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3-Wave Turbulence

H = T + U =

∫
ωkakākdk +

∫
u(k)dk

Forcing and dissipation are added to Hamilton’s equations:

∂ak

∂t
= i

δH
δāk

+ fk − γkak

ak, āk are complex canonical variables. Interaction energy:

u(k1)=

∫
Vk1k2k3

(
ak1ak2 āk3 + āk1 āk2ak3

)
δ(k1 − k2 − k3) dk2dk3

Scaling parameters : Dimension, d : k ∈ Rd

(d , α, γ) Dispersion, α: ωk ∼ kα

Nonlinearity, γ: Vk1k2k3 ∼ kγ
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The 3-wave kinetic equation

Evolution of WT wave spectrum, nk, given by:

∂nk1

∂t
= π

∫
V 2

k1k2k3
(a1nk2nk3 − a2nk1nk2 − a3nk1nk3)

δ(ωk1 − ωk2 − ωk3) δ(k1 − k2 − k3) dk2dk3

+π

∫
V 2

k2k1k3
(a1nk2nk3 + a2nk1nk2 − a3nk1nk3)

δ(ωk2 − ωk3 − ωk1) δ(k2 − k3 − k1) dk2dk3

+π

∫
V 2

k3k1k2
(a1nk2nk3 − a2nk1nk2 + a3nk1nk3)

δ(ωk3 − ωk1 − ωk2) δ(k3 − k1 − k2) dk2dk3

= a1S1[nk] + a2S2[nk] + a3S3[nk]

a1 = a2 = a3 = 1!
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Isotropic Kinetic Equation: Forward Transfer

Angle averaged spectrum, Nω = Ωd
α ω

d−α
α nω, satisfies:

∂Nω1

∂t
= a1S1[Nω] + a2S2[Nω] + a3S3[Nω]

S1[Nω1 ] =

∫
L1(ω2, ω3) Nω2 Nω3 δ(ω1 − ω2 − ω3) dω2dω3

−
∫

L1(ω3, ω1) Nω3 Nω1 δ(ω2 − ω3 − ω1) dω2dω3

−
∫

L1(ω1, ω2) Nω1 Nω2 δ(ω3 − ω1 − ω2) dω2dω3,

Details are hidden in the kernel L(ω1, ω2). Scaling of the
interaction coefficient:

L1(ω1, ω2) ∼ ωλ, λ =
2γ − α
α
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Isotropic Kinetic Equation: Backward Transfer

S2[Nω1 ] =−
∫

L2(ω2, ω3) Nω1 Nω2 δ(ω1−ω2−ω3) dω2dω3

+

∫
L2(ω3, ω1) Nω2 Nω3 δ(ω2 − ω3 − ω1) dω2dω3

+

∫
L2(ω1, ω2) Nω3 Nω1 δ(ω3 − ω1 − ω2) dω2dω3,

S3[Nω1 ] =−
∫

L3(ω2, ω3) Nω1 Nω2 δ(ω1−ω2−ω3) dω2dω3

+

∫
L3(ω3, ω1) Nω2 Nω3 δ(ω2 − ω3 − ω1) dω2dω3

+

∫
L3(ω1, ω2) Nω3 Nω1 δ(ω3 − ω1 − ω2) dω2dω3.
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Physical Meaning of the Si [Nω]: Triad Formulation

Rates:
S1[Nω]
Loss ωj : ωj L1(ωj , ωk ) Nωj Nωk .
Loss ωk : ωk L1(ωj , ωk ) Nωj Nωk .
S2[Nω]
Gain ωj : ωj L2(ωj , ωk ) Nωi Nωj .
Gain ωk : ωk L2(ωj , ωk ) Nωi Nωj .
S3[Nω]
Loss ωj : ωj L3(ωj , ωk ) Nωi Nωk .
Loss ωk : ωk L3(ωj , ωk ) Nωi Nωk .
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The Kolmogorov-Zakharov Spectrum

Zakharov transformation yields stationary solution:

Nω = cKZ
√

J ω−
λ+3

2 .

where

cKZ =

√
2
A
, A =

dI
dx

∣∣∣∣
x= λ+3

2

.

and

I(x) =
1
2

∫ 1

0
L1(y ,1− y) (y(1− y))−x (1− yx − (1− y)x )

(1− y2x−λ−2 − (1− y)2x−λ−2) dy .
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Numerical Solution of the Isotropic Kinetic Equation

For various reasons one may be interested in more than just
the KZ solution. There are no known exact solutions.
Discrete case: N = (N1,N2,N3, . . .). Ni = N(ωi), ωi = i∆ω.
Reduces to a large set of coupled ODEs for N:

dN
dt

= S[N] = S1[N] + S2[N] + S3[N]

Numerical solution presents some particular difficulties:
Widely varying timescales⇒ use adaptive timestepping.
System is very stiff⇒ require implicit solver.
Need to resolve very many modes to measure scaling
exponents⇒ need to approximate the collision integrals.
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Stiffness: L(ω1, ω2) = ω2
1 + ω2

2, 1000 modes

Implicit trapezoidal rule (stepwise error of h3):

N(t + h)− N(t)− 1
2

h [S[N(t)] + S[N(t + h)]]

Solved via Rosenbrock algorithm.
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Computing the Collision Integrals 1

Divide frequency domain into bins Bi = [ω
(L)
i , ω

(R)
i ] having

characteristic frequencies Ω̃i = 1
2(ω

(R)
i + ω

(L)
i )

exponentially spaced (except for the first few).
Apply triad formulation of collision integrals to compute
effective energy transfer between bins rather than between
individual modes.
S1[N] requires us to approximate integrals of the form∫ ω

(R)
i

ω
(L)
i

d ωi

∫ ω
(R)
j

ω
(L)
j

d ωj (ωi + ωj) L(ωi , ωj) N(ωi) N(ωj)

Approximation: if Ω̃j <= Ω̃i treat all waves in Bj as having
frequency Ω̃j . (H. Lee 2001)
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Computing the Collision Integrals 2

Thus we obtain one-dimensional integrals which can be
done by quadrature:

∆Ej = Ω̃j N(Ω̃j)

∫ ω
(R)
i

ω
(L)
i

d ωi ,L(ωi , ωj) N(ωi)

∆Ei = N(Ω̃j)

∫ ω
(R)
i

ω
(L)
i

d ωi ,L(ωi , ωj)ωi N(ωi)

∆Ek = ∆Ei + ∆Ej .

Similar expressions for S2[Nω] and S3[Nω].
Many technical details not worth discussing.

Colm Connaughton 3 Wave Kinetic Equation



The 3-Wave Kinetic Equation
Spectral Truncations, Bottlenecks and Thermalisation

Finite Capacity Cascades and Dissipative Anomaly
Cascades Without Backscatter

Conclusions

Validation of the algorithm

Computing cKZ tests the
dynamics.

Stationary scaling
exponents are insufficient
for validation.
For some model
interactions cKZ can be
calculated exactly.
Product kernel:

L1(ω1, ω2) = (ω1 ω2)
λ
2 .

Sum kernel:

L1(ω1, ω2) =
1
2

(
ωλ1 + ω2λ

)
.
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Example Results
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Choices of spectral trunction

It is necessary to truncate the calculation of collision
integrals at ω = Ω: modes having ω > Ω have Nω = 0.
In sum over triads we only include ωj ≤ ωi < ωk ≤ Ω.
However we must choose what to do with triads having
ωj ≤ ωi < Ω < ωk (only relevant for S1[Nω]).
These terms are included in the sum with weighted by ν:

ν = 1 : open truncation (dissipative)
ν = 0 : closed truncation (conservative)
0 < ν < 1 : partially open truncation (dissipative)

“Boundary conditions” on the energy flux are not local for
integral collision operators.
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Open Truncation : ν = 1 - Bottleneck Phenomenon

Compensated stationary
spectra with open truncation.

Product kernel:
L(ω1, ω2) = (ω1ω2)λ/2.
Open truncation can
produce a bottleneck as
the solution approaches
the dissipative cut-off
(Falkovich 1994).
Bottleneck does not
occur for all L(ω1, ω2).
Energy flux at Ω is 1.
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Closed Truncation: Thermalisation

Compensated quasi-
stationary spectra with
closed truncation.

Product kernel:
L(ω1, ω2) = (ω1ω2)λ/2.
Closed truncation
produces thermalisation
near the cut-off (CC and
Nazarenko (2004),
Cichowlas et al (2005) ).
Thermalisation occurs
for all L(ω1, ω2).
Energy flux at Ω is 0.
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Closed Truncation: Thermalisation

Bare quasi-stationary energy
spectra with closed trunca-
tion.

Product kernel:
L(ω1, ω2) = (ω1ω2)λ/2.
Closed truncation
produces thermalisation
near the cut-off (CC and
Nazarenko (2004),
Cichowlas et al (2005) ).
Thermalisation occurs
for all L(ω1, ω2).
Energy flux at Ω is 0.
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Finite and Infinite Capacity Cascades

Stationary KZ spectrum:

Nω = cKZ
√

J ω−
λ+3

2 .

Total energy contained in the spectrum:

E = cKZ
√

J
∫ Ω

1
dω ω−

λ+1
2 .

E diverges as Ω→∞ if λ ≤ 1 : Infinite Capacity .
E finite as Ω→∞ if λ > 1 : Finite Capacity .

Transition occurs at λ = 1.
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Dissipative Anomaly (decay problem, open truncation)

Finite capacity systems exhibit a dissipative anomaly in the
usual sense:

λ = 3/4 λ = 3/2
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Dynamical Scaling

Self-similarity ansatz describing the establishment of the K–Z
spectrum (Falkovich and Shafarenko, 1991) :

N(ω, τ) = τa F (η)

propagating front with power law “wake”.

η = ω
τb τ = t Infinite capacity case

τ = t∗ − t Finite capacity case

Dynamical scaling exponents, a and b.

x = −a
b

is the exponent of the wake.
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Dynamical Scaling

Self-similarity requires : a + (λ+ 1)b = −1.
Profile F determined by integro-differential equation:

±bη
dF
dη
− aF = S1[F (η)] + S2[F (η)] + S3[F (η)]

Infinite capacity case:
Total energy E ∼ t ⇒ 2b + a = 1.
a = λ+3

λ−1 , b = − 2
λ−1

x = λ+3
2 which is the K–Z exponent.

Finite capacity case:
?
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Measuring dynamical scaling exponents

Measuring dynamical
scaling via G3.

Finite capacity singularity
(t − t∗)b makes direct fitting
difficult.
An easier measurement:

Mn(t) =

∫
ωn Nω

Rn(t) =
Mn+1(t)
Mn(t)

Gn(t) =
Rn(t)
Ṙn(t)

Self-similarity ansatz⇒ Gn(t) ∼ 1
b (t − t∗). (fit a linear function).
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Is there a dynamical scaling anomaly?

Dynamical scaling ex-
ponents for product ker-
nel.

Transient spectrum is often
steeper than xKZ for finite
capacity cascades? (Galtier et
al. (2000), Lee (2000),
CC,Newell and Pomeau
(2003), CC and Nazarenko
(2004))
This phenomenon is not well
understood.
If there is an anomaly in
general, it is very small.
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Cascades without back-scatter

The kinetic equation without backscatter:

dN
dt

= S1[N].

What are the effects of removing backscatter?
No thermalisation.
Bottleneck phenomenon remains.
A new type of singular solution emerges

Colm Connaughton 3 Wave Kinetic Equation



The 3-Wave Kinetic Equation
Spectral Truncations, Bottlenecks and Thermalisation

Finite Capacity Cascades and Dissipative Anomaly
Cascades Without Backscatter

Conclusions

“Anomalous Dissipative Anomaly” (Dynamic
Nonlocality)

Decay problem : L1(ω1, ω2) = ωλ1 + ωλ2

For λ > 1, as Ω→∞, t∗ → 0 removing all energy.
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“Reset” Phenomenon and Nonlocal Oscillations

L(ω1, ω2) = ω1+ε
1 +ω1+ε

2

Dynamic nonlocality in the
presence of a source leads to
oscillatory behaviour.
In such situations, there is no
stationary state, no
self-similarity.
Unclear whether this
phenomenon exists in the full
3WKE (can backscatter beat
nonlocality?)
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Conclusions

New numerical method for solving the isotropic 3-wave
kinetic equation
Choice of spectral truncation allows one to produce
bottleneck and / or thermalisation phenomena.
Finite capacity systems exhibit a dissipative anomaly in the
usual sense.
Dynamical scaling exponents can be measured and do not
show a strong dynamical scaling anomaly (at least for the
product kernel).
Removal of backscatter terms from the kinetic equation
produces surprising new phenomena which suggest the
scaling theory of the full kinetic equation may also contain
hidden surprises.
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