In this configuration, no thermalisation can occur, which means that the we cannot relate directly
the fluctuations of the forcing f(¢) with the dissipation v through the equilibrium temperature 7.
To prove this point, we will use the Fluctuation-Dissipation theorem.

The Fluctuation-Dissipation theorem can be understood as follows: given a system in equilibrium
with a thermal bath at a temperature 7', the statistical distribution functions are given by the
Boltzmann weights ~ exp[E/kgT], with F the energy of the system and kp=1.38 x10723 kg m? s~2
K™! the Boltzmann constant. We apply an external force F'(t) which starts to act on the system
at an instant ¢ = 0. The response of the system to this forcing will be a fluctuating quantity.
The variation of the conjugated thermodynamical variable of F' (called X') will change the internal
energy to £+ X (t)F(t). In the case where the forcing acting on the system is "small" enough, we
will assume that the response of the system is proportional to the forcing. In the frame of this linear
response theory?, we can write

(X (1)) = (X(0))o + / \(t— ) F (),

where (X (¢))r and (X (t))o represent the perturbed and unperturbed averaged variables, and (t—1t)
the linear response function of the system under study. It is important to notice that we have assume

!Examples of thermodynamical conjugated pairs are for instance pressure and volume, entropy and temperature,
strain and stress, voltage and impedance, and mobility and diffusivity.
2See the first references in Chapter 3 for linear response theory
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the causality of the system (x(f) = 0 for ¢ < 0) which is set in a stationary regime so that in the
unperturbed configuration (X (¢))o = (X(0))o . In this framework, we can relate the fluctuations of
the observable X in equilibrium, given by its autocorrelation function Cxx(7) = (X (¢t + 7) X (¢))o,
with the linear response function x(t) of a system at equilibrium with a thermal bath at temperature
T.

To do so in a simple way, we suppose that F(t) = Fy for ¢t > 0. Assuming that the distribu-
tion function of the energy of the system is given by the Boltzmann weights, we develope them as
exp[E'[BT| ~ exp[E/BT](1 + FyX(t)). Then we compute the perturbed average (X (t))r as

(X (8)p = (X(0)) + ,i—‘;pcm(t).

The Fluctuation-Dissipation theorem therefore states that

t
Cxx(t) = k‘BT/ X(t — t/)dt/,
0

or in frequency domain w
kgT .
5x(w) = 472 ([0
In the Langevin equation (as it is written in Eq.(2.2)), {(¢) is a gaussian white noise with no
correlation time and the Fluctuation Dissipation theorem holds with Sp(w) = 4kpT/A(N\? + w?) =
422L I m(1%(w)), with x(t) = exp[—At] and D = vkpT. From Eq.(2.2) we can see that the forcing term
f(t) used in Eq.(2.1) has a typical correlation time scale of order A=! such that the frictional term
should involve a certain memory effects and be written instead of yv as fot(D/kBT)e’\(t_t')v(t’)dt’, in
order to describe a thermal bath with a finite correlation time.
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Appendix B

Calculation of the PDF of the injected
power from the Fokker-Planck equation

We present here the calculation of the probability density function of the injected power I for the
simple systems governed by Egs.(2.1) and (2.2).

B.1 Fokker-Planck equation

In this complement we will discuss the calculation of the stationary probability density function of
the system described in Eqgs. (2.1) and (2.2). Taking the derivative of Eq.(2.1) and using Eq.(2.2),
we can write the evolution of v(t) as

(1) + (A +7)ot) +yAv(t) = C(1),

((t) being a white noise with zero mean and singular auto-correlation function ({(¢)((t')) = Dd(t—t).
This is the equation for the position z(t)of a damped particle of unit mass and damping coefficient
A+ 7 in a quadratic potential of stiffness Ay, although in this case there are no oscillations due to
the fact that the eigenvalues of the equation are {—\, —v}. Following [6], the evolution equation
for the joint conditonal probability distribution function P(v, f,t) of both variables is called the
Fokker-Planck (or the forward Kolmogorov) equation and reads

A
atp(v> .fa t) = _av [(f - VU)P(I% .fa t)] + )\8]0 [fp(’l}, f> t)] + Eaffp(v> .fa t)
In the stationary limit, no temporal dependence on time appears and the solution to the stationary
Fokker-Planck solution with a gaussian initial condition is the so-called bivariate gaussian PDF. To

calculate this joint PDF a simple calculus can be done by noting that if {(¢) is gaussian and the
equations are linear, then P (v, f) must remain gaussian. We supose that, in the stationary limit,

Pv, f) ~ exp[—%(av2 + 200 f + cf?)].

We have also used the fact that the mean values of both variables are zero, which results directly
from (¢) = 0. In the stationary limit the condition 9,7 = 0 means that the coefficients have to obey
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the relationships

(B.1)

where we have defined the correlation coefficient r» = (vf)/o,0;. Calculating these coefficients from
Eqgs.(2.1) and (2.2) is straightforward. We can write stationary solutions of both equations as

o(t) = /0 t F()e " ay (B.2)

o - [ (e
(B.3)

where we can compute that (f?) = D/2\, (v?) = D/2X\y(A + ) and (vf) = D/2X\(y + \). With
these constants, the normalized probability density function is the bivariate gaussian PDF

1 1

Pl f) = 2mo,.0p(1 —12)1/2 P _m (v2/a§ ~ 2rof/(ovog) ¥ f2/a]2c) '

B.2 Calculation of the probability density function of I=fv

From the solution of the Fokker-Planck equation, P(v, f), we compute the PDF of I = fv. We begin
by normalising the variables v' = v/o, and f' = f/o; in order to simply the calculations. Then, we
change variables from the pair {f’,v'} to {I = fv,u = v'}. The probability density function P(I,w)

must then satisfy
(' (I,u), f'(I,u))
oI, u)

P01, 0) — P

where

'8(@’([,u),f’([,u))‘ 1
(I, u) NG|

is the determinant of the jacobian of the transformation, therefore the joint PDF of {f’,v'} is

1 1 2 2 2
P w) = 2m(1 — r2)1/2\/mexp {_2(1 —r?) (= 2rl /T )] ’

with 7 = (I). From this starting point, we integrate on u to get the probability density function of
I, as

exp [rl/(1—r*)] [* exp {_
2m(1 — r2)12 /1] J - 2(1—r?)

P(I) = (v* + 0 /12)} dI.
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The integral can be aproximated using the steepest descent method! for functions of the form
exp|—f(u)], where f(u) has a global unique minimum at wuy in the interval of integration. The
function can be expanded as a Taylor series around wuy

(u — ug)?

0+ O((u = u0)?),

fu) = f(uo) + f'(uo)(u — uo) + f"(uo)
where f’(ug) stands for the derivative of f with respect to u, evaluated at .
Due to the fact that ug is a global minimum, we can aproximate the integral

(u — u)?|du = % exp|f(uo)].

/_OO exp|f(u)]du ~ exp[f(uo)] /OO exp[f//(;o)

[e.9] —00

We have just used that the former integral can be aproximated by a gaussian function that decreases
fast such that only the the values of u close to ug are important in the integration.

We apply the former method the function f(u) = (u® + I*/u?)/2(1 — r?), which has a global
minimum at uy = +/|I| with concavity f”(ug) = 4/(1 — r?). The probability density function of T
can be aproximated by

P(I) = Cexp[rl V1 =12 x exp[|1]/(1 = )]/ V/|1],

with C' a normalisation constant. This exponential behavior can be sorted out of the exact expression
of P(I), that comes from the integral representation of the modified Bessel function of the second
kind of order zero Ky(z) as?

[ esplle? + a2y = - Koo

Using the PDF of I we can calculate all the moments of I, (I)" as,

()" = / h "P(Idl,

—00

which will depend only on the normalized mean injected power r = (v’ f').

1Gee, for instance, Mathematical Methods for Physicists, George B. Arfken and Hans J. Weber, Academic Press,
New York (2000)
2See, for instance, from B. Sorin, P. Thionet, Revue de statistique apliquée, 16, N°4 (1968), pp.65-72)
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Appendix C

Copie of articles

C.1 "Fluctuations of Energy Flux in Wave Turbulence", pub-
lished in Physical Review Letters, 100, 064503 (2008)

Abstract: We report that the power driving gravity and capillary wave turbulence in a statisti-
cally stationary regime displays fluctuations much stronger than its mean value. We show that its
probability density function (PDF) has a most probable value close to zero and involves two asym-
metric roughly exponential tails. We understand the qualitative features of the PDF using a simple
Langevin-type model.

C.2 "PDF of the power injected by a random forcing into dissi-
pative systems", submitted to The European Journal of Physicas
B (2008)

Abstract: The fluctations of the injected power necessary to drive a dissipative system into a
nonequilibrium steady state, is studied. Here we develope the ideas evocated in a previous letter.
First, we show that very different physical systems driven by a random forcing present identical
features for the fluctuations of their injected power. Other related quantities like the heat flux in
turbulent convection exhibit the same type of fluctuations. In all the cases considered, the Prob-
ability Density Functions (PDF) of the injected power, I, have a characterisic cusp at I = 0 and
asymimetrical exponential tails. In the second part we will detail the derivation of an exact analytical
formula of the PDF of these fluctuations in the simplest case of this class of dissipative brownian
motion: we compute first the joint PDF of velocity and applied force for the brownian motion of
a particles sustained by an Ornstein—Uhlenbeck (O-U) type of noise and then we deduce the PDF
of their product. The agrements and discrepancies of these PDF with the ones obtained in other
dissipative systems are discussed. Further extensions of these works, espacially for energy flux in
turbulent flows will be discussed to conclude.

C.3 "Fluctuations of energy flux in a simple dissipative out-of-
equilibrium system", submitted to Physical Review E (2008).

Abstract: We report the statistical properties of the fluctuations of the energy flux in an electronic
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RC circuit driven with a stochastic voltage. The fluctuations of the power injected in the circuit
are measured as a function of the damping rate and the forcing parameters. We show that its
distribution exibits a cusp close to zero and two asymmetric exponential tails, the asymmetry being
driven by the mean dissipation. This simple experiment allows to capture the qualitative features of
the energy flux distribution observed in more complex dissipative systems. We also show that the
large fluctuations of injected power averaged on a time lag do not verify the Fluctuation Theorem
even for long averaging time. This is in contrast with the findings of previous experiments due to
their small range of explored fluctuation amplitude. The injected power of an ensemble of N circuits
is also studied to mimic systems with large number of particles either correlated or not, such as in a
dilute granular gas.

C.4 "Local Dynamics of Defects in Parametrically Excited
Waves", submitted to International Journal of Bifurcation and

Chaos (2008).

Abstract: We present an experimental study on the local dynamics of parametrically excited waves
at an air-water interface when defects are present in the wave pattern. The probability density
function (PDF) of the local wave amplitude displays an exponential part for values close to the
average amplitude and decreases sharply to zero for large amplitudes. The power spectral density
(PSD) of the local amplitude fluctuations shows a power-law behavior over one decade which we
relate to a regime of defect-mediated turbulence.

C.5 '"Faraday Waves in the Presence of Spatio-Temporal Noise",
to be submitted to Physical Review E (2008).

Abstract: We report an experimental study on the nonlinear interaction between a spatially periodic
vortex flow and the celular flow that generates parametrically excited surface waves in a liquid metal.
The vortex flow acts as a source of spatio-temporal noise for the wave system. The subharmonic
response of the local wave amplitude and velocity field is diminished as the vortex flow intensity
increases, as it is shown in their power spectral densities, probability density functions, correlation
measurements and spectral coherence. In addition, the instability threshold of the subharmonic
waves is increased, showing the effect of an effective viscosity.

C.6 "Capillary wave turbulence on a spherical fluid surface in
zero gravity", submitted to Physical Review Letters (2007).

Abstract: We report the observation of capillary wave turbulence on the surface of a fluid layer in
low gravity environment. In such conditions, the fluid covers all the internal surface of the spherical
container which is submitted to random forcing. The surface wave amplitude displays power-law
spectrum over two decades in frequency. This spectrum is found in roughly good agreement with
the wave turbulence theory. Such a large band observation has never been reached during ground
experiments due to the presence of gravity waves. When the forcing is periodic, two-dimensional
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spherical patterns are observed on the fluid surface such as subharmonic stripes or hexagons with
wavelength satisfying the capillary wave dispersion relation.

C.7 "Symmetry Induced 4-Wave Capillary Wave Turbulence",
submitted to Physical Review Letters (2008).

Abstract: We report theoretical and experimental results on 4-wave capillary wave turbulence. A
system consisting of two inmiscible and incompressible fluids of the same density can be written
in a Hamiltonian way for the conjugated pair (1, ¥). When given the symmetry z — —z, the set
of weakly non-linear interacting waves display a Kolmogorov-Zakharov (KZ) spectrum ny ~ k=
in wave vector space. The wave system was studied experimentally with two inmiscible fluids of
almost equal densities (water and silicon oil) where the capillary surface waves are excited by a low
frequency random forcing. The power spectral density (PSD) and probability density function (PDF)
of the local wave amplitude are studied. Both theoretical and experimental results are in fairly good
agreement with each other.
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