Dynamical Solutions of the 3-Wave Kinetic Equations

Colm Connaughton

Centre for Complexity Science and Mathematics Institute University of Warwick

Collaborators: A. Newell (Arizona), P. Krapivsky (Boston).

"Wave Turbulence", IHP Apr 8 2009

WARWICK

イロト イポト イヨト イヨト

- The 3-Wave Kinetic Equation
- 2 Spectral Truncations, Bottlenecks and Thermalisation
- Finite Capacity Cascades and Dissipative Anomaly
- 4 Cascades Without Backscatter

5 Conclusions

・ 同 ト ・ ヨ ト ・ ヨ ト

3-Wave Turbulence

$$H = T + U = \int \omega_{\mathbf{k}} a_{\mathbf{k}} \bar{a}_{\mathbf{k}} d\mathbf{k} + \int u(\mathbf{k}) d\mathbf{k}$$

Forcing and dissipation are added to Hamilton's equations:

$$\frac{\partial a_{\mathbf{k}}}{\partial t} = i \frac{\delta H}{\delta \bar{a}_{\mathbf{k}}} + f_{\mathbf{k}} - \gamma_{\mathbf{k}} a_{\mathbf{k}}$$

 a_k , \bar{a}_k are complex canonical variables. Interaction energy:

$$u(\mathbf{k}_{1}) = \int V_{\mathbf{k}_{1}\mathbf{k}_{2}\mathbf{k}_{3}} \left(a_{\mathbf{k}_{1}}a_{\mathbf{k}_{2}}\bar{a}_{\mathbf{k}_{3}} + \bar{a}_{\mathbf{k}_{1}}\bar{a}_{\mathbf{k}_{2}}a_{\mathbf{k}_{3}} \right) \delta(\mathbf{k}_{1} - \mathbf{k}_{2} - \mathbf{k}_{3}) d\mathbf{k}_{2} d\mathbf{k}_{3}$$

Scaling parameters :Dimension, d: $\mathbf{k} \in \mathbf{R}^d$ (d, α, γ) Dispersion, α : $\omega_{\mathbf{k}} \sim k^{\alpha}$ Nonlinearity, γ : $V_{\mathbf{k}_1\mathbf{k}_2\mathbf{k}_3} \sim k^{\gamma}$

The 3-wave kinetic equation

Evolution of WT wave spectrum, $n_{\mathbf{k}}$, given by:

$$\frac{\partial n_{\mathbf{k}_{1}}}{\partial t} = \pi \int V_{\mathbf{k}_{1}\mathbf{k}_{2}\mathbf{k}_{3}}^{2} (\mathbf{a}_{1}n_{\mathbf{k}_{2}}n_{\mathbf{k}_{3}} - \mathbf{a}_{2}n_{\mathbf{k}_{1}}n_{\mathbf{k}_{2}} - \mathbf{a}_{3}n_{\mathbf{k}_{1}}n_{\mathbf{k}_{3}}) \\ \delta(\omega_{\mathbf{k}_{1}} - \omega_{\mathbf{k}_{2}} - \omega_{\mathbf{k}_{3}}) \,\delta(\mathbf{k}_{1} - \mathbf{k}_{2} - \mathbf{k}_{3}) \,d\mathbf{k}_{2}d\mathbf{k}_{3} \\ + \pi \int V_{\mathbf{k}_{2}\mathbf{k}_{1}\mathbf{k}_{3}}^{2} (\mathbf{a}_{1}n_{\mathbf{k}_{2}}n_{\mathbf{k}_{3}} + \mathbf{a}_{2}n_{\mathbf{k}_{1}}n_{\mathbf{k}_{2}} - \mathbf{a}_{3}n_{\mathbf{k}_{1}}n_{\mathbf{k}_{3}}) \\ \delta(\omega_{\mathbf{k}_{2}} - \omega_{\mathbf{k}_{3}} - \omega_{\mathbf{k}_{1}}) \,\delta(\mathbf{k}_{2} - \mathbf{k}_{3} - \mathbf{k}_{1}) \,d\mathbf{k}_{2}d\mathbf{k}_{3} \\ + \pi \int V_{\mathbf{k}_{3}\mathbf{k}_{1}\mathbf{k}_{2}}^{2} (\mathbf{a}_{1}n_{\mathbf{k}_{2}}n_{\mathbf{k}_{3}} - \mathbf{a}_{2}n_{\mathbf{k}_{1}}n_{\mathbf{k}_{2}} + \mathbf{a}_{3}n_{\mathbf{k}_{1}}n_{\mathbf{k}_{3}}) \\ \delta(\omega_{\mathbf{k}_{3}} - \omega_{\mathbf{k}_{1}} - \omega_{\mathbf{k}_{2}}) \,\delta(\mathbf{k}_{3} - \mathbf{k}_{1} - \mathbf{k}_{2}) \,d\mathbf{k}_{2}d\mathbf{k}_{3} \\ = \mathbf{a}_{1} S_{1}[n_{\mathbf{k}}] + \mathbf{a}_{2} S_{2}[n_{\mathbf{k}}] + \mathbf{a}_{3} S_{3}[n_{\mathbf{k}}]$$

 $a_1 = a_2 = a_3 = 1!$

WARWICK

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Isotropic Kinetic Equation: Forward Transfer

Angle averaged spectrum, $N_{\omega} = \frac{\Omega_d}{\alpha} \omega^{\frac{d-\alpha}{\alpha}} n_{\omega}$, satisfies: $\frac{\partial N_{\omega_1}}{\partial t} = \frac{a_1 S_1[N_{\omega}]}{a_2 S_2[N_{\omega}]} + \frac{a_2 S_2[N_{\omega}]}{a_3 S_3[N_{\omega}]}$ $S_1[N_{\omega_1}] = \int L_1(\omega_2, \omega_3) N_{\omega_2} N_{\omega_3} \delta(\omega_1 - \omega_2 - \omega_3) d\omega_2 d\omega_3$ $-\int L_1(\omega_3,\omega_1)\, \textit{N}_{\omega_3}\,\textit{N}_{\omega_1}\,\delta(\omega_2-\omega_3-\omega_1)\,\textit{d}\omega_2\textit{d}\omega_3$ $-\int L_1(\omega_1,\omega_2) N_{\omega_1} N_{\omega_2} \delta(\omega_3-\omega_1-\omega_2) d\omega_2 d\omega_3,$

Details are hidden in the kernel $L(\omega_1, \omega_2)$. Scaling of the interaction coefficient:

$$L_1(\omega_1,\omega_2)\sim\omega^{\lambda}, \quad \lambda=rac{2\gamma-lpha}{lpha^{\Box}}$$

Colm Connaughton

Isotropic Kinetic Equation: Backward Transfer

$$S_{2}[N_{\omega_{1}}] = -\int L_{2}(\omega_{2}, \omega_{3}) N_{\omega_{1}} N_{\omega_{2}} \delta(\omega_{1} - \omega_{2} - \omega_{3}) d\omega_{2} d\omega_{3}$$
$$+ \int L_{2}(\omega_{3}, \omega_{1}) N_{\omega_{2}} N_{\omega_{3}} \delta(\omega_{2} - \omega_{3} - \omega_{1}) d\omega_{2} d\omega_{3}$$
$$+ \int L_{2}(\omega_{1}, \omega_{2}) N_{\omega_{3}} N_{\omega_{1}} \delta(\omega_{3} - \omega_{1} - \omega_{2}) d\omega_{2} d\omega_{3},$$
$$S_{3}[N_{\omega_{1}}] = -\int L_{3}(\omega_{2}, \omega_{3}) N_{\omega_{1}} N_{\omega_{2}} \delta(\omega_{1} - \omega_{2} - \omega_{3}) d\omega_{2} d\omega_{3}$$

$$+\int L_{3}(\omega_{3},\omega_{1}) N_{\omega_{2}} N_{\omega_{3}} \delta(\omega_{2}-\omega_{3}-\omega_{1}) d\omega_{2} d\omega_{3}$$

$$+\int L_{3}(\omega_{1},\omega_{2}) N_{\omega_{3}} N_{\omega_{1}} \delta(\omega_{3}-\omega_{1}-\omega_{2}) d\omega_{2} d\omega_{3}.$$
WARWICH

Physical Meaning of the $S_i[N_{\omega}]$: Triad Formulation

Rates:

- $S_1[N_{\omega}]$ Loss ω_j : $\omega_j L_1(\omega_j, \omega_k) N_{\omega_j} N_{\omega_k}$. Loss ω_k : $\omega_k L_1(\omega_j, \omega_k) N_{\omega_j} N_{\omega_k}$.
- $S_2[N_{\omega}]$ Gain ω_j : $\omega_j L_2(\omega_j, \omega_k) N_{\omega_i} N_{\omega_j}$. Gain ω_k : $\omega_k L_2(\omega_j, \omega_k) N_{\omega_i} N_{\omega_j}$.
- $S_3[N_{\omega}]$ Loss ω_j : $\omega_j L_3(\omega_j, \omega_k) N_{\omega_i} N_{\omega_k}$. Loss ω_k : $\omega_k L_3(\omega_j, \omega_k) N_{\omega_i} N_{\omega_k}$.

イロト イポト イヨト イヨト

WARWICK

The Kolmogorov-Zakharov Spectrum

Zakharov transformation yields stationary solution:

$$N_{\omega} = c_{\mathrm{KZ}} \sqrt{J} \, \omega^{-rac{\lambda+3}{2}}$$

where

$$c_{\mathrm{KZ}} = \sqrt{\frac{2}{A}}, \qquad A = \left. \frac{dI}{dx} \right|_{x=\frac{\lambda+3}{2}}$$

and

$$I(x) = \frac{1}{2} \int_0^1 L_1(y, 1-y) (y(1-y))^{-x} (1-y^x - (1-y)^x) (1-y^{2x-\lambda-2} - (1-y)^{2x-\lambda-2}) dy.$$

イロト イポト イヨト イヨト

Numerical Solution of the Isotropic Kinetic Equation

For various reasons one may be interested in more than just the KZ solution. There are no known exact solutions. Discrete case: $\mathbf{N} = (N_1, N_2, N_3, ...)$. $N_i = N(\omega_i)$, $\omega_i = i\Delta \omega$. Reduces to a large set of coupled ODEs for **N**:

$$\frac{d\mathbf{N}}{dt} = S[\mathbf{N}] = S_1[\mathbf{N}] + S_2[\mathbf{N}] + S_3[\mathbf{N}]$$

Numerical solution presents some particular difficulties:

- Widely varying timescales \Rightarrow use adaptive timestepping.
- System is very stiff \Rightarrow require *implicit solver*.
- Need to resolve very many modes to measure scaling exponents ⇒ need to approximate the collision integrals.

・ロト ・ 同ト ・ ヨト ・ ヨト

The 3-Wave Kinetic Equation

Spectral Truncations, Bottlenecks and Thermalisation Finite Capacity Cascades and Dissipative Anomaly Cascades Without Backscatter Conclusions

Stiffness: $L(\omega_1, \omega_2) = \omega_1^2 + \omega_2^2$, 1000 modes

Implicit trapezoidal rule (stepwise error of h^3):

$$\mathbf{N}(t+h) - \mathbf{N}(t) - \frac{1}{2}h \left[S[\mathbf{N}(t)] + S[\mathbf{N}(t+h)]\right]$$

Solved via Rosenbrock algorithm.

< E

Computing the Collision Integrals 1

- Divide frequency domain into bins $B_i = [\omega_i^{(L)}, \omega_i^{(R)}]$ having characteristic frequencies $\widetilde{\Omega}_i = \frac{1}{2}(\omega_i^{(R)} + \omega_i^{(L)})$ exponentially spaced (except for the first few).
- Apply triad formulation of collision integrals to compute *effective* energy transfer between bins rather than between individual modes.
- S₁[N] requires us to approximate integrals of the form

$$\int_{\omega_i^{(L)}}^{\omega_i^{(R)}} \boldsymbol{d}\,\omega_i \int_{\omega_j^{(L)}}^{\omega_j^{(R)}} \boldsymbol{d}\,\omega_j \,\left(\omega_i + \omega_j\right) \boldsymbol{L}(\omega_i, \omega_j) \, \boldsymbol{N}(\omega_i) \, \boldsymbol{N}(\omega_j)$$

NARWICE

Approximation: if Ω_j <= Ω_i treat all waves in B_j as having frequency Ω_j. (H. Lee 2001)

Computing the Collision Integrals 2

 Thus we obtain *one-dimensional* integrals which can be done by quadrature:

$$\Delta E_{j} = \widetilde{\Omega}_{j} N(\widetilde{\Omega}_{j}) \int_{\omega_{i}^{(L)}}^{\omega_{i}^{(R)}} d\omega_{i}, L(\omega_{i}, \omega_{j}) N(\omega_{i})$$

$$\Delta E_{i} = N(\widetilde{\Omega}_{j}) \int_{\omega_{i}^{(L)}}^{\omega_{i}^{(R)}} d\omega_{i}, L(\omega_{i}, \omega_{j}) \omega_{i} N(\omega_{i})$$

$$\Delta E_{k} = \Delta E_{i} + \Delta E_{j}.$$

- Similar expressions for $S_2[N_{\omega}]$ and $S_3[N_{\omega}]$.
- Many technical details not worth discussing.

WARWICK

The 3-Wave Kinetic Equation Spectral Truncations, Bottlenecks and Thermalisation

Finite Capacity Cascades and Dissipative Anomaly Cascades Without Backscatter Conclusions

Validation of the algorithm

Computing c_{KZ} tests the dynamics.

- Stationary scaling exponents are insufficient for validation.
- For some model interactions *c*_{KZ} can be calculated exactly.
- Product kernel:

$$L_1(\omega_1,\omega_2)=(\omega_1\,\omega_2)^{\frac{\lambda}{2}}.$$

• Sum kernel:

$$L_1(\omega_1,\omega_2) = \frac{1}{2} \left(\omega_1^{\lambda} + \omega_2 \lambda \right) \dots$$

The 3-Wave Kinetic Equation

Spectral Truncations, Bottlenecks and Thermalisation Finite Capacity Cascades and Dissipative Anomaly Cascades Without Backscatter Conclusions

Example Results

WARWICK

э

イロト 不得 とくほ とくほとう

Choices of spectral trunction

- It is necessary to truncate the calculation of collision integrals at ω = Ω: modes having ω > Ω have N_ω = 0.
- In sum over triads we only include $\omega_j \leq \omega_i < \omega_k \leq \Omega$.
- However we must *choose* what to do with triads having ω_j ≤ ω_i < Ω < ω_k (only relevant for S₁[N_ω]).
- These terms are included in the sum with weighted by ν:
 - $\nu = 1$: open truncation (dissipative)
 - $\nu = 0$: closed truncation (conservative)
 - $0 < \nu < 1$: partially open truncation (dissipative)
- "Boundary conditions" on the energy flux are not local for integral collision operators.

ヘロト ヘワト ヘビト ヘビト

Open Truncation : $\nu = 1$ - Bottleneck Phenomenon

Compensated stationary spectra with open truncation.

- Product kernel: $L(\omega_1, \omega_2) = (\omega_1 \omega_2)^{\lambda/2}.$
- Open truncation can produce a bottleneck as the solution approaches the dissipative cut-off (Falkovich 1994).
- Bottleneck does not occur for all L(ω₁, ω₂).
- Energy flux at Ω is 1.

< ロ > < 同 > < 三 >

VARWICK

Closed Truncation: Thermalisation

Compensated quasistationary spectra with closed truncation.

- Product kernel: $L(\omega_1, \omega_2) = (\omega_1 \omega_2)^{\lambda/2}.$
- Closed truncation produces thermalisation near the cut-off (CC and Nazarenko (2004), Cichowlas et al (2005)).
- Thermalisation occurs for all *L*(ω₁, ω₂).
- Energy flux at Ω is 0.

▲ (□) ト → (三)

э

VARWICK

Closed Truncation: Thermalisation

Bare quasi-stationary energy spectra with closed truncation.

- Product kernel: $L(\omega_1, \omega_2) = (\omega_1 \omega_2)^{\lambda/2}.$
- Closed truncation produces thermalisation near the cut-off (CC and Nazarenko (2004), Cichowlas et al (2005)).
- Thermalisation occurs for all *L*(ω₁, ω₂).
- Energy flux at Ω is 0.

< 🗇 > < 3 > >

ARWICK

Finite and Infinite Capacity Cascades

Stationary KZ spectrum:

$$N_{\omega} = c_{\mathrm{KZ}} \sqrt{J} \, \omega^{-rac{\lambda+3}{2}}.$$

Total energy contained in the spectrum:

$${\cal E}=c_{
m KZ}\sqrt{J}\,\int_1^\Omega\,d\omega\,\omega^{-rac{\lambda+1}{2}}.$$

- *E* diverges as $\Omega \to \infty$ if $\lambda \leq 1$: *Infinite Capacity*.
- *E* finite as $\Omega \to \infty$ if $\lambda > 1$: *Finite Capacity*.

Transition occurs at $\lambda = 1$.

ヘロト ヘアト ヘヨト ヘ

Dissipative Anomaly (decay problem, open truncation)

Finite capacity systems exhibit a dissipative anomaly in the usual sense:

Dynamical Scaling

Self-similarity ansatz describing the establishment of the K–Z spectrum (Falkovich and Shafarenko, 1991) :

$$N(\omega, au) = au^a F(\eta)$$

propagating front with power law "wake".

$$\eta = \frac{\omega}{\tau^b}$$
 $\tau = t$ Infinite capacity case
 $\tau = t^* - t$ Finite capacity case

Dynamical scaling exponents, *a* and *b*.

$$x = -\frac{a}{b}$$

is the exponent of the wake.

Dynamical Scaling

Self-similarity requires : $a + (\lambda + 1)b = -1$. Profile *F* determined by integro-differential equation:

$$\pm b\eta \frac{dF}{d\eta} - aF = S_1[F(\eta)] + S_2[F(\eta)] + S_3[F(\eta)]$$

Infinite capacity case:

• Total energy $E \sim t \Rightarrow 2b + a = 1$.

•
$$a = \frac{\lambda+3}{\lambda-1}, \quad b = -\frac{2}{\lambda-1}$$

•
$$x = \frac{\lambda+3}{2}$$
 which is the K–Z exponent.

Finite capacity case:

•?

・ 回 ト ・ ヨ ト ・ ヨ ト

Measuring dynamical scaling exponents

Measuring dynamical scaling via G_3 .

- Finite capacity singularity (t - t*)^b makes direct fitting difficult.
- An easier measurement:

$$M_n(t) = \int \omega^n N_\omega$$

$$R_n(t) = \frac{M_{n+1}(t)}{M_n(t)}$$

$$G_n(t) = \frac{R_n(t)}{\dot{R}_n(t)}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

WARWICK

Self-similarity ansatz $\Rightarrow G_n(t) \sim \frac{1}{b}(t - t^*)$. (fit a linear function).

Is there a dynamical scaling anomaly?

Dynamical scaling exponents for product kernel.

- Transient spectrum is often steeper than x_{KZ} for finite capacity cascades? (Galtier et al. (2000), Lee (2000), CC,Newell and Pomeau (2003), CC and Nazarenko (2004))
- This phenomenon is not well understood.
- If there is an anomaly in general, it is very small.

Cascades without back-scatter

The kinetic equation without backscatter:

 $\frac{d\mathbf{N}}{dt}=S_1[\mathbf{N}].$

What are the effects of removing backscatter?

- No thermalisation.
- Bottleneck phenomenon remains.
- A new type of singular solution emerges

・ 回 ト ・ ヨ ト ・ ヨ ト

Conclusions

"Anomalous Dissipative Anomaly" (Dynamic Nonlocality)

Decay problem : $L_1(\omega_1, \omega_2) = \omega_1^{\lambda} + \omega_2^{\lambda}$

Colm Connaughton 3 Wave Kinetic Equation

"Reset" Phenomenon and Nonlocal Oscillations

- Dynamic nonlocality in the presence of a source leads to oscillatory behaviour.
- In such situations, there is no stationary state, no self-similarity.
- Unclear whether this phenomenon exists in the full 3WKE (can backscatter beat nonlocality?)

Conclusions

- New numerical method for solving the isotropic 3-wave kinetic equation
- Choice of spectral truncation allows one to produce bottleneck and / or thermalisation phenomena.
- Finite capacity systems exhibit a dissipative anomaly in the usual sense.
- Dynamical scaling exponents can be measured and do not show a strong dynamical scaling anomaly (at least for the product kernel).
- Removal of backscatter terms from the kinetic equation produces surprising new phenomena which suggest the scaling theory of the full kinetic equation may also contain hidden surprises.

WARWICK