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We report the observation of the transition from an ordered solidlike phase to a disordered liquidlike

phase of a lattice of spikes on a ferrofluid surface submitted to horizontal sinusoidal vibrations. The

melting transition occurs for a critical spike displacement which is experimentally found to follow the

Lindemann criterion, for two different lattice topologies (hexagonal and square) and over a wide range of

lattice wavelengths. An intermediate hexaticlike phase between the solid and isotropic liquid phases is

also observed and characterized by standard correlation functions. This dissipative out-of-equilibrium

system exhibits strong similarities with 2D melting in solid-state physics.
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Melting of 3D crystals has been a substantial field of
interest in condensed matter physics for over a century [1].
In 1910, Lindemann assumed that melting occurs when the
thermal vibrations of atoms make them collide with each
other [2]. Then, it was suggested that the critical rms value
of the atomic displacement at the melting transition is
rather given by a constant fraction (’10%) of the inter-
atomic distance [3]. This assumption, now known as the
Lindemann criterion, has been successfully used to predict
melting temperatures of a wide range of 3D crystals [4]. On
the other hand, melting of a 2D solid is a less understood
phenomenon since 2D lattices do not display true long-
range translational order at finite temperatures [5].
Consequently, the Lindemann criterion has been long
thought to be inapplicable in 2D [6]. A 2D melting theory
driven by topological defects was then developed by
Kosterlitz, Thouless, Halperin, Nelson, and Young
(KTHNY) [7]. Numerical studies have since shown the
validity of the Lindemann criterion in 2D [6], and its
consistency with the KTHNY scenario [8]. Although
most experimental observations are consistent with this
theory, it is quite difficult to establish unambiguously the
existence of second-order solid-to-hexatic-to-liquid transi-
tions [9]. Consequently, the melting transition in 2D sys-
tems remains an active research field in solid-state physics
[10], and in numerous domains including thin colloidal
suspensions [11,12], liquid films [13], vibrated granular
monolayers [14,15], magnetic solid films [16], and vortex
lattices in superconductors [17].

A ferrofluid is a stable suspension of nanometric mag-
netic particles diluted in a carrier liquid which displays
striking phenomena such as flows driven by a magnetic
field gradient, magnetic levitation, labyrinthine and
Rosensweig instabilities [18]. This latter occurs when a
normal static magnetic field applied to a pool of ferrofluid
exceeds a critical value: the flat free surface becomes
unstable and a stationary hexagonal pattern of surface
spikes grows. Following the pioneer work of Bragg et al.

for the assemblage of soap bubbles [19], one can consider
the Rosensweig spike lattice as a macroscopic analogous
of a 2D crystalline structure and expect solidlike behaviors
despite the complexity of the ferrohydrodynamic interac-
tion between spikes and the dissipative nature of the lattice.
An interesting feature of this system is that both the lattice
wavelength and topology can be tuned by a single external
control parameter (see below).
In this Letter, we report the first observation of a tran-

sition (melting) between an ordered phase (solid) and a
disordered phase (liquid) of a lattice of spikes on the
surface of a ferrofluid submitted to sinusoidal vibrations.
We study which parameter controls the transition and
whether a Lindemann criterion can be applied. We char-
acterize structural changes across this transition using
classical condensed matter physics concepts. Our system
being dissipative with nonequilibrium steady states, the
comparison of 2D melting in out-of-equilibrium systems
and in equilibrium ones is of primary interest [14,15].
The experimental setup has been described previously

[20]. It consists of a container filled with a ferrofluid up to a
depth h ¼ 2 cm. In order to discriminate any finite size or
boundary condition effects, containers of different shapes
and sizes are used: cylindrical containers (i) 20 cm or
(ii) 12 cm in inner diameter, and (iii) a rectangular con-
tainer 13� 9 cm2 sides. All containers are 4 cm depth. The
ferrofluid used is an aqueous suspension of maghemite
particles [20]. Its properties are density, � ¼
1324 kg=m3, surface tension, � ¼ 59� 10�3 N=m, initial
magnetic susceptibility, �i ¼ 0:69, magnetic saturation
Msat ¼ 16:9� 103 A=m, the viscosity being close to the
water one. The container is placed in a vertical magnetic
induction B generated by two horizontal coaxial coils (up
to 780 G) [20]. A pattern of spikes on the surface of the
ferrofluid is observed when B is above a critical value Bc ¼
294� 2 G. This is close to the theoretical value of 292.3 G
computed as the threshold of the Rosensweig instability of
our ferrofluid [20]. We denote the dimensionless magnetic
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induction B� ¼ B=Bc. Values B
� > 1 will be used in the

following. A hexagon-square transition occurs at a second
threshold [21,22], and is observed here at B� ¼ 1:45. For a
fixed B�, the lattice of spikes of ferrofluid is vibrated by
means of the horizontal motion of a rectangular Teflon
plate (plunging perpendicularly to the fluid at rest) that is
driven sinusoidally by an electromagnetic vibration exciter
at frequency f and maximal displacement amplitude a in
the ranges 5 � f � 50 Hz and 0:5 � a � 7 mm, respec-
tively. The vibrating plate acceleration is measured with an
accelerometer. A high resolution camera located above the
ferrofluid container allows us to measure the spike posi-
tions by calculating centers of the bright spots produced by
reflections of light on the top of each spike (see Fig. 1 for a
typical snapshot). A particle tracking method is used to
measure the spike displacement d with respect to the
vibrating plate displacement a. For the three containers
used, d is found to be a linear function of a with a
frequency-independent coefficient � ¼ d=a: (i) � ¼
0:77� 0:04; (ii) � ¼ 0:85� 0:05; (iii) � ¼ 0:65� 0:05.
The slight variations of � with the container may be due to
different relative positions of the vibrating plate to the front
row of spikes. Since the vibrations are sinusoidal, the
acceleration amplitude of the vibrating plate then reads
� ¼ 4�f2a ¼ 4�f2d=�.

Figure 1 shows photos of the spike lattice on the ferro-
fluid surface for two different vibrating plate accelerations
�, at a fixed B�. At small � [Fig. 1(a)], the lattice vibrates at
the same frequency f than the vibrating plate one: each
spike displacement fluctuates about its equilibrium posi-
tion as would do atoms of a crystal due to thermal motion.
When � is sufficiently increased (at a constant f), the
ordered lattice melts: ferrofluid spikes do not have a steady
position anymore and rows of spikes slide past each other.
At still higher � [Fig. 1(b)], the spikes display highly
disordered dynamics and two (or more) colliding spikes
can fuse into one larger unstable spike.
The onset of melting is defined once a spike has a motion

larger than the lattice wavelength. It appears to be a sharp
transition: the corresponding critical acceleration at the
melting �m can be measured with an experimental error
of less than 5%. No hysteretic behavior is observed.
Figure 2 then shows the evolution of the critical accelera-
tion �m as a function of the vibration frequency f for 5
different applied magnetic inductions. For 8 � f � 20 Hz,
�m is found to follow a power law with a scaling exponent
2� 0:1. This result means that along the melting transi-
tion, the quantity �m=f

2 is a constant. Since the forcing is
sinusoidal, this means that the amplitude of the spike
displacement at melting, dm, is the relevant parameter for
the transition:

dm ¼ ��m

4�f2
: (1)

For each B�, the value of dm is extracted, using Eq. (1),
from the ordinate intercept of the slope of each log-log plot
in Fig. 2. The inset of Fig. 2 then shows the dependence on
the critical displacement dm (rms value) with the dimen-
sionless magnetic induction B� for different containers. dm

FIG. 1. Top views of the spike lattice on the surface of a
ferrofluid for two different sinusoidal forcing amplitude:
(a) hexagonal solidlike phase (� ¼ 3 m � s�2), � ’ 15:8 mm,
(b) liquid phase (� ¼ 20 m � s�2). The vibrating plate is shown
in white, on the left-hand side. f ¼ 8 Hz, B� ¼ 1:2.

FIG. 2 (color online). Critical acceleration �m at the melting as
a function of the vibration frequency f for different dimension-
less magnetic induction B�: (�) 1:09, (+) 1.39, (�) 1.52, (h)
1.77, and (e) 2.03. Dashed lines have slopes 2 (constant dis-
placement). Inset: Critical displacement dm as a function of B�
for 3 different containers: (�) i, (�) ii, and (h) iii.
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is found to increase with B� from 1.6 to 2.6 mm. Note that
these values are 1 order of magnitude lower than the typical

wavelength between spikes �c ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�=ð�gÞp ’ 13:4 mm
at the Rosensweig instability threshold [18].

In order to establish a criterion for the melting transition,
both the lattice wavelength, �, and the spike height, h, are
measured to be compared to the spike displacement at
melting, dm. The amplitude h of the ferrofluid spike is
measured by means of a capacitive wire gauge [20]. The
right inset of Fig. 3 shows h as a function of B�: data can be
well fitted by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B� � 1
p

(see dashed line) in good agreement
with theory [21] and a previous observation [23]. The
melting displacement, dmðB�Þ (inset of Fig. 2), clearly
does not follow the same law than the spike amplitude
one, hðB�Þ (right inset of Fig. 3), both qualitatively and
quantitatively. This means that the melting mechanism is
not induced by surface waves higher than spike height. For
a fixed B�, the wavelength � is determined by measuring
the average spike-to-spike distance � on experimental
frames (see Fig. 1). From simple geometrical considera-

tions, one has � ¼ ð ffiffiffi

3
p

=2Þ� for the hexagonal pattern (1<
B� < 1:45), and � ¼ � for the square pattern (B� > 1:45).
The left inset of Fig. 3 then shows � as a function of B�. �
is found to increase with B� as previously reported [22].
Let us now define an analog of the Lindemann ratio in
solid-state physics,

�m � dmðB�Þ
�ðB�Þ ; (2)

that is the ratio between the rms value of the spike dis-
placement, dm, at the melting transition and the lattice
wavelength � at a fixed B�. As shown in Fig. 3, �m is
found to be independent of B�, even at the hexagon-square

transition. This is the first experimental observation of the
Lindemann criterion for the 2D melting transition of a
crystal of ferrofluid spikes. The melting Lindemann ratio
�m is found to be equal to 0:14� 0:02which is in the range
of 3D crystalline solid values (0.1–0.2) [3] and close to the
reported value in 2D granular fluids (0.15) [15]. Note that
defining the Lindemann ratio with respect to the lattice
wavelength, �, instead of the spike-to-spike distance, �,
leads to a single value for both lattice topologies (hexago-
nal and square).
To characterize structural changes along the melting

transition at a fixed B�, one computes standard positional
and orientational correlation functions, respectively,
gðrÞ � hnðr0Þnðrþ r0Þi=hnðr0Þi2, where n is the spike den-
sity at a distance r from a reference (brackets are an
average over the spatial variable r0), and g6ðrÞ �
h��

6ðr0Þ�6ðrþ r0Þi=gðrÞ where the star denotes the com-

plex conjugate and �6ðrjÞ � hexpði6�jkÞik with �jk the

orientation angle of the bond between the centers of the
spike j and of the neighboring spike k [9]. These functions
are averaged over 200 frames leading to an error bar of 2%.
Figure 4 shows experimental curves of the radial distribu-
tion functions gðrÞ for different values of the dimensionless
forcing parameter " ¼ ð�� �mÞ=�m where � � d=�. For
" < 0 (before the melting), gðr=�Þ displays characteristic
features of a hexagonal structure: the first spikes positions
are in very good agreement with values predicted from

simple geometrical calculations r=� ¼ 1,
ffiffiffi

3
p

, 2,
ffiffiffi

7
p

, 3, and
ffiffiffiffiffiffi

12
p

[see dashed lines in Fig. 4(a)]. For " ¼ 0, the posi-
tional order is clearly short ranged although some of the
characteristic spikes of the hexagonal lattice remain vis-

ible: r=� ¼ 1,
ffiffiffi

3
p

,
ffiffiffi

7
p

, and
ffiffiffiffiffiffi

12
p

[see dashed lines in
Fig. 4(b)]. As " is further increased, the positional-order
range becomes shorter, and for " ¼ 1, only the character-
istic spikes of an isotropic liquid phase are observed:
r=� ¼ 1, 2, and 3 [see dashed lines in Fig. 4(c)]. These
typical structural changes show strong similarities with the
ones reported during numerical simulation of hard-disk
fluid when the 2D solid-liquid phase transition is ap-
proached [10]. Our results are also consistent with the
KTHNY theory in solid physics which predicts the exis-
tence of a hexatic phase between the crystalline and the
liquid phases, characterized by a long-range orientational
order (algebraic decay) and a short-range positional order
(exponential decay) [7]. Indeed, right-hand side insets of
Fig. 4 show the orientational correlation function, g6ðrÞ.
Just above the melting transition (" * 0), the long-range
orientational order (well fitted by an algebraic decay) is
preserved as required for a hexatic phase [see Fig. 4(b)].
Note that to utterly discriminate it from an exponential
decay, a larger number of lattice periods should be neces-
sary [14]. For " ¼ 0, one has g6ðrÞ 	 r�0:20 in agreement
with KTHNY scenario as the power-law exponent is pre-
dicted to continuously decrease in the hexatic phase down
to�0:25 at the hexatic-liquid transition [7]. As " is further
increased, the decay rate increases strongly, and for " ¼ 1,

FIG. 3 (color online). Lindemann ratio �m as a function of the
dimensionless magnetic induction B� measured for 3 different
containers: (�) i, (�) ii, and (h) iii. The dotted horizontal line is
�m ¼ 0:14. Left inset: Lattice wavelength, �, as a function of B�.
Right inset: spike amplitude, h, as a function of B�.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B� � 1
p

fit
(dashed line).
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the orientational order is short ranged (well fitted by an
exponential decay) as expected for a liquid phase.

Such an intermediate hexatic phase between the crystal
and liquid ones has been also reported in 2D melting of
colloidal crystals with absolutely calibrated interaction in
good agreement with the KTHNY theory [11]. Note that
the 2D melting of these systems can depend on the inter-
action with their carrier substrate [12]. Our results put
forward that both the Lindemann criterion and the
KTHNY scenario are applicable to a more complex 2D
system such as a crystal of ferrofluid spikes with complex
ferrohydrodynamic interaction. Such a continuous solid-
liquid transition, via a hexatic phase, also strongly differs
of the first-order transition in 3D systems. Finally, our work
emphasizes the analogy between 2D melting of equilib-
rium systems and out-of-equilibrium steady state ones.
Such a correspondence has been observed in a 2D granular
fluid [14,15], where spatial homogeneity of the energy
injection within the system is underlined to be the main
ingredient for these similarities with equilibrium dynamics

[15]. Our results suggest that these equilibriumlike prop-
erties can be observed even though energy injection is
inhomogeneous. This should deserve more studies to
have a complete description of the 2D melting transition
of a dissipative crystal.
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FIG. 4 (color online). Radial distribution functions gðr=�Þ for
different forcing: (a) " ¼ �0:4, (b) " ¼ 0, (c) " ¼ 1. B� ¼ 1:1.
f ¼ 10 Hz. � ¼ 15:5 mm. Dashed lines show predicted maxi-
mum positions of gðrÞ (see text). Right insets: Log-log orienta-
tional correlation functions g6ðr=�Þ. Dashed lines are (a) 0.89,
(b) ðr=�Þ�0:20, (c) exp½�0:65ðr=�Þ
. Left insets: typical thresh-
olded photos of the ferrofluid surface.
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