

in rotating homogeneous turbulence

with F. Bellet, J. Scott, C. Cambon

F.S. Godeferd

Laboratoire de Mecanique des Fluides et d'Acoustique ´ ´Ecole Centrale de Lyon, France

IHP "wave turbulence" workshop

April ²⁰⁰⁹ IHP "wave turbulence" workshop **F.S. Godeferd**

 \Box

Modelling inertial wave turbulence

Motivation : question about the full/partial two-dimensionalization of rotating turbulence at high rotation rate

- Background Linear and non linear regime
- Wave turbulence modelling : AQNM model weakly nonlinear at asymptotically high rotation rate)
- Closure
- Dynamical equations for spectral tensors
- Numerical resolution
- Some results

(Ref. : JFM, 2006)

Background

 \rightarrow Influence of solid body rotation on the structure of turbulence

Areas :

- Geophysical flows
- Industrial flows : turbomachinery, hydraulic production of energy

Experimental landmarks :

- \star Taylor (1921) \rightarrow 2D structuration in columns
- \star McEwan (1970) \rightarrow characterization of inertial waves

Nonlinear waves interaction :

- \star Benney & Saffman (1966) \rightarrow dynamique des amplitudes d'une distribution d'ondes
- \star Zakharov & al. (1992) \rightarrow energy fluxes between waves
- \star Caillol & Zeitlin (2000) kinetic equation for internal waves

Equations for rotating flows

N[a](#page-3-0)vier-Stokes equations in a rotating frame :^a

$$
(\partial_t + \mathbf{u} \cdot \mathbf{\nabla}) \mathbf{u} + 2\Omega \mathbf{n} \times \mathbf{u} + \mathbf{\nabla} p - \nu \nabla^2 \mathbf{u} = 0
$$

 $\nabla \cdot \boldsymbol{u} = 0$

modified pressure field

fluctuating velocity \boldsymbol{u} , pressure p Non dimensional parameters :

$$
Re = \frac{UL}{\nu} \equiv \frac{\text{nonlinear}}{\text{viscous}} \sim 10^6 \qquad Ro = \frac{U}{\Omega L} \equiv \frac{\text{nonlinear}}{\text{Coriolis}} \sim 0.1
$$

$$
Ek = \frac{Ro}{Re} \equiv \frac{\text{viscous}}{\text{Coriolis}}
$$

^aEquations for the complete velocity field are almost identical, with a modified pressure

We take the linear inviscid limit for the rotating case at Ω .

- Without pressure, the linearized system admits sinusoidal solutions
- These pressureless solutions are not valid in the general case, and p is needed to inforce the solenoidal property.
- Pressure is responsible for coupling horizontal and vertical velocity components, and for the anisotropic dispersion law of inertial waves \Rightarrow without pressure, these are only oscillating solutions but not actual propagating waves.

Pressure equation obtained by eliminating u in the linearized system :

$$
\partial_t^2 (\nabla^2 p) + (2\Omega)^2 \nabla_{\parallel}^2 p = 0
$$

Iso-surfaces of vertical vorticity component ($512³$ DNS by Liechtenstein, 2005)

Dominant linear effects

$$
\frac{\partial \hat{u}}{\partial t} + \left[L_{\Omega} + L_{\nu} \right] (\hat{u}) = T(u, u) \quad \mathbf{k} \cdot \hat{u} = 0
$$

Linear regime : $\text{Ro} = u/(2\Omega L) \to 0$ $T(u, u) \to 0$

Linear solution : plane waves with constant amplitude $a \exp i(\mathbf{k} \cdot \mathbf{x} - \sigma t)$.

$$
\hat{u}(\mathbf{k},t) = e^{-\nu k^2 t} \left[a_{+1} e^{i\sigma t} N + a_{-1} e^{-i\sigma t} N^* \right]
$$

$$
\text{with }\begin{cases} a_{+1}(\mathbf{k}), a_{-1}(\mathbf{k}) & \text{time independent amplitudes} \\ \sigma(\mathbf{k}) = 2\Omega\cos\theta & \text{anisotropic dispersion law} \neq k^{\alpha} \\ N(\mathbf{k}) = e_1(\mathbf{k}) + ie_2(\mathbf{k}) & \text{eigenvector of } L = L_{\Omega} + L_{\nu} \end{cases}
$$

Wave turbulence

Weakly nonlinear dynamics :

a is a slow variable, such that the total amplitude is $e^{i\sigma t}a(\mathbf{k},t)$ i.e. time dependent amplitudes : $a_{+1}(\boldsymbol{k},t)$ et $a_{-1}(\boldsymbol{k},t)$

With
$$
\frac{\partial \boldsymbol{u}}{\partial t} + \mathsf{L}(\boldsymbol{u}) = \mathsf{T}(\boldsymbol{u}, \boldsymbol{u})
$$

$$
\partial_t a_{\epsilon}(\boldsymbol{k}, t) = \sum_{\epsilon', \epsilon''} \int_{\boldsymbol{k} + \boldsymbol{p} + \boldsymbol{q} = \boldsymbol{0}} e^{i[\epsilon \sigma(\boldsymbol{k}) + \epsilon' \sigma(\boldsymbol{p}) + \epsilon'' \sigma(\boldsymbol{q})]t} \mathbf{m}_{\epsilon \epsilon' \epsilon''}(\mathbf{k}, \mathbf{p}, \mathbf{q}) \times a_{\epsilon'}(\boldsymbol{p}, t) a_{\epsilon''}(\boldsymbol{q}, t) d^3 \boldsymbol{q}
$$

Triadic resonance : $F = 0$

Resonant surfaces

The above term $e^{i\left[\epsilon\sigma(k)+\epsilon'\sigma(p)+\epsilon''\sigma(q)\right]t}$ allows for the following splitting of the interaction triads :

– Triads which satisfy the *resonance conditions* :

(I_{α}

$$
\begin{cases}\n\boldsymbol{k} + \boldsymbol{p} + \boldsymbol{q} = \boldsymbol{0} \\
F_{\epsilon \epsilon' \epsilon''}(\boldsymbol{k}, \boldsymbol{p}, \boldsymbol{q}) = \epsilon \sigma(\boldsymbol{k}) + \epsilon' \sigma(\boldsymbol{p}) + \epsilon'' \sigma(\boldsymbol{q}) = 0 \\
\text{which defines complex resonant surfaces } S_{\epsilon' \epsilon''}\n\end{cases}
$$

– The remaining triads with $\bm{k}+\bm{p}+\bm{q}=\bm{0}$ but $F_{\epsilon\epsilon'\epsilon''}(\bm{k},\bm{p},\bm{q})\neq 0$, in the 3D spectral space.

When rotation is fast, the phase of these remaining triads is ^a very rapidly oscillating term, so that their contribution is negligible. \Rightarrow resonant triads are dominant in the dynamics of rapidly rotating turbulence.

Cut trough the resonant surface for $k = 1$ and $\theta_k = 1.3$

The path to ^a tractable model :

Solve numerically the equations, integrating only over the resonant surface, cheaper than full 3D spectral integration.

- Difficult issues when using random amplitude equations (the amplitudes oscillations are very fast, velocity fluctuations are not "smooth" quantities and yield inconsistencies in the Fourier representation)
- But the statistics, *i.e.* $\lt a_{\epsilon}a_{\epsilon'}$ $>$ are smooth functions and one can use their equations as ^a starting point for modelling.
- $-$ A closure of the quasi-normal type has to be used (EDQNM \rightarrow AQNM, Bellet 2003).
- \cdots + lots of analysis

Statistical approach

★ Spectral tensor $\Phi_{ij} \sim \overline{uu}$ in the Craya-Herring frame : e energy density ; z polarization ; h helicity

$$
\Phi_{ij} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & e + z_r & z_i + ih \\ 0 & z_i - ih & e - z_r \end{pmatrix}
$$

 \star Wave turbulence : $\Phi_{ij}({\bm k},t) = \sum A_{ss'}({\bm k},t) N_i^{(s)}({\bm k}) N_j^{(s')}({\bm k}) e^{i(s+s')\omega({\bm k})t}$ s,s'

Three equivalent formalisms for the dynamics : (1) $\Phi_{ij} \sim \overline{uu}$; (2) $A_{ss'} \sim \overline{aa}$; (3) e, z et h

 \rightarrow For instance, using \overline{uu} : infinite hierarchy of equations for the moments of order n :

$$
\frac{\partial \overline{u u}}{\partial t} + L^{(1)}(\overline{u u}) = \mathsf{T}^{(1)}(\overline{u u u})
$$

$$
\frac{\partial \overline{u u u}}{\partial t} + L^{(2)}(\overline{u u u}) = \mathsf{T}^{(2)}(\overline{u u u u})
$$

· · ·

Intermediate step : EDQNM closure (1/2)

Two-point closure truncated at moments of order 4. Orszag, 1970. Adapted to include external distorsion through Green's tensor G.

Hypotheses :

- Quasi-Normal (QN) : $\overline{uuuu} = \sum \overline{uu} \ \overline{uu} \rightarrow$ closure, but $e < 0$
- Eddy-Damping (ED) : correct memory of \overline{uuu} by damping $\zeta \rightarrow k^{-5/3}$ in isotropic turb.

EDQNM closure (2/2)

- Markovian (M) : distinguish rapid and slow evolutions (realizability $e < 0$)
	- \star EDQNM1 : ζ rapid; G and (e, z, h) slow \to no more nonlinear dynamics due to Ω
	- \star EDQNM2 : ζ and G rapid; (e, z, h) slow \to not valid at large $|z|$
	- \star EDQNM3 : ζ , G and oscillating part of z rapid; (e, Z, h) slow
- \Rightarrow coupled closed equations for e, Z et h . For instance

$$
\frac{\partial e}{\partial t} + 2\nu k^2 e = T^e
$$
\nwith\n
$$
T^e = \sum_{s', s''} \int_{\mathbf{k} + \mathbf{k}' + \mathbf{k}'' = 0} \Re \left(\frac{b_{s's''}}{\zeta^{\text{total}} + iF_{1s's''}} \right) e'' \left[e' - e \right] \mathrm{d}^3 \mathbf{k'}
$$

 $+$ other terms involving Z and h

AQNM model — Hypotheses (1/3)

To overcome some of the EDQNM3 limitations :

- Moderate spatial discretization
- No specific treatment of resonant triads (surfaces)
- \rightarrow asymptotique model for Ro $\ll 1$

Additional hypotheses :

- \star Nonlinear dynamics at $t \gg \Omega^{-1} \Longleftrightarrow \Omega t \gg 1$ consequences of

★ Damping $\zeta \ll \Omega$ Ro $\ll 1$
-
- \star Re $\to \infty$: but viscosity can be re-introduced later
- \rightarrow temporal evolution of $A_{ss'}$ and byproducts e, Z and h

AQNM model — Mathematical steps (2/3)

Three steps for the multiscale asymptotic development :

1. Use EDQNM3 for the nonlinear transfer, with markovianization of slow amplitudes $A_{ss'}$:

$$
\frac{\partial A}{\partial t} = \mathsf{T}_{\mathsf{EDONMS}}(A, A)
$$

- \rightarrow simplification of nonlinear term
- 2. Elimate rapidly oscillating terms in \mathbf{k}' (Ωt large) $\rightarrow \int \frac{\zeta}{\zeta^2 + F_{1s's''}^2} (\cdots) d^3 \vec{k}'$ and $\int \frac{F_{1s's''}}{\zeta^2 + F_{1s's''}^2} (\cdots) d^3 \vec{k}'$

3. Limit
$$
\zeta \to 0
$$
:
\n
$$
\begin{aligned}\n &\zeta \\
 &\zeta \\
 &\zeta^2 + F_{1s's''}^2 \\
 &\zeta^2 + F_{1s's''}^2 \\
 &\Rightarrow \text{integrals over the sole resonant surfaces} \\
 &\begin{aligned}\n &\zeta \\
 &\zeta \\
 &\zeta\n \end{aligned}\n &\xrightarrow{\zeta \\
 &\zeta\n \end{aligned}\n \begin{aligned}\n &\zeta \\
 &\zeta \\
 &\zeta\n \end{aligned}\n &\xrightarrow{\zeta \\
 &\zeta\n \end{aligned}\n &\xrightarrow{\zeta\n \end{aligned}\n \begin{aligned}\n &\zeta \\
 &\zeta\n \end{aligned}\n &\xrightarrow{\zeta\n \end{aligned}\n &\xrightarrow{\zeta\n \end{aligned}\n &\xrightarrow{\zeta\n \end{aligned}\n \begin{aligned}\n &\zeta \\
 &\zeta\n \end{aligned}\n &\xrightarrow{\zeta\n \end{aligned}\n &\xrightarrow{\zeta\n \end{aligned}\n &\xrightarrow{\zeta\n \end{aligned}\n &\xrightarrow{\zeta\n \end{aligned}
$$
\n
$$
\begin{aligned}\n &\zeta\n \end{aligned}
$$

AQNM model — Final equations (3/3)

For kinetic energy spectrum *e*, polarization spectrum *Z*, helicity spectrum *h* :
\n•
$$
T^{e} = \sum_{s',s''} \int_{k+k'+k''=0} \frac{g_{s's''}}{\alpha_{s's''}} \left[e''(e'-e) + s'h'(s''h''-h) \right] d^{2}S
$$
\n
$$
\alpha_{s's''} = \frac{1}{\pi} \left[s''C_{g}(k'') - s'C_{g}(k') \right] \text{ with } C_{g} \text{ group velocity}
$$
\n•
$$
T^{Z} = -Z \sum_{s',s''} \left[\int_{k+k'+k''=0} \frac{g_{s's''}}{\alpha_{s's''}} e' d^{2}S + i \int_{\mathbb{R}^{3}} \frac{g_{s's''}}{F_{s's''}} e' d^{3}k' \right]
$$
\n•
$$
T^{h} = \sum_{s',s''} \int_{k+k'+k''=0} \frac{g_{s's''}}{\alpha_{s's''}} \left[s'h'(e''-e) + e'(s''h''-h) \right] d^{2}S
$$
\n\nPomarks:

Remarks :

- $\star T^e$ is conservative and the model is realizable $\Rightarrow \forall t, e(t) \geq 0$
- ★ For initially isotropic turbulence without helicity/polarization $\Rightarrow \forall t, Z(t) = h(t) = 0$
- $\star \zeta$ does not appear anymore

Energy equation $e(k, \theta)$:

$$
\frac{\partial e}{\partial t} + 2\nu k^2 e = \sum_{\epsilon' \epsilon''} \int_{S_{\epsilon' \epsilon''}} \frac{g_{\epsilon' \epsilon''}(k, p, q)}{\alpha_{\epsilon' \epsilon''}(\boldsymbol{p}, \boldsymbol{q})} e(\boldsymbol{p}, t) \left[e(\boldsymbol{q}, t) - e(\boldsymbol{k}, t) \right] d^2 \boldsymbol{p}
$$

$$
\alpha_{\epsilon'\epsilon''}(\boldsymbol{p},\boldsymbol{q})=\frac{1}{\pi}|\epsilon'\boldsymbol{c}_g(\boldsymbol{p})-\epsilon''\boldsymbol{c}_g(\boldsymbol{q})|
$$

No explicit inclusion of exactly 2D modes

Numerical resolution

- Spherical discretisation of spectral space : Typical resolution $400 \times 400 \times 400$ =16 million points (parallel computation)
- Compute intersection of resonant surface with each grid cell \Rightarrow elementary area and integration geometrical coefficients
- $-$ 3D interpolation of spectrum for q

AQNM run

Initial isotropic conditions with narrow band spectrum

Need to stabilize the numerical scheme by re-introducing some viscosity : virtual Reynolds number $\mathfrak{R}=5$ (truncation, bottleneck)

Unsteady run from $t_0 = 0$ to $t_f = 1,05$ (scaled by $Ro^{-2}\Omega^{-1}$)

A unique AQNM run is needed :

- \star No dependency on Ro or Re
- \star Universality of the non dimensional results

We study

- \star Loss of isotropy \rightarrow two-dimensionalization ?
- \star Inertial range scaling $\rightarrow k^{-3}$ or k^{-2} power law?
- \star Rate of energy decay?

 M_{ρ} convergence :

April ²⁰⁰⁹ IHP "wave turbulence" workshop **F.S. Godeferd**

April ²⁰⁰⁹ IHP "wave turbulence" workshop **F.S. Godeferd**

Angular energy

Energy E_{θ} between θ and $\pi/2$ at different times

Summary

The AQNM model for wave turbulence :

- \star Asymptotic in time model for small Rossby number (large rotation rate)
- \star To our knowledge, first numerical resolution (tough job...)
- \star Explicit expression of $e(\mathbf{k},t)$ from the selected resonant interactions Results :
	- 1. Anisotropy created by rotation with stronger vertical coherence
	- 2. Nonlinear transition towards two-dimensional state but not quite
	- 3. Transfer of energy from rapid to slow modes
- 4. Reduced decay rate of turbulence $(\mathcal{E} \sim t^{-0.8})$
- 5. k^{-3} inertial range results from integration over all modes orientations
- 6. Model still lacks the matching between AQNM (rapid modes) and the exact two-dimensional manifold (2D turbulence part)