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Inertial Waves Turbulence

‘ Modelling inertial wave turbulence I

Motivation : question about the full/partial two-dimensionalization of rotating turbulence

at high rotation rate

— Background - Linear and non linear regime

— Wave turbulence modelling : AQNM model — weakly nonlinear at asymptotically high
rotation rate)

— Closure

— Dynamical equations for spectral tensors

— Numerical resolution

— Some results

(Ref. : JFM, 2006)
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‘ Background I

— Influence of solid body rotation on the structure of turbulence

Areas :

e Geophysical flows

e [ndustrial flows : turbomachinery, hydraulic production of energy
Experimental landmarks

x Taylor (1921) — 2D structuration in columns

* McEwan (1970) — characterization of inertial waves
Nonlinear waves interaction :
*x Benney & Saffman (1966) — dynamique des amplitudes d’une distribution d’ondes

*x Zakharov & al. (1992) — energy fluxes between waves

+ Caillol lin (2000) Kinet on for | |
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‘ Equations for rotating flows I

Navier-Stokes equations in a rotating frame :°

0y +u - V) u+20nxu+Vp—vViu = 0

V.u=0 modified pressure field

fluctuating velocity u, pressure p
Non dimensional parameters :

__ UL _ nonlinear 106 _ U _— nonlinear
Re = v~ viscous 10 Ro = QL — Coriolis 0.1
Ek — Ro _ viscous

~— Re — Coriolis

2Equations for the complete velocity field are almost identical, with a modified pressure
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The role of pressure I Inertial waves I

We take the linear inviscid limit for the rotating case at §).

— Without pressure, the linearized system admits sinusoidal solutions

— These pressureless solutions are not valid in the general case, and p is needed to
Inforce the solenoidal property.

— Pressure is responsible for coupling horizontal and vertical velocity components, and
for the anisotropic dispersion law of inertial waves — without pressure, these are only
oscillating solutions but not actual propagating waves.

Pressure equation obtained by eliminating w in the linearized system :

07 (V?p) + (22)°Viip =0
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‘ lllustration I ‘ Inertial waves I

- -‘-h~ .
Rotaling 1 — 1 . 1 O
{ TN o n
! zong

Numerical simulation Experiment
Godeferd & Lollini, 1999 McEwan, 1970
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‘ lllustration I ‘ Rotating homogeneous turbulence I

|so-surfaces of vertical vorticity component (5123 DNS by Liechtenstein, 2005)
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‘ Dominant linear effects I
ou

E+[LQ+L,/](&): k-u=0
Linear regime : Ro = u/(22L) — 0 — 0

Linear solution : plane waves with constant amplitude a exp i(k - & — ot).
N o 2 . s
w(k,t) =e " "[a e N+a_ e '""N*]

ar1(k),a_1(k) time independent amplitudes
with O'(ki)
N (k) =ei(k) +iea(k) eigenvectorof L =Lgo + L,

— 2Q) cos 0 anisotropic dispersion law # k¢
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‘ Comparison with other dispersive waves I

en(k) = k/k
< eg(k) = e¢(k) X ek(k)
ey(k) =Q X k/|Q2 X K

a1 vk? —o, 0
Ot | 4(2) + or vk?  —o.
T* 0 Os rk?
/ﬁ(l) \ ( vk? — 0y —iop
9 a(2) n or vk? 0
t b(l) —iop UkQ
\s@ ) \ 0 —iep 0

=0

polar-spherical reference frame

a.k.a Craya-Herring frame

rotation+stratification : inertio-gravity waves

0
10

0
nk? )

=0

rotation+ext. magn. field

inertio-Alfvén waves
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‘ Wave turbulence I

a is a slow variable, such that the total amplitude is eiata(k, t) i.e. time dependent
amplitudes : a1 (k,t) eta_1(k,1t)

Weakly nonlinear dynamics :

With %—? +L(uw) =T (u,u)

F

_/A\

Ve

. / "o
Oackt) =32 [ oW TP Dl (p g
el +p+qg=

€,

xae (p,t)ac(g,t)d°q

Triadic resonance : F' = 0
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‘Resonantsuﬁaces I

leo(k)+€ o(p)+e’o(q)]t

The above term €' allows for the following splitting of the

Interaction triads :
— Triads which satisfy the resonance conditions :

y
k+p+q=0

\ Feoer(k,p,q) =co(k)+ €a(p)+€'o(q) =0
which defines complex resonant surfaces S/ ¢/

— The remaining triads with k + p + g = 0 but Frer o (k, p, q) # 0, in the 3D
spectral space.

When rotation is fast, the phase of these remaining triads is a very rapidly oscillating
term, so that their contribution is negligible. = resonant triads are dominant in the

dynamics of rapidly rotating turbulence.
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Cut trough the resonant surface for k = 1 and 0, = 1.3
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The path to a tractable model :

Solve numerically the equations, integrating only over the resonant surface, cheaper

than full 3D spectral integration.

— Difficult issues when using random amplitude equations (the amplitudes oscillations
are very fast, velocity fluctuations are not “smooth” quantities and yield inconsistencies
In the Fourier representation)

— But the statistics, i.e. < a.a., > are smooth functions and one can use their
equations as a starting point for modelling.

— A closure of the quasi-normal type has to be used (EDQNM—AQNM, Bellet 2003).

- + |ots of analysis
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‘ Statistical approach I

* Spectral tensor CDZ-j ~ uu in the Craya-Herring frame : e energy density ; z polarization ; h helicity

0 0 0
D, = 0O e+2z 2z;+1th
0O z;,—th e—z
* Wave turbulence : @, (k,t) = Z Ao (K, t)Nz.(S) (k;)NJ(S/) (k)ei(s-l-s')w(k)t

Three equivalent formalisms for the dynamics : (1) <I>Z-j ~uu; (2 Agser ~aa;(B)e,zeth

— For instance, using uw : infinite hierarchy of equations for the moments of order 7 :

%H(”W) = T (uuu)
ag?quL(Q)(m) =  T@) (zuwu)
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‘ Intermediate step : EDQNM closure (1/2) I

Two-point closure truncated at moments of order 4. Orszag, 1970. Adapted to include

external distorsion through Green’s tensor G.

Hypotheses :

e Quasi-Normal (QN) : wuuu = »  uu uu — closure, bute < 0

e Eddy-Damping (ED) : correct memory of uuu by damping ( — k—5/3 in Isotropic
turb.
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‘ EDQNM closure (2/2) I

e Markovian (M) : distinguish rapid and slow evolutions (realizability ¢ < 0)
*x EDQNML1 : ( rapid; G and (e, z, h) slow — no more nonlinear dynamics due to
x EDQNM2 : ¢ and G rapid; (e, z, h) slow — not valid at large |z|
* EDQNM3 : (, G and oscillating part of z rapid; (e, Z, h) slow

= coupled closed equations for e, Z et h. For instance

0
5’_§ + 2vk?e = T°

b ! !/
with — T° = / R ( — ) e [/ —e] d°k’
Z ket k!4 k! =0 Ctotal _|_ ZFls’s” [ ]

S/,S,,

+ other terms involving Z and h
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‘AQNM model — Hypotheses (1/3) I

To overcome some of the EDQNMS3 limitations
e Moderate spatial discretization

e No specific treatment of resonant triads (surfaces)

— asymptotiqgue model for Ro < 1

Additional hypotheses :
* Nonlinear dynamics att > Q71 < Qt > 1 consequences of

* Damping ( < 2 Ro < 1

* Re — o0 : but viscosity can be re-introduced later

— temporal evolution of A,¢ and byproducts e, Z and h
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‘AQNM model — Mathematical steps (2/3) I

Three steps for the multiscale asymptotic development :

1. Use EDQNMS3 for the nonlinear transfer, with markovianization of slow amplitudes A ./

0A
— =T A A
ot EDQNMS( )

— simplification of nonlinear term

2. Elimate rapidly oscillating terms in k’ (2t large)

Fy o
/ o (- d3k’and/ oo Lss (---)d3k’
C /// C 1/

SS
3. L|m|tC—>O.

C

> 7T5(F13’ //) whence :

1
(“‘)dSkZ,—>7T/ (...)d2S
/CQ s/ ! Fy.r41=0 |VF18/S//|

= mtegrals over the sole resonant surfaces

F ! !/ ].
183 (- )d3k — (- ) d3K
¢* + Fy g1 g1

18’3

—> principal value integrals
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‘ AQNM model — Final equations (3/3) I

For kinetic energy spectrum e, polarization spectrum Z, helicity spectrum h :

e gs’s”
o " = Z bk k=0 (o [e" (e' — e) +s'h (s"h" — h)] d°S

1 gl —
S8 Fi . rgrr=0

1
Ogrgrr = — ‘5”09(16") — S/C’g(k’)‘ with C'; group velocity
T
7 . .y
o 7% =_7 E / o Js's e/d2S—|—z][ Is's" 1 3!
! /7
o Th _ 2 : Js’s [S/h/ (6// B 6) 4 o (S//h// B h)] dQS
k:—i—k:/—l—k:”:() Qlgl gt
S/,SH Fls/s” :0
Remarks :

x T is conservative and the model is realizable = V¢, e(t) > 0
* For initially isotropic turbulence without helicity/polarization = Vt, Z(t) = h(t) = 0

* ( does not appear anymore
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AQNM numerically solved equation I

Q

0

’\ k

Energy equation e(k, @) :

Ze 2Vk26 B 2;/ vy ge/e/”//k - )) (p7t) [G(q, t) o 6(k7 t)] d2p

1
Qler e (p7 Q) — J ‘E,Cg(p) - el/cg(q)|
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‘ Numerical resolution I

— Spherical discretisation of spectral space : Typical resolution 400 X 400 x 400=16 million
points (parallel computation)

— Compute intersection of resonant surface with each grid cell = elementary area and integration
geometrical coefficients

— 3D interpolation of spectrum for q
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‘ AQNM run I

Initial isotropic conditions with narrow band spectrum

Need to stabilize the numerical scheme by re-introducing some viscosity : virtual Reynolds number

YR = 5 (truncation,bottleneck)

Unsteady run fromtg = Ototy = 1, 05 (scaled by Ro 201
A unique AQNM run is needed :
* No dependency on Ro or Re M, convergence :

* Universality of the non dimensional results

We study

* Loss of isotropy — two-dimensionalization ? R

* Inertial range scaling — k=3 or k™2 power law ?

11111
000000

* Rate of energy decay ?
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‘ AQNM : shell averaged energy spectrum I

E(k) 1e+06 ————— S
( ) ° t;=0,0000 ——
' t=0,0750 -~ '
10000 t=0,1500 - .
t=0,2250
100 ]
t=0,4500 -~~~
1} T t=0,525Q
Inertial range _ ’ 30%° |
0.01 | ]
set up _
0.0001 ]
le-06 r -
1le-08 r -
le-10 e —_— R k
0.1 1 10 100

Kinetic Energy F'(k) such that/ E(k)dk = & (total energy)
R
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‘ Shell averaged energy spectrum I

E (k) 1e+06

10000
100

Viscous
0.01

decay
0.0001
le-06
1le-08

1le-10

0.1

~ ~ ~ ~—
I

t=1,0500 -

30%k 3

10

100
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‘ Shell averaged energy transfer spectrum I

k) s —
6 |
4 + 4
2t |
Inertial range 0
set up -2t .

4l t,=0,0000 |
t=0,0750
t=0,1500 -

-6 I t=0,2250 A

o t=0,4500 -

10 L DU B *

0.1 1 10 100
T'(k) such that/ T(k)dk =0
R
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‘ Shell averaged energy transfer spectrum I

T (k)

Viscous

decay

0.5

~ ~+ ~ ~—

t=1,0500 -

10
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‘ Azimuthal averaged energy density spectrum I

0.01
0.0001 ¥~
le-06

1e-08

Mode vertical

t =0,525
(inertial range established)

/

Mode
horizontal |

le-10

10
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‘ Azimuthal averaged energy density spectrum I

R t;=1,05

0.01

1 0.01 e

Mode vertical 0.001

0.0001 ¥

0.0001

le-05

ol W

| Mode " |Full DNS
16-08 horizontal | . o
1 10
le-10 e — L
0.1 1 10 100
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‘ Angular energy I

Ey(0) as . . . .

4

t;=0,0000 —
t=0,1500 -
t=0,3000 -
t=0.4500

3.5

3l TN t=0,9000 -~
t=1,0500 -

e s .- RN
15k _
Tt Te - RN

N[

0.5 r NG

0 | | | | | | :
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Energy )y between 6 and 7'('/2 at different times
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‘ Reynolds stress tensor anisotropy I

u/ 2 2.5 T T T T T
3
(2)
) 2
ul 7 i
1.5 .
1 .
05 B 2D ,,,,,,,,,,, 7]
AQNM ———
Isotrope
0 L L L L L t
0 0.2 0.4 0.6 0.8 1
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‘ Summary I

The AQNM model for wave turbulence :

* Asymptotic in time model for small Rossby number (large rotation rate)

* To our knowledge, first numerical resolution (tough job...)

* Explicit expression of e(k, t) from the selected resonant interactions

Results :

1.

o o~ W DN

Anisotropy created by rotation with stronger vertical coherence
Nonlinear transition towards two-dimensional state but not quite
Transfer of energy from rapid to slow modes

Reduced decay rate of turbulence (€ ~ t~Y%)

k=3 inertial range results from integration over all modes orientations

Model still lacks the matching between AQNM (rapid modes) and the exact

two-dimensional manifold (2D turbulence part)
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