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Observation of depth-induced properties in wave turbulence
on the surface of a fluid
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Abstract – We report the observation of changes in the wave turbulence properties of gravity-
capillary surface waves due to a finite-depth effect. When the fluid depth is decreased, a hump
is observed on the wave spectrum in the capillary regime at a scale that depends on the depth.
The possible origin of this hump is discussed. In the gravity regime, the wave spectrum still shows
a power law but with an exponent that strongly depends on the depth. A change in the scaling
of the gravity spectrum with the mean injected power is also reported. Finally, the probability
density function of the wave amplitude rescaled by its rms value is found to be independent of the
fluid depth and to be well described by a Tayfun distribution.
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Introduction. – Wave turbulence is ubiquitous in
nature. It includes surface or internal waves in oceanog-
raphy, Alfvén waves in solar winds, Rossby waves in
geophysics, elastic or spin waves in solids, waves in optics,
and quantum waves in Bose condensates (for reviews
see [1,2]). Wave turbulence theory (a statistical theory
describing an ensemble of weakly nonlinear interacting
waves) predicts analytical solutions of the kinetic equa-
tions of weak turbulence at equilibrium or in a station-
ary out-of equilibrium regime in various systems involving
wave dynamics [3]. Surprisingly, well-controlled laboratory
experiments on wave turbulence were scarce [4] up to the
last years where new observations were reported such as
intermittency [5], fluctuations of the energy flux [6], finite-
size effect of the system [7,8] and the full space-time power
spectrum of wave amplitudes [9]. Several questions still are
open, notably about the validity domain of the theory in
experiments (horizontal finite-size effects, role of strongly
nonlinear coherent structures), and the possible existence
of weak turbulence solutions for nondispersive (i.e., for
2D acoustic waves) or weakly dispersive systems [10,11].
Indeed, the lack of dispersion could lead to cumulative
nonlinear effects leading to shock wave formation. It is
thus of primary interest to know the evolution of the wave
energy spectrum when the dispersion relation of a system
is changed from a dispersive to a nondispersive regime.

(a)E-mail: eric.falcon@univ-paris-diderot.fr

A simple way to experimentally do this is to change the
depth of a fluid on which surface waves propagate. Indeed,
gravity waves are known to become nondispersive in a
shallow-water limit. In this limit, weak turbulence predicts
power spectra of wave amplitude much less steep than in
the deep regime for both gravity [12,13] and capillary [14]
wave turbulence. The prediction for the gravity regime has
been tested in few laboratory experiments using a large-
scale wave flume with a sloping bottom [15,16]. At a more
applied level, in situ observations exist in oceanography
when ocean waves propagate from deep water into shallow
coastal areas [16]. Notably, when ocean surface waves
approach the shore, bottom friction and depth-induced
wave breaking are no more negligible, and near-resonant
triad interactions could play a dominant role instead of
the 4-wave interaction process [17,18].
In this letter, we study gravity-capillary wave turbu-

lence on the surface of a fluid within a constant depth
tank. When the depth is decreased from a deep to a thin
fluid layer, a hump is observed on the power spectrum
in the capillary regime at a scale that depends on the
depth. In the gravity regime, the wave spectrum still shows
a power law but with an exponent that depends on the
depth. The scaling of the power spectrum with the mean
injected power is measured for different fluid depths as
well as the probability distribution of the wave amplitudes.
This latter is found to be independent of the fluid depth
and to be well described by a Tayfun distribution.
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Fig. 1: (Color online) Power spectra of wave amplitude S(f)
for different fluid depths from h= 22, 11, 8, 6 and 4mm
(solid lines from top to bottom). Dashed lines are spectrum
slopes reported in fig. 2. fc is the crossover frequency between
gravity and capillary regimes and fp the hump frequency (see
text). Forcing bandwidth and amplitude: 1–4Hz and σV = 0.8
(arbitrary unit). Curves have been vertically shifted for clarity
by a factor 1, 1.5, 2.5, 6 and 12 (from bottom to top). Inset:
mean injected power rescaled by the fluid density 〈I〉/ρ vs. h
for water (�) and mercury (◦). The dashed line is a linear fit.
Forcing parameters: 1–6Hz and σV = 0.8 (arbitrary unit).

Experimental set-up. – The experimental setup,
described in [7], consists of a rectangular plastic vessel,
20× 20 cm2, filled with mercury (unless otherwise stated)
up to a depth h. h is varied from 3mm up to 22mm
with a 0.1mm accuracy. Mercury is used because of
its low kinematic viscosity ν = 10−7m2/s. Surface waves
are generated on the fluid by the horizontal motion of
a rectangular (L×H cm2) plunging plastic wave maker
driven by an electromagnetic shaker. We take L= 13 cm
and H = 3.5 cm, the wave maker being at 0.2mm from
the bottom vessel. The wave maker is driven with low-
frequency random vibrations (typically from 1 to 5Hz).
The amplitude of the surface waves η(t) at a given
location is measured by a capacitive wire gauge (plunging
perpendicularly to the fluid at rest) [7]. η(t) is analogically
low-pass filtered at 1 kHz and is recorded during 300 s by
using an acquisition card with a 2 kHz sampling rate. The
power injected I(t) into the fluid by the wave maker is
also measured using a force sensor and a velocity sensor
both fixed on the wave maker [6]. The system is driven
by the rms value of the velocity fluctuations σV of the
wave maker [7]. The mean power injected by the wave
maker 〈I〉 is measured as a function of the depth h for
the same value of the forcing amplitude σV . As shown
in the inset of fig. 1 (for both water or mercury as the
working fluid), one finds that 〈I〉 ∼ ρh for h> h∗ = 2.5mm.
ρ is the density of the fluid (the mercury density being
13.6 times the water one). h∗ is the depth below which
the dewetting of the fluid on the vessel bottom occurs

forming islands of fluid surrounded by domains without
fluid. One has also 〈I〉 ∼ ρhσ2V (not shown here). Thus,
typical experiments are performed either keeping constant
the forcing amplitude σV when changing the fluid depth,
or adjusting σV to have a constant mean injected power
〈I〉 when the depth is decreased. We have performed
experiments with two different fluids (mercury or water).
Experimental results with mercury are shown below, but
qualitative similar results have been observed with water.

Dispersion relation of linear waves. – For an
arbitrary fluid depth h, the dispersion relation of inviscid
linear surface waves on a fluid reads

ω2 =

(
gk+

γ

ρ
k3
)
tanh(kh), (1)

where ω is the wave pulsation, k its wave number,
g= 9.81m/s2 the acceleration of the gravity, γ = 0.4N/m
the surface tension, and ρ= 13.6× 103 kg/m3 the
density of the mercury. Gravity waves are dominant
in eq. (1) for wavelengths λ� 2πlc � 1 cm (capillary
length lc ≡

√
γ/(ρg)� 1.7mm), whereas capillary waves

dominates when λ� 2πlc. The deep-water limit corre-
sponds to kh� 1 that is for λ� 2πh, whereas the
shallow-water limit corresponds to λ� 2πh. Typi-
cally, for our range of frequencies 4� f � 200Hz,
eq. (1) leads to 0.1� λ/(2πh)� 2.3 for h= 3mm and
0.01� λ/(2πh)� 0.7 for h= 20mm. One thus probes
rather λ∼ 2πh for lowest frequencies and the smallest
depths than λ� 2πh. One focuses below on wave turbu-
lence (involving nonlinear interacting waves) from a deep
to a thin fluid layer.

Wave turbulence power spectrum. – The power
spectra of wave amplitude S(f) are shown in fig. 1 for
different depths h at a constant forcing amplitude σV . For
large depths (e.g., h= 22mm), it displays similar results
than those found previously in the deep regime: two power
laws corresponding to the gravity and capillary wave
turbulence regimes separated by a crossover frequency fc
related to lc [7]. When h is decreased, important changes
are observed in the spectrum shape (see fig. 1). First,
a hump appears on the power spectrum at a frequency
denoted fp (see fig. 1). fp is found to decrease when h
is decreased. Second, the power spectrum still shows a
frequency power law in the gravity regime (frequencies
below fc) but with a strongly decreasing exponent. Third,
in the capillary regime (between fc and fp), a power law
can be also fitted (except for h= 4mm) in a narrower
inertial range due to the presence of the hump (see fig. 1).
Finally, at small enough depth, a third power law can
be fitted on the high-frequency part of the spectrum
(between fp and a frequency given by the intercept of
the spectrum and the signal to noise level, see fig. 1).
This power law vanishes when the deep regime is reached.
Similar observations are found either when performing
experiments at constant 〈I〉 forcing instead of constant
σV forcing, or when using an optical noninvasive method
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Fig. 2: (Color online) Exponents of power spectra as a function
of the depth for gravity (red (light-grey) symbols) and capillary
(black symbols) regimes. Forcing parameters: 1–4Hz (�),
1–6Hz (•) both at σV = 0.8 (arbitrary unit), or at constant
〈I〉= 0.02 (arbitrary unit) (♦). The dashed lines are theoretical
exponents for both regimes in the deep- or shallow-water limits
(see text). Inset: third exponent of the spectrum as a function
of h fitted between fp and the noise level frequency.

(laser vibrometer) instead of the capacitive wire gauge.
Moreover, these observations do not significantly depend
on the probe location on the basin surface except close to
the boundaries.
Let us now find the scaling of the spectrum amplitude
S(f) with 〈I〉 for a fixed depth. In deep regime (h=
20mm), S(f) is found to scale as 〈I〉0.8±0.1 for both
gravity and capillary regimes on almost one decade in
〈I〉. This result is consistent with those found in previous
measurements [7,19] whereas weak turbulence predicts a
scaling in 〈I〉1/3 for 4-wave interactions (gravity in deep
regime) and in 〈I〉1/2 for 3-wave interactions (capillary
regime) [3]. For small depths (h= 5mm), S(f) is found
to scale as 〈I〉0.5±0.1 for gravity waves, whereas no scaling
is found for the capillary regime due to the presence of
the hump. The observed change of scaling with the depth
thus suggests that a change of the wave interaction process
occurs for gravity waves.
Figure 2 shows the evolution of the frequency exponents

of power spectra S(f) as a function of the depth for
the gravity and capillary regimes for different forcing
parameters. When h is decreased, the absolute values of
exponents continuously decrease both for the capillary and
gravity regimes. The decrease of the exponents when h
decreases is qualitatively consistent with the expected one
from the weak turbulence predictions in both depth limits.
Indeed, weak turbulence predicts in both depth limits:
Sgrav(f)∼ f−4 (deep) [20] and ∼ f−4/3 (shallow) [12,13]
for the gravity regime (see dashed red (light-grey) lines
in fig. 2), and Scap(f)∼ f−17/6 (deep) [21] and f−2
(shallow) [14] for the capillary regime (see dashed black
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Fig. 3: (Color online) Hump frequency fp (full symbols) and
crossover frequency fc (open symbols) as a function of the fluid
depth h for different forcings: 1–4Hz (�), 1-6Hz (◦) both at
σV = 0.8 (arbitrary unit), or at constant 〈I〉= 0.02 (arbitrary
unit) (♦). Dashed line: linear fit of slope 9Hz/mm. The dot-
dashed line is given by the depth dependence of the dispersion
relation at a fixed wave number k̃c = 1.56

√
ρg/γ (see text).

lines in fig. 2). The power-law modification of the gravity
regime could be related to a change of wave interaction
process with h (see above). For the capillary regime, it is
related to the presence of the hump (see below). Finally,
as shown in the inset of fig. 2, when h is increases, the
exponent of the third power law ending the cascade is
found to strongly decrease in absolute value, and then
saturates to roughly the same exponent as the capillary
one.

Crossover and hump frequencies. – Figure 3 shows
the evolutions of the crossover frequency fc between grav-
ity and capillary regimes and of the hump frequency fp
as a function of h for different forcing parameters. fp is
measured on the power spectrum as the frequency corre-
sponding to the end of the power-law capillary cascade
and the beginning of the third slope (see fig. 1). This cut-
off fp is found to strongly increase with h at small depths,
and then seems to saturate at larger depths (h� 10mm).
Contrarily to fc(h) (see below), the evolution of fp(h)
is not given by the depth dependence of the dispersion
relation of eq. (1) at any fixed wave number. Moreover,
the evolution of fp(h) is not due to the fact that less and
less energy is injected into the waves when h is decreased
(〈I〉 ∼ h – see above). Indeed, experiments performed with
a constant 〈I〉 forcing whatever h give similar spectra as
those in fig. 1 and similar fp(h) evolution (see ♦-symbols
in fig. 3). This evolution is not also due to the viscous
damping rate ∼2νk2(ω) [22] or to the bottom friction one
∼√νω(k)/h [22] since both are decreasing functions of
h. A possible origin of fp is the following. At the cut-off
frequency fp of the capillary spectrum, the nonlinear
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energy transfer is changed by viscous dissipation, thus
it can be assumed that the typical nonlinear time scale
of wave interaction, τnl, is of the order of the typical
viscous time scale τv: τnl(fp)∼ τv(fp) [23]. Thus, if the
nonlinear time scale depends on the fluid depth, fp
estimated from this above condition should also depend
on the depth. A change of the wave interaction process
during the transition from a deep to a thin fluid layer
may modify the nonlinear time scale that thus should
depend on the depth. However, this qualitative inter-
pretation does not explain how the energy flux flowing
across the scales accumulates at the hump scale as an
analog of a bottleneck effect [24]. We cannot currently
measure τnl (and its possible depth dependence) with a
temporal measurement of the wave amplitude at a given
location, but it could be done with a spatio-temporal
measurement [9]. This thus would deserve further
studies.
Figure 3 also shows the evolution of the gravity-capillary

crossover frequency fc(h). For small h, fc is found to
slightly increase with h, and then to saturate in the deep
regime to a value known to be larger than the expected
one fc =

1
2π

√
2gkc � 17Hz with kc ≡

√
ρg/γ [7]. Here, the

deep-limit value is fc � 28Hz that corresponds to a wave
number k̃c = 1.56kc. By using the relation dispersion of
eq. (1), fc then is found to be well fitted in fig. 3 by

fc(h) =
√
(gk̃c+

γ
ρ
k̃3c ) tanh[k̃c (h−h∗)]/(2π). h∗ � 2.5mm

is the depth for which the fluid dewetting occurs on the
container bottom and is of the order of the capillary length
as expected for a capillary meniscus related phenomenon.
Consequently, the evolution of the crossover frequency
fc(h) is given by the depth dependence of the dispersion
relation at a fixed wave number k̃c.

Distribution of wave amplitudes. – The proba-
bility density functions (PDFs) of the wave amplitude
are shown in fig. 4 for different values of h for the
same value of the forcing amplitude. The PDFs are
found to be asymmetrical due to strong steepness of the
waves as usual in laboratory experiments [7,25] or in
oceanography [18,26]. No dependence of this asymmetry
with the depth is observed in our experiment. Indeed,
first, the skewness S is roughly constant whatever the
depth: 〈S〉= 0.55± 0.1. Second, when these PDFs are
normalized to their rms amplitude values, ση, they all
roughly collapse on a single non-Gaussian distribution
as shown in fig. 5. This means that the distribution
depends only on ση. The bottom inset of fig. 5 shows
that the rms wave amplitude ση increases linearly with
the depth h. These rescaled distributions are found to
be well fitted by a Tayfun distribution (the second-
order correction to the Gaussian distribution) that
reads p[η̃] =

∫∞
0
exp{[−x2−(1−c)2]/(2s2)}/(πsc) dx, where

c≡√1+2sη̃+x2, η̃≡ η/ση and s is the mean steepness of
the waves [27]. Note that we have checked that the Tayfun
distribution fit well our experimental normalized PDF
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Fig. 4: (Color online) Probability density functions of wave
amplitude, η, for different values of the fluid depth, from h= 3,
4, 5, 6, 8, 10, 12, 15 to 18mm (see arrow). Forcing parameters:
1–6Hz and σV = 0.8 (arbitrary unit).
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Fig. 5: (Color online) Same PDFs as in fig. 4 rescaled by ση.
Dashed line: Gaussian PDF with zero mean and unit stan-
dard deviation. Solid line: Tayfun distribution with s= 0.18
(see text). Inset: rms amplitude value ση vs. h. Same forcing
parameters as in fig. 4.

performing for much larger depth (i.e., 18� h� 140mm),
that is, for depth much larger than the wave amplitude η.
This also suggests that this typical distribution does not
depend on the possible change of the wave interaction
process during the transition from a deep to a thin fluid
layer.

Conclusion. – We have performed experiments of
gravity-capillary wave turbulence on the surface of a fluid
and have focused on the effects of finite depth. When
the fluid depth is decreased from a deep to a thin fluid
layer, a hump is observed on the wave spectrum at a
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depth-dependent scale located in the capillary regime.
The presence of this hump strongly reduces the inertial
range of the capillary wave turbulence. The mechanism
of formation of this hump and its dependence on the
depth are open problems. In the gravity regime, the
power spectrum is still found to be a power law but with
an exponent that continuously decreases with decreasing
depth in qualitative agreement with the weak turbulence
predictions in both deep- and shallow-water limits. The
scaling of the spectrum with the mean injected power is
also measured and suggests that a change of the wave
interaction process occurs for gravity waves during the
transition from a deep to a thin fluid layer. Finally, the
probability distributions of the wave amplitude rescaled
by its rms value are measured for different fluid depths.
The distributions are found to be independent of the depth
and to be well described by a Tayfun distribution whatever
the fluid depth.
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