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The key governing parameter of wave turbulence is the energy flux
that drives the waves and cascades to small scales through nonlinear
interactions. In the inertial range, the energy flux is conserved across
the scales, and is assumed to be constant in most theoretical approaches.
It is only recently that measurements of the injected power into wave
turbulence have been performed at the scale of the wave maker (integral
scale). In this review, we focus on the statistical properties of the injected
power fluctuations in gravity-capillary wave turbulence in a stationary
regime. Fluctuations of the injected power have been found much larger
than their mean value. In addition, events related to a negative injected
power, i.e. an instantaneous reversed energy flux, occur with a fairly
large probability. Both features are well described using a Langevin type
equation. Finally, we consider the experimental dependence of the scaling
law of the wave spectrum with the mean injected power and discuss
possible reasons for the discrepancy with weak turbulence theory.
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2.1. Introduction

A fundamental problem of wave turbulence consists of describing the
transfer of energy among different scales through the weak interaction
between waves. It was understood first by Zakharov (1967) that the kinetic
equations obtained in the weak turbulence limit have stationary solutions
that involve a finite mean energy flux per unit surface and density ε across
the scales. In the case of a n-wave process, the energy spectrum of the wave
heights E(k) is proportional to ε1/(n−1). Once this is taken into account,
the power-law dependence of E(k) on the wavenumber k often follows from
dimensional analysis (Connaughton et al., 2003),

E(k) ∝ ε1/(n−1)kα, (2.1)

where the proportionality constant involves parameters of the dispersion
relation. Since measurements are often performed in time at a fixed point
in space, it is useful to consider an equation similar to (2.1) in the frequency
domain

E(ω) ∝ ε1/(n−1)ωβ . (2.2)

In weak turbulence theory, Eqs. (2.1) and (2.2) are related through the
dispersion relation ω = W (k). This has been checked only recently by
comparison of the spatial and temporal spectra determined in experiments
of waves on elastic plates (Cobelli et al., 2009) and capillary-gravity surface
waves (Snouck et al., 2009; Herbert et al., 2010). A fair agreement has
been found in the former case whereas a more complex structure in the
spatio-temporal domain exists in the latter ones. Most of the experiments
performed so far have dealt with the determination of the exponents α and
β related to the spatial (respectively temporal) spectrum. Although a fair
agreement with theory has been often claimed, detailed measurements show
disagreement in many cases: for elastic waves on plates (see the chapter by
N. Mordant) or gravity waves for which the spectrum has been shown to
depend on the amplitude and frequency content of the forcing (Falcon et al.,
2007a; Denissenko et al., 2007; Nazarenko et al., 2010). The spectrum of
capillary waves looks more robust, an exponent in rough agreement with
theory being found in different configurations, high frequency part of surface
waves (Falcon et al., 2007a), pure capillary waves observed in microgravity
(Falcon et al., 2009), and capillary waves at the interface between two fluids
with similar density (Düring and Falcón, 2009).

It is thus of primary interest to test other predictions of the weak
turbulence theory in order to determine its range of validity. Measuring the
dependence of the spatial (respectively temporal) spectrum on the mean
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energy flux ε is the next step. No direct measurement of the energy flux
within the inertial range exists so far, but its mean value is equal to the
mean injected power of the force driving the system. That quantity can be
measured. We will discuss these measurements in Sec. 2.3.

A second aspect concerns the fluctuations of the energy flux. It
has been known for a long time that the power needed to maintain
a dissipative system in a statistically stationary regime is generally a
fluctuating quantity. This has been shown in the case of spatio-temporally
chaotic waves generated by the Faraday instability (Ciliberto et al., 1991),
hydrodynamic turbulence (Labbé et al., 1996) and many other dissipative
systems such as granular gases (Aumâıtre et al., 2001, 2004). However,
very few general results have been obtained so far about the properties of
the fluctuations of global quantities in dissipative systems driven far from
equilibrium. In all these systems, dissipative processes damp out any initial
motion in the absence of an external forcing. In order to reach a statistically
stationary regime, an external operator should provide an injected power
I(t) that, on average, compensates the dissipation D(t). The equation for
the energy budget takes the form

dE(t)
dt

= I(t) − D(t), (2.3)

where E is an energy, for instance the kinetic energy of a turbulent flow or
of a granular gas. In majority of the situations, the external operator never
controls one of the global quantities, I, D or E. It usually drives the system
by imposing locally a given force or velocity, for instance, the velocity or the
torque applied to a propeller generating a turbulent flow, or the vibration
velocity of a piston driving waves in a fluid or motions of the particles
in a granular gas. The injected power I(t) is thus generally a fluctuating
quantity, that can often take instantaneous negative values depending on
the phase of the response of the system to the driving (Aumâıtre et al.,
2001). It should be positive on average, since we have in a statistically
stationary regime

〈I〉 = 〈D〉, (2.4)

with D(t) > 0 in a macroscopic description of a dissipative system.
Equation (2.3) is probably one of the most common equations of physics
since it only states that the time variation of some quantity results from
the difference between input and output. It is thus surprising that its
general properties have not been emphasized more often. In a statistically
stationary regime, Eq. (2.4) is of course well known, but to the best of our
knowledge, this is not the case for the relations involving higher moments
of the fluctuations of I(t) and D(t). For instance, I(t) and D(t) should have
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the same spectrum at zero frequency (Aumâıtre et al., 2004; Farago, 2004)

|Î(0)|2 = |D̂(0)|2, (2.5)

or using Wiener–Kintchine theorem,∫ ∞

0

[〈I(τ)I(0)〉 − 〈I〉2]dτ =
∫ ∞

0

[〈D(τ)D(0)〉 − 〈D〉2]dτ. (2.6)

If the correlation functions decay fast enough at large τ , the above
equation shows that the variances of the injected and dissipated power are
related by

σ2
I τI = σ2

DτD, (2.7)

where τI (respectively τD) is the correlation time of I(t) (respectively D(t)).
As explained by Aumâıtre et al. (2004) and Farago (2004), the above results
trace back to the large deviation functions for I and D that have the same
Taylor expansion about 〈I〉 = 〈D〉.

This chapter is organized as follows: first, we recall experimental results
about gravity-capillary surface waves in a turbulent regime and show how
the spectra depend on the injected power in the system. Then, we consider
the fluctuations of the injected power and their statistical properties. We
show that the experimental observations can be modeled using a Langevin-
type equation driven by colored noise.

2.2. Spectra in the Gravity and Capillary Regimes

The experimental setup is shown in Fig. 2.1. It consists of a square plastic
vessel, 20 cm side, filled with a fluid up to a depth h = 1.8 or 2.3 cm leading
to an almost deep water limit (λ � 2πh for our range of wavelengths λ).
Mercury is chosen as the working fluid because of its low kinematic viscosity
(one order of magnitude smaller than that of water), thus reducing wave
dissipation. Note, however, that similar qualitative results to the ones
reported here are found when changing mercury by water. The properties
of mercury are, density ρ = 13.5 103 kg/m3, kinematic viscosity ν = 1.15
10−7 m2/s and surface tension γ = 0.4N/m. Surface waves are generated by
the horizontal motion of two rectangular (10× 3.5 cm2) plunging Plexiglas
wave makers driven by two electromagnetic vibration exciters. The wave
makers are driven with a random noise (in amplitude and frequency) band-
pass filtered within a frequency bandwidth between 1Hz and fp (fp being
typically from fp = 4 to 6 Hz). This corresponds to wavelengths of surface
waves larger than 4 cm. The height η of the surface waves is measured at a
given location (7 cm away from the wave makers) by a capacitive wire gauge
plunging perpendicularly to the fluid surface at rest. The latter is made of an
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Fig. 2.1. Schematic view of the experimental setup showing a typical time recording of
the surface wave height, η(t), at a given location during 50 s. 〈η〉 � 0.

insulated copper wire, 0.1mm in diameter, the insulation (a varnish) being
the dielectric of an annular capacitor with the wire as the inner conductor
and mercury as the outer one. The capacitance is thus proportional to the
fluid level. A low-cost home-made analogic multivibrator with a response
time 0.1ms is used as a capacitance meter in the range 0–200 pF. The
linear sensing range of the sensor allows wave height measurements from
10µm up to 2 cm with a 20mm/V sensitivity. We have checked that the
exact location of the capacitive sensor has almost no influence on the wave
spectrum. Note that the maximum forcing amplitude is less than the onset
of the water drop ejection or wave breaking.

A typical recording of the surface wave amplitude, η(t), at a given
location is displayed in the inset of Fig. 2.1 as a function of time. The
wave amplitude is very erratic with a large distribution of amplitudes. The
largest values of the amplitude are of the order of the fluid depth, whereas
the mean value of the amplitude is close to zero. The asymmetry of the
fluctuations (larger crests than troughs) is stronger when the height of the
layer is smaller but it persists in the deep layer limit (Falcon et al., 2007a).
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Fig. 2.2. Power spectra of the surface wave height for two different injected powers
〈I〉 = 1.6 and 32.4mW (from bottom to top). Dashed-dotted lines have slopes −4.3 and
−3.2. Random forcing within a 1–6 Hz frequency bandwidth. Inset: Same with 〈I〉 =
32.4mW and a 1–4 Hz bandwidth. Dashed lines have slopes −6.1 and −2.8.

The power spectrum density of the wave height,

Sη(f) ≡
∫
〈η(t + τ)η(t)〉te−i2πfτdτ,

is recorded using a spectrum analyzer from 4Hz up to 200Hz and
averaged during 2000 s. For a small forcing, peaks related to the forcing
and its harmonic are visible in the low frequency part of the spectrum
in Fig. 2.2. At a higher forcing, those peaks are smeared out and a
power-law can be fitted. At higher frequencies, the slope of the spectrum
changes, and a crossover is observed near 20Hz between two regimes. This
corresponds to the transition from gravity to capillary wave turbulence.
For a narrower frequency band of excitation (1–4Hz), similar spectra
are found but with a broader power-law in the gravity range (see inset
of Fig. 2.2).

For linear waves, the crossover between gravity and capillary regimes
corresponds to a wave number k of the order of the inverse of the capillary
length lc ≡ √

γ/(ρg), i.e. to a critical frequency, fc =
√

g/2lc/π, where g
is the acceleration of gravity. For mercury, lc = 1.74mm and fc � 17Hz
corresponding to a wavelength of the order of 1 cm. The inset of Fig. 2.2
shows a correct agreement in the case of a narrow driving frequency band.
We also observe that the crossover frequency increases with the driving
amplitude and with the width of the driving frequency band (Falcon et al.,
2007a). This can be due to the fact that the above estimate of fc is only
valid for linear waves.
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Surface wave turbulence is usually described as a continuum of
interacting waves governed by kinetic-like equations in the case of small
nonlinearity and weak wave interactions. Weak turbulence theory predicts
that the surface height spectrum Sη(f), i.e. the Fourier transform of
the autocorrelation function of η(t), is scale invariant with a power-law
frequency dependence. Such a Kolmogorov-like spectrum writes

Sη(f) ∝ ε
1
2

(
γ

ρ

) 1
6

f− 17
6 for capillary waves

(Zakharov and Filonenko, 1967a)

Sη(f) ∝ ε
1
3 gf−4 for gravity waves (Zakharov and Filonenko, 1967b),

(2.8)

where ε is the energy flux per unit surface and density [Sη(f) has
dimension L2T and ε has dimension (L/T )3]. In both regimes, these
frequency power-law exponents are compared with the slopes of surface
height spectra measured for different forcing intensities and bandwidths.
The experimental values of the scaling exponent of capillary spectra are
close to the expected f−2.8 scaling as already shown with one driving
frequency (Wright et al., 1996; Lommer and Levinsen, 2002; Brazhnikov,
Kolmakov and Levchenko, 2002) or with noise (Brazhnikov, Kolmakov
and Levchenko, 2002). However, in these previous works, peaks and
their harmonics (related to the parametric forcing) are observed on the
spectrum with maximal amplitudes decreasing as a frequency power-
law (Snouck et al., 2009; Brazhnikov, Kolmakov and Levchenko 2002;
Brazhnikov et al., 2002). The frequency-spectrum exponent estimated in
that way is thus not very accurate. A recent study has even found an
exponent in disagreement with weak turbulence underlying the difficulty to
reach a wave turbulence regime with a parametric forcing (Snouck et al.,
2009). In the case of our measurements, we observe that this exponent for
the capillary range does not depend on the amplitude and the frequency
band of the forcing, within our experimental precision. For the gravity
spectrum, no power-law is observed at a small forcing since the turbulence
is not strong enough to hide the first harmonic of the forcing (see Fig. 2.2).
At high enough forcing, the scaling exponent of gravity spectra is found to
increase with the intensity and the frequency band from −6 to −4 such that
the predicted f−4 scaling of Eq. (2.8) is only observed for the largest forcing
intensities and bandwidth (Falcon et al., 2007a). The dependence of the
slope of the gravity waves spectrum on the forcing characteristics has been
ascribed to finite size effects (Falcon et al., 2007a ). Similar results in the
gravity range have been found in a much larger tank with sinusoidal forcing
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(Denissenko et al., 2007; Nazarenko et al., 2010). This dependence has been
also ascribed to the presence of strong nonlinear waves (Cobelli et al., 2011).
However, recent experiments have shown that it is related to the anisotropy
and inhomogeneity of the forcing (Issenmann and Falcon, 2013).

2.3. Direct Measurement of the Injected Power

The power injected into the fluid by the wave maker is determined as
follows. The velocity V (t) of the wave maker is measured using a coil placed
on the top of the vibration exciter (see Fig. 2.1). The voltage induced by
the moving permanent magnet of the vibration exciter is proportional to
V (t). The force FA(t) applied by the vibration exciter on the wave maker
is measured by a piezoresistive force transducer (FGP 10 daN). FA(t) and
V (t) recorded by means of an acquisition card with a 1 kHz sampling rate
during 300 s. The time recordings of V (t) and FA(t) together with their
PDFs are displayed in Fig. 2.3. Both V (t) and FA(t) are Gaussian with
zero mean value. For a given excitation bandwidth, the rms value σV of
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Fig. 2.3. Time recordings of the velocity of the wave maker and the force applied to
the wave maker by the vibration exciter (〈FA〉 ≈ 〈V 〉 ≈ 0). The fluid is mercury, with
h = 23mm. Both PDFs are Gaussian (dashed lines) with zero mean value.
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the velocity fluctuations of the wave maker is proportional to the driving
voltage U applied to the electromagnetic shaker and does not depend on
the fluid density ρ. On the contrary, the standard deviation σFA of the force
applied to the wave maker is decreased by the density ratio (∼ 13) when
mercury is replaced by water. The rms velocity of the wave maker is thus
prescribed in our experiments. We have checked that σFA ∝ ρSσV where
S is the immersed area of the wave maker. This linear behavior has been
measured on one decade up to σFA ∼ 2 N and σV ∼ 0.1m/s. The power
injected into the fluid by the wave maker is I(t) = −FR(t)V (t) where FR(t)
is the force applied by the fluid on the wave maker. It generally differs from
FA(t)V (t) which is measured here, because of the piston inertia (see below).
However, their time averages are equal, thus 〈I〉 = 〈FA(t)V (t)〉.

The mean energy flux ε is estimated by the measurement of 〈I〉/(ρS)
where 〈I〉 is the mean power injected by the wave maker and S is the
immersed area of the wave maker. With given σV , we have first checked
that 〈I〉 is proportional to S and decreases by a factor 13 when mercury
is replaced by water. Our measurements also show that 〈I〉 ∝ σ2

V with a
proportionality coefficient of order 10W/(m/s)2 (see the inset of Fig. 2.4).
We thus have ε ∝ cσ2

V where c has the dimension of a velocity. If we
assume that ε should involve only large scale quantities, it cannot depend
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on surface tension or viscosity. Then, we need an additional length scale
or time scale besides g in order to be able to determine c. In a deep fluid
range, the height of the layer h cannot be used and the additional parameter
could be the horizontal size of the layer or equivalently the travel time
of the large scale gravity waves. Without this additional parameter, we
should get ε ∝ σ3

V as usually assumed in weak turbulence theory. The
dependence of ε on c can be ascribed to finite size effects. The inverse of
travel time of a wave within the tank or the frequency difference between
the discrete modes of the tank, both scale with c. Note that the peaks
are visible at low frequencies in the spectrum of Fig. 2.2 at low forcing
amplitude. Discreteness also explains the presence of these peaks that
correspond to vessel eigenvalue modes (Deike et al., 2012). However, the
large enough values of ε required to observe power-laws, are more than one
order of magnitude smaller than the critical flux (γg/ρ)3/4 ≈ 2200 (cm/s)3

corresponding to the breakdown of weak turbulence (Newell and Zakharov,
1992).

We consider now how the spectra of the gravity and capillary waves
scale with the mean energy flux. The best choice in order to collapse
our experimental spectra on a single curve for different values of σV is
displayed in Fig. 2.4 where the power spectral density divided by σ2

V is
plotted versus f . Surprisingly, spectra are collapsed on both the gravity
and capillary ranges by this single scaling. The wave height spectrum is
found to scale as 〈I〉1±0.1 for both gravity and capillary wave turbulence
regimes over almost one decade in 〈I〉 as shown in Fig. 2.4. This scaling
does not depend on the vessel geometry when using a circular one of similar
size. A similar spectrum scaling ∼ 〈I〉1 has been observed for both regimes
by horizontally vibrating the whole container (Issenmann and Falcon, 2013)
for the same range of 〈I〉, for the capillary regime with a parametric forcing
(Xia et al., 2010), and for the inverse cascade of gravity wave turbulence
(Deike et al., 2011). Moreover, it has been checked that 〈I〉 ∼ σ2

η, where
ση is the rms value of the wave height. This is coherent with Sη(f) ∼ 〈I〉1
(Issenmann and Falcon, 2013) since

∫ ∞
0 Sη(f)df = σ2

η/(2π).
Another way to estimate the mean energy flux consists of measuring

the wave energy decay rate after switching off the wave maker (Denissenko
et al., 2007; Nazarenko et al., 2010). This method gives a good estimate
of the mean energy flux provided large scale dissipation is negligible.
Measurements performed in Deike et al. (2012) show that the decay rate
does not depend on the initial wave amplitude, thus giving a capillary
spectrum scaling in ε1 instead of the predicted ε1/2 one. This shows that
the large scale waves lose most of their energy through large scale dissipation
and not by transferring energy to smaller scales.
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Thus, both the scaling of the mean injected power 〈I〉 ∼ σ2
V with

respect to the forcing velocity σV and the linear scaling of the spectrum
Sη(f) ∼ 〈I〉1 are in disagreement with the weak turbulence theory that
predicts a spectrum ∼ ε1/3 in the gravity regime and ∼ ε1/2 in the capillary
regime (see above). Note also that matching the gravity regime to the
capillary one using Eq. (2.8) gives a crossover frequency that slightly
decreases when ε is increased whereas an increase with ε is observed.
This also shows a discrepancy with respect to weak turbulence theory
that is likely to be related to the previous ones but does not require the
measurement of 〈I〉.

We now discuss some possible reasons for the discrepancy between
the experimental measurements presented above and the theory of weak
turbulence. We first consider the measurements involving the injected
power. A first possibility is that one part of the power is directly provided
to the bulk flow and dissipated by viscosity without cascading through
the wave field. For instance, the wave maker can generate vortices that
would dissipate some part of the injected power. Although this mechanism
is certainly present, it is unlikely to be the dominant one. Indeed, as said
above, the scaling laws involving the mean injected power do not change
when the forcing is made by horizontally vibrating the whole container
instead of using wave makers. In addition, 〈I〉 ∝ σ2

V would correspond
to the Stokes regime whereas the Reynolds number of the wave maker
is larger than 1000 in mercury.1 Thus, we rather think that most of the
injected power is transferred to large scale waves. A second possibility
to explain the observed discrepancy is that, although chaotic (a broad
band spectrum is observed at large enough forcing), these large scale waves
transfer a small amount of energy flux to higher harmonics compared to
their direct dissipation by viscosity. This speculation is strengthened by
recent experiments of decaying wave turbulence on the surface of a fluid
that have shown that only a small part of the initial power injected into
the waves feeds the capillary cascade, whereas the major part is dissipated
at large scales (Deike et al., 2012). For stationary wave turbulence, it
is thus likely that only some fraction of the power injected into waves
cascades through the scales, the rest being dissipated at various scales. This
unknown dissipated fraction of injected power could be at the origin of the
discrepancy with weak turbulence theory for the scaling of the spectrum
with the injected power. This can also explain the discrepancies that do not
involve the measurement of the mean energy flux. It is likely that finite size

1For a typical wave maker forcing (0.4 cm amplitude and 4Hz frequency), its velocity is

0.1m/s, and its Reynolds number is 4000 in mercury (ν = 10−7 m2/s).
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effects, by inhibiting the energy transfers among large scale waves, prevent
the observation of a cascade regime in the gravity range with the scaling
predicted by weak turbulence theory (Falcon et al., 2007a). The presence
of strong fluctuations of the injected power (see Sec. 2.4) can also affect the
predictions of the theory. This issue is still open and deserves more studies.
For instance, it will be of primary interest to measure the energy flux at
various scales (instead of the injected power by the wave maker) by a fully
resolved space–time measurement.

2.4. Fluctuations of the Energy Flux

We now study the fluctuations of the power injected by the wave maker in
the fluid. When the wave maker inertia is negligible, the power I(t) injected
into the fluid is roughly given by FA(t)V (t) (see below). The time recording
of I(t) is shown in the inset of Fig. 2.5. Contrary to the velocity or the
force, the injected power consists of strong intermittent bursts. Although
the forcing is statistically stationary, there are quiescent periods with a
small amount of injected power interrupted by bursts where I(t) can take
both positive and negative values. The PDFs of I/〈I〉 are displayed in
Fig. 2.5. They show that the most probable value of I is zero and display
two asymmetric exponential tails (or stretched exponential in the smaller
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container). We observe that events with I(t) < 0, i.e. for which the wave
field gives back energy to the wave maker, occur with a fairly high probabil-
ity. The standard deviation σI of the injected power is much larger than its
mean value 〈I〉 and rare events with amplitude up to 7σI are also detected.

We also observe in Fig. 2.5 that the probability of negative events
strongly decreases when the container size is increased whereas the positive
fluctuations are less affected. This shows that the backscattering of the
energy flux from the wave field to the driving device is related to the waves
reflected by the boundary that can, from time to time, drive the wave
maker in phase with its motion. We note that we have less statistics for the
negative tail of the PDF when the size of the container is increased.

We emphasize the bias that can result from the system inertia when
one tries a direct measurement of the fluctuations of injected power. The
equation of motion of the wave maker is

MV̇ = FA(t) + FR(t), (2.9)

where M is the mass of the wave maker and FR(t) is the force due to
the fluid motion. The power injected into the fluid by the wave maker
is I(t) = −FR(t)V (t). When MV̇ is not negligible, I(t) generally differs
from FA(t)V (t) which is experimentally determined. This obviously does
not affect the mean value 〈I〉 but may lead to wrong estimates of the
fluctuations. Using an accelerometer, we have checked that MV̇ is negligible
compared to FA when the working fluid is mercury. On the contrary, inertia
cannot be neglected for experiments in water for which an error as large
as one order of magnitude can be made on the probability of rare events
if one use FAV to estimate I. Thus, the correction due to MV̇ has been
taken into account in water experiments.

The PDF of injected power for the same driving in the same container
for mercury displays a larger asymmetry than the one for water. This is
related to the larger mean energy flux, i.e. mean dissipation, for mercury,
as shown below.

The qualitative features of the PDF of injected power can be described
with the following simple model. Guided by our experimental observation
of the linearity of σFA in σV (see Sec. 2.3), we assume that the force FR

due to the fluid can be roughly approximated by a friction force −MγV ,
where γ is a constant (the inverse of the damping time of the wave maker).
We are aware that a better approximation to the force due to the fluid
should involve both V̇ and an integral of V (t) with an appropriate kernel.
Thus, we only claim here to give a heuristic understanding of the qualitative
properties of the PDF of I. Since in our experiment the forcing is stochastic
and low-pass filtered at frequency 1/β, we model the forcing with an



February 5, 2013 10:35 9in x 6in Advances in Wave Turbulence b1517-ch02 2nd Reading

66 Advances in Wave Turbulance

Ornstein–Uhlenbeck process:

V̇ = −γV + F, Ḟ = −βF + ξ, (2.10)

where β is the inverse of the correlation time of the applied force (F =
FA/M) and ξ is a Gaussian white noise with 〈ξ(t)ξ(t′)〉 = ∆δ(t − t′). The
PDF P (V, F ) is the bivariate normal distribution (Risken, 1996)

P (V, F ) =
exp

[
− 1

2(1−r2)

(
V 2

σ2
V
− 2rV F

σV σF
+ F 2

σ2
F

)]
2πσV σF

√
1 − r2

, (2.11)

with σF =
√

∆/2β, σV =
√

∆/(2γβ(γ + β)) and r =
√

γ/(γ + β). Chang-
ing variables (V, F ) to (Ĩ = FV = I/M, F ) and integrating over F gives

P (Ĩ) =
exp

[
rĨ

(1−r2)σV σF

]
πσV σF

√
1 − r2

K0

[
|Ĩ|

(1 − r2)σV σF

]
, (2.12)

where K0(X) is the zeroth-order modified Bessel function of the second
kind. Using the method of steepest descent, this predicts exponential tails,
P (X) ∼ (1/

√|X |) exp(rX−|X |) where X = Ĩ/[(1−r2)σV σF ]. In addition,
we have 〈Ĩ〉 = ∆/[2β(γ+β)] = rσV σF . Thus, (2.12) is determined once 〈I〉,
σV and σF have been measured and can be compared to the experimental
PDF without using any fitting parameter. This is displayed with dashed
lines in Fig. 2.5. Taking into account the strong approximation made in the
above model, we observe a good agreement in the larger container. More
importantly, this model captures the qualitative features of the PDF: its
maximum for I = 0 and the asymmetry of the tails that is governed by
the parameter r =

√
γ/(γ + β) = 〈I〉/(σV σFA). For given σV and σFA , the

larger is the mean energy flux, i.e. the dissipation, the more asymmetric
is the PDF. For mercury, direct determination of r from the measurement
of 〈I〉, σV and σFA gives r ∼ 0.7 for the large container and r ∼ 0.6
for the small one. Smaller values of r are achieved in water for which the
dissipation is smaller. The PDFs are more stretched for water, in particular,
in the smaller container.

In order to explain this modification of the PDF, we consider the
effect of nonlinearities in the model, for instance, in the form of a velocity-
dependent damping term, γ(V ) = γo

1+aV 2 , in (2.10). The weaker damping
at large velocity does generate stretched exponential tails in the PDF
of injected power with more probable large events as shown in Fig. 2.6.
However, the PDF of the velocity is no longer Gaussian in that case (inset
of Fig. 2.6).
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Fig. 2.6. PDF of the injected power from the numerical resolution of Eq. (2.10) with a
nonlinear damping coefficient γ(V ) = γo

1+aV 2 with γo = 1, β = 0.5, σf = 0.22: a = 1.0

(red) and a = 2.0 (blue). Dashed lines correspond to Eq. (2.12) for the same values of
〈I〉, σV , and σFA

. Inset: PDF of the velocity for a = 1.0.

One could notice that the PDF of I given by (2.12) respects a symmetry
similar to the one of the fluctuation theorem (Evans et al., 1993; Gallavotti
and Cohen, 1995), but without any time averaging. Indeed, we get

1
τF

log
P (I)

P (−I)
=

2
σ2

V

I, (2.13)

where τF = 1/β is the correlation time of the force. Thus, σ2
V /2 plays the

role of an effective temperature, kBT = σ2
V /2.

However, the symmetry related to the fluctuation theorem is not
observed with our data if we consider, as we should, the injected power
averaged on a time interval τ

Iτ (t) =
1
τ

∫ t+τ

t

I(t′)dt′. (2.14)

The PDFs of Iτ for τ/τc = 1, 3, 11 and 50 where τc is the correlation
time of I(t), are displayed in Fig. 2.7. They become more and more peaked
around Iτ � 〈I〉, as they should. However, one needs to average on a rather
large time interval (τ ∼ 50τc) in order to get a maximum probability P (Iτ )
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Fig. 2.7. PDFs of the injected power Iτ averaged on a time interval τ : τ = 1, 3, 11 and
50τc, where τc = 0.03 s is the correlation time of I(t). Solid lines indicate the value of
〈I〉 (water, h = 23 mm).

for Iτ = 〈I〉 (Fig. 2.7, bottom right). Then, the probability of negative
events become so small that almost none can be observed. Figure 2.8 shows
that the quantity 1

τ log P (Iτ /〈I〉)
P (−Iτ /〈I〉) for different values of τ that has been

predicted to be linear in Iτ/〈I〉 for τ 	 τc when the hypotheses of the
fluctuation theorem (in particular time reversibility) are fulfilled (Evans
et al., 1993; Gallavotti and Cohen, 1995; Kurchan, 1998). As we clearly
observe in Fig. 2.8, this is not the case in general for macroscopic (i.e.
energy 	 kT ) dissipative systems. As already mentioned (Aumâıtre et al.,
2001) and studied in detail (Puglisi et al., 2005; Visco et al., 2005), the linear
behavior reported in several experiments or numerical simulations results
from the too small values of Iτ/〈I〉 that are probed when τ 	 τc. Large
enough values are obtained in the present experiment and the expected
nonlinear behavior is thus reached. The shape of the curve in Fig. 2.8 is
found in good agreement with the analytical calculation (Farago, 2002)
performed with a Langevin-type equation with white noise.
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Fig. 2.8. Plot of 1
τ

log P (Iτ /〈I〉)
P (−Iτ /〈I〉) for 16 < τ/τc < 39 [τ/τc = 17 (∗), 19.5 (◦), 22

(�), 25 (♦), 28 (pentagram), 30.5 (�), 33.5 (hexagram), 39 (�)]. Langevin model of
Farago (2002): 4γ for Iτ/〈I〉 ≤ 1/3 (dashed line) and 7γIτ /(4〈I〉) + 3γ/2 − γ〈I〉/(4Iτ )
for Iτ/〈I〉 ≥ 1/3 (solid line) with γ = 5Hz.

Finally, we emphasize that a fluctuating injected power implies fluctu-
ations of the energy flux at all wavenumbers in the energy cascade from
injection to dissipation. In any system where an energy flux cascades
from the injected power at large scales to dissipation at small scales,
one has for the energy E< for wavenumbers smaller than k within the
inertial range, Ė< = I(t) − Φ(k, t) ≡ R, where Φ(k, t) is the energy flux
at k toward large wavenumbers. Thus,

∫ ∞
0 〈R(τ)R(0)〉dτ = 0 in order

to prevent the divergence of 〈E2
<〉. Dimensionaly, this implies that σ2

Φτk

does not depend on k, where σΦ is the standard deviation of the energy
flux and τk is its correlation time. If this dimensional scaling is correct,
fluctuations of the energy flux are expected to increase during the cascade
from large to small scales since τk decreases. Such fluctuations have been
found numerically and experimentally in hydrodynamic turbulence (Cerutti
and Meneveau, 1998; Tao et al., 2002). To which extent this is related or
modified by small scale intermittency (Falcon et al., 2007a) remains an open
question.

2.5. Conclusion

The key governing parameter of wave turbulence is the energy flux that
drives the waves and cascades to small scales through nonlinear interactions.
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This quantity is assumed to be conserved during the cascades across the
scales. It is only recently that measurements of the injected power into
wave turbulence systems have been performed at the scale of the wave
maker (integral scale). Fluctuations of the injected power much larger
than the mean value have been observed as well as instantaneous negative
events that occur with a fairly large probability. Taking into account
these energy flux fluctuations in theoretical models of cascades remains an
open problem. Moreover, it is likely that only an unknown fraction of the
power injected into the system cascades through the scales, the rest being
directly dissipated at various scales. To which extent, this could explain the
discrepancy with theory for the observed scaling law of the power spectrum
with the injected power, is an open problem that deserves more studies.
For instance, an experimental challenge is to measure the evolution of the
energy flux at various scales of the cascade using fully resolved space–time
measurements of wave amplitude.
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Düring G, Falcón C. 2009. Symmetry induced Four-wave capillary wave turbu-
lence. Phys. Rev. Lett. 103: 174503.

Evans DJ, Cohen EGD, Morriss GP. 1993. Probability of second law violations
in shearing steady states. Phys. Rev. Lett. 71: 2401.

Falcon E, Laroche C, Fauve S. 2007. Observation of gravity-capillary wave
turbulence. Phys. Rev. Lett., 98: 094503.

Falcon E, Fauve S, Laroche C. 2007. Observation of intermittency in wave
turbulence. Phys. Rev. Lett. 98: 154501.

Falcón C, Falcon E, Bortolozzo U, Fauve S. 2009. Capillary wave turbulence on
a spherical fluid surface in zero gravity. Europhys Lett. 86: 14002.

Farago J. 2002. Injected power fluctuations in Langevin equation. J. Stat. Phys.
107: 781.

Farago J. 2004. Power fluctuations in stochastic models of dissipative systems.
Physica A 331: 69.

Gallavotti G, Cohen EGD. 1995. Dynamical ensembles in nonequilibrium statis-
tical mechanics. Phys. Rev. Lett. 74: 2694.

Herbert E, Mordant N, Falcon E. 2010. Observation of the nonlinear dispersion
relation and spatial statistics of wave turbulence on the surface of a fluid.
Phys. Rev. Lett. 105: 144502.

Issenmann B, Falcon E. 2012. Gravity wave turbulence revealed by horizontal
vibrations of the container. Phys. Rev. E 87:011001(R).

Kurchan J. 1998. Fluctuation theorem for stochastic dynamics. J. Phys. A 31:
3719.
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