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Modelling inertial wave turbulence

Motivation : question about the full/partial two-dimensionalization of rotating turbulence

at high rotation rate

– Background - Linear and non linear regime

– Wave turbulence modelling : AQNM model – weakly nonlinear at asymptotically high

rotation rate)

– Closure

– Dynamical equations for spectral tensors

– Numerical resolution

– Some results

(Ref. : JFM, 2006)
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Background

→ Influence of solid body rotation on the structure of turbulence

Areas :

• Geophysical flows

• Industrial flows : turbomachinery, hydraulic production of energy

Experimental landmarks :

⋆ Taylor (1921) → 2D structuration in columns

⋆ McEwan (1970) → characterization of inertial waves

Nonlinear waves interaction :

⋆ Benney & Saffman (1966) → dynamique des amplitudes d’une distribution d’ondes

⋆ Zakharov & al. (1992) → energy fluxes between waves

⋆ Caillol & Zeitlin (2000) kinetic equation for internal waves
April 2009 IHP “wave turbulence” workshop

F.S. Godeferd



Inertial Waves Turbulence ECL4

Equations for rotating flows

Navier-Stokes equations in a rotating frame :a

(∂t + u · ∇) u+2Ωn×u+∇p−ν∇2u = 0

∇ · u = 0

fluctuating velocity u, pressure p

Ω

fu

modified pressure field

Non dimensional parameters :

Re = UL
ν ≡ nonlinear

viscous ∼ 106 Ro = U
ΩL ≡ nonlinear

Coriolis ∼ 0.1

Ek = Ro
Re ≡ viscous

Coriolis

aEquations for the complete velocity field are almost identical, with a modified pressure
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The role of pressure Inertial waves

We take the linear inviscid limit for the rotating case at Ω.

– Without pressure, the linearized system admits sinusoidal solutions

– These pressureless solutions are not valid in the general case, and p is needed to

inforce the solenoidal property.

– Pressure is responsible for coupling horizontal and vertical velocity components, and

for the anisotropic dispersion law of inertial waves ⇒ without pressure, these are only

oscillating solutions but not actual propagating waves.

Pressure equation obtained by eliminating u in the linearized system :

∂2
t

(
∇2p

)
+ (2Ω)2∇2

‖p = 0

April 2009 IHP “wave turbulence” workshop
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Illustration Inertial waves

2Ω
n = 1.10

2Ω
n = 1.33

2Ω
n = 2

Numerical simulation

Godeferd & Lollini, 1999

Experiment

McEwan, 1970
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Illustration Rotating homogeneous turbulence

Iso-surfaces of vertical vorticity component (5123 DNS by Liechtenstein, 2005)
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Dominant linear effects

∂û

∂t
+ [LΩ + Lν ] (û) = T (u, u) k · û = 0

Linear regime : Ro = u/(2ΩL) → 0 T (u, u) → 0

Linear solution : plane waves with constant amplitude a exp i(k · x − σt).

û(k, t) = e−νk2t
[
a+1e

iσtN + a−1e
−iσtN∗

]

with







a+1(k), a−1(k) time independent amplitudes

σ(k) = 2Ω cos θ anisotropic dispersion law 6= kα

N(k) = e1(k) + ie2(k) eigenvector of L = LΩ + Lν
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Comparison with other dispersive waves
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û(1)
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Wave turbulence

Weakly nonlinear dynamics :

a is a slow variable, such that the total amplitude is eiσta(k, t) i.e. time dependent

amplitudes : a+1(k, t) et a−1(k, t)

With
∂u

∂t
+ L (u) = T (u,u)

∂taǫ(k, t) =
∑

ǫ′,ǫ′′

∫

k+p+q=0

ei[

F

︷ ︸︸ ︷

ǫσ(k) + ǫ′σ(p) + ǫ′′σ(q)]tmǫǫ′ǫ′′(k,p, q)

×aǫ′(p, t)aǫ′′(q, t) d3q

Triadic resonance : F = 0

April 2009 IHP “wave turbulence” workshop
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Resonant surfaces

The above term ei[ǫσ(k)+ǫ′σ(p)+ǫ′′σ(q)]t allows for the following splitting of the

interaction triads :

– Triads which satisfy the resonance conditions :





k + p + q = 0

Fǫǫ′ǫ′′(k,p, q) = ǫσ(k) + ǫ′σ(p) + ǫ′′σ(q) = 0

which defines complex resonant surfaces Sǫ′ǫ′′

– The remaining triads with k + p + q = 0 but Fǫǫ′ǫ′′(k,p, q) 6= 0, in the 3D

spectral space.

When rotation is fast, the phase of these remaining triads is a very rapidly oscillating

term, so that their contribution is negligible. ⇒ resonant triads are dominant in the

dynamics of rapidly rotating turbulence.

April 2009 IHP “wave turbulence” workshop
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Cut trough the resonant surface for k = 1 and θk = 1.3

��	

ǫ′ = ǫ′′ = −1

���
ǫ′ = ǫ′′ = −1 ���

ǫ′ = ǫ′′ = 1

���
ǫ′ = 1, ǫ′′ = −1

��	

ǫ′ = −1, ǫ′′ = 1
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The path to a tractable model :

Solve numerically the equations, integrating only over the resonant surface, cheaper

than full 3D spectral integration.

– Difficult issues when using random amplitude equations (the amplitudes oscillations

are very fast, velocity fluctuations are not “smooth” quantities and yield inconsistencies

in the Fourier representation)

– But the statistics, i.e. < aǫaǫ′ > are smooth functions and one can use their

equations as a starting point for modelling.

– A closure of the quasi-normal type has to be used (EDQNM→AQNM, Bellet 2003).

· · · + lots of analysis

April 2009 IHP “wave turbulence” workshop
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Statistical approach

⋆ Spectral tensor Φij ∼ uu in the Craya-Herring frame : e energy density ; z polarization ; h helicity

Φij =

0

B

B

@

0 0 0

0 e + zr zi + ih

0 zi − ih e − zr

1

C

C

A

⋆ Wave turbulence : Φij(k, t) =
X

s,s′

Ass′ (k, t)N
(s)
i (k)N

(s′)
j (k)ei(s+s′)ω(k)t

Three equivalent formalisms for the dynamics : (1) Φij ∼ uu ; (2) Ass′ ∼ aa ; (3) e, z et h

→ For instance, using uu : infinite hierarchy of equations for the moments of order n :

∂uu

∂t
+ L

(1)(uu) = T
(1)(uuu)

∂uuu

∂t
+ L

(2)(uuu) = T
(2)(uuuu)

· · ·

April 2009 IHP “wave turbulence” workshop
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Intermediate step : EDQNM closure (1/2)

Two-point closure truncated at moments of order 4. Orszag, 1970. Adapted to include

external distorsion through Green’s tensor G.

Hypotheses :

• Quasi-Normal (QN) : uuuu =
∑

uu uu → closure, but e < 0

• Eddy-Damping (ED) : correct memory of uuu by damping ζ → k−5/3 in isotropic

turb.

April 2009 IHP “wave turbulence” workshop
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EDQNM closure (2/2)

• Markovian (M) : distinguish rapid and slow evolutions (realizability e < 0)

⋆ EDQNM1 : ζ rapid ; G and (e, z, h) slow → no more nonlinear dynamics due to Ω

⋆ EDQNM2 : ζ and G rapid ; (e, z, h) slow → not valid at large |z|

⋆ EDQNM3 : ζ , G and oscillating part of z rapid ; (e, Z, h) slow

⇒ coupled closed equations for e, Z et h. For instance

∂e

∂t
+ 2νk2e = T e

with T e =
∑

s′,s′′

∫

k+k′+k′′=0

ℜ

(
bs′s′′

ζ total + iF1s′s′′

)

e′′ [e′ − e] d3k′

+ other terms involving Z and h

April 2009 IHP “wave turbulence” workshop
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AQNM model — Hypotheses (1/3)

To overcome some of the EDQNM3 limitations :

• Moderate spatial discretization

• No specific treatment of resonant triads (surfaces)

→ asymptotique model for Ro ≪ 1

Additional hypotheses :

⋆ Nonlinear dynamics at t ≫ Ω−1 ⇐⇒ Ωt ≫ 1






consequences of

Ro ≪ 1⋆ Damping ζ ≪ Ω

⋆ Re → ∞ : but viscosity can be re-introduced later

→ temporal evolution of Ass′ and byproducts e, Z and h

April 2009 IHP “wave turbulence” workshop
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AQNM model — Mathematical steps (2/3)

Three steps for the multiscale asymptotic development :

1. Use EDQNM3 for the nonlinear transfer, with markovianization of slow amplitudes Ass′ :

∂A

∂t
= TEDQNM3(A, A)

→ simplification of nonlinear term

2. Elimate rapidly oscillating terms in k′ (Ωt large)

→

Z

ζ

ζ2 + F 2
1s′s′′

(· · · ) d3k′ and

Z

F1s′s′′

ζ2 + F 2
1s′s′′

(· · · ) d3k′

3. Limit ζ → 0 :

•
ζ

ζ2 + F 2
1s′s′′

→ πδ(F1s′s′′ ), whence :

Z

ζ

ζ2 + F 2
1s′s′′

(· · · ) d3k′ → π

Z

F
1s′s′′=0

1

|∇F1s′s′′ |
(· · · ) d2S

⇒ integrals over the sole resonant surfaces

•

Z

F1s′s′′

ζ2 + F 2
1s′s′′

(· · · ) d3k′ → −

Z

1

F1s′s′′
(· · · ) d3k′

⇒ principal value integrals

April 2009 IHP “wave turbulence” workshop
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AQNM model — Final equations (3/3)

For kinetic energy spectrum e, polarization spectrum Z , helicity spectrum h :

• T
e =

X

s′,s′′

Z

k+k′+k′′=0
F
1s′s′′=0

gs′s′′

αs′s′′

ˆ

e
′′

`

e
′

− e
´

+ s
′

h
′
`

s
′′

h
′′

− h
´˜

d
2
S

αs′s′′ =
1

π

˛

˛s
′′

Cg(k′′) − s
′

Cg(k′)
˛

˛ with Cg group velocity

• T
Z = −Z

X

s′,s′′

2

4

Z

k+k′+k′′=0
F
1s′s′′=0

gs′s′′

αs′s′′
e
′

d
2
S + i−

Z

R3

gs′s′′

Fs′s′′
e
′

d
3
k
′

3

5

• T
h =

X

s′,s′′

Z

k+k′+k′′=0
F
1s′s′′=0

gs′s′′

αs′s′′

ˆ

s
′

h
′
`

e
′′

− e
´

+ e
′
`

s
′′

h
′′

− h
´˜

d
2
S

Remarks :

⋆ T e is conservative and the model is realizable ⇒∀t, e(t) ≥ 0

⋆ For initially isotropic turbulence without helicity/polarization ⇒∀t, Z(t) = h(t) = 0

⋆ ζ does not appear anymore

April 2009 IHP “wave turbulence” workshop
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AQNM numerically solved equation

k

Ω

θ

Energy equation e(k, θ) :

∂e

∂t
+ 2νk2e =

∑

ǫ′ǫ′′

∫

Sǫ′ǫ′′

gǫ′ǫ′′(k, p, q)

αǫ′ǫ′′(p, q)
e(p, t) [e(q, t) − e(k, t)] d2p

αǫ′ǫ′′(p, q) =
1

π
|ǫ′cg(p) − ǫ′′cg(q)|

No explicit inclusion of exactly 2D modes

April 2009 IHP “wave turbulence” workshop
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Numerical resolution

– Spherical discretisation of spectral space : Typical resolution 400 × 400 × 400=16 million

points (parallel computation)

– Compute intersection of resonant surface with each grid cell ⇒ elementary area and integration

geometrical coefficients

– 3D interpolation of spectrum for q

April 2009 IHP “wave turbulence” workshop
F.S. Godeferd



Inertial Waves Turbulence ECL22

(̂k, Ω) = θ = 0.85 θ = 1.49

April 2009 IHP “wave turbulence” workshop
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AQNM run

Initial isotropic conditions with narrow band spectrum

Need to stabilize the numerical scheme by re-introducing some viscosity : virtual Reynolds number

R = 5 (truncation,bottleneck)

Unsteady run from t0 = 0 to tf = 1, 05 (scaled by Ro−2Ω−1)

A unique AQNM run is needed :

⋆ No dependency on Ro or Re

⋆ Universality of the non dimensional results

We study

⋆ Loss of isotropy → two-dimensionalization ?

⋆ Inertial range scaling → k−3 or k−2 power law ?

⋆ Rate of energy decay ?

Mρ convergence :

1e−05

0.0001

0.001

0.01

0.1

100 1000 10000

transfer integral

446,19*Mρ
−1,978

Mρ
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AQNM : shell averaged energy spectrum
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Shell averaged energy spectrum
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Shell averaged energy transfer spectrum

−10

−8

−6

−4

−2

0

2

4

6

8

0.1 1 10 100

t0=0,0000
t=0,0750
t=0,1500
t=0,2250
t=0,3000
t=0,3750
t=0,4500
t=0,5250

k

T (k)

Inertial range

set up

T (k) such that

∫

R

T (k)dk = 0

April 2009 IHP “wave turbulence” workshop
F.S. Godeferd



Inertial Waves Turbulence ECL27

Shell averaged energy transfer spectrum
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Azimuthal averaged energy density spectrum
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Azimuthal averaged energy density spectrum
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Angular energy
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Reynolds stress tensor anisotropy
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Summary

The AQNM model for wave turbulence :

⋆ Asymptotic in time model for small Rossby number (large rotation rate)

⋆ To our knowledge, first numerical resolution (tough job...)

⋆ Explicit expression of e(k, t) from the selected resonant interactions

Results :

1. Anisotropy created by rotation with stronger vertical coherence

2. Nonlinear transition towards two-dimensional state but not quite

3. Transfer of energy from rapid to slow modes

4. Reduced decay rate of turbulence (E ∼ t−0,8)

5. k−3 inertial range results from integration over all modes orientations

6. Model still lacks the matching between AQNM (rapid modes) and the exact

two-dimensional manifold (2D turbulence part)
April 2009 IHP “wave turbulence” workshop
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