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On the origin of intermittency in wave turbulence
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Abstract – Using standard signal processing tools, we experimentally report that intermittency
of wave turbulence on the surface of a fluid occurs even when two typical large-scale coherent
structures (gravity wave breakings and bursts of capillary waves on steep gravity waves) are not
taken into account. We also show that intermittency depends on the power injected into the waves.
The dependence of the power law exponent of the gravity-wave spectrum on the forcing amplitude
cannot also be ascribed to these coherent structures. Statistics of these two events are studied.
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Understanding the origin of intermittency is a challeng-
ing problem in varied domains involving turbulent flows.
Intermittency is the occurrence of bursts of intense motion
within more quiescent fluid flow [1,2]. This leads to strong
deviations from Gaussian statistics that become larger
and larger when considering fluctuations at smaller and
smaller scales. In three-dimensional hydrodynamic turbu-
lence, the origin of these deviations has been ascribed to
the formation of coherent structures (strong vortices) since
the 1950s [1]. However, the physical mechanism of inter-
mittency is still an open question [3]. Intermittency has
also been observed in granular systems [4], in magneto-
hydrodynamic turbulence in geophysics [5] or in the solar
wind [6], and in systems involving transport by a turbulent
flow [7]. A recent observation of intermittency has been
reported in wave turbulence [8], a system that strongly
differs from high Reynolds number hydrodynamic turbu-
lence. It could thus motivate explanations of intermittency
different than the ones considering the dynamics of the
Navier-Stokes equation.
The aim of this letter is to investigate if some coherent

structures are responsible of intermittency in wave turbu-
lence. In the case of wave turbulence on a surface of a
fluid, coherent structures such as bursts of capillary waves
on steep gravity waves [9] and wave breakings [10] are
well-known phenomena, these latter being recently taken
into account in numerical simulations [11]. Wave breakings
also occur in plasma waves, internal waves, and Rossby
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waves in geophysics. It has been suggested that intermit-
tency in wave turbulence may be connected to wave struc-
tures (such as cusps, whitecaps or wave breakings) thus
motivating theoretical [12] and numerical [13] works. Here,
we show experimentally that intermittency does not come
from wave breakings and capillary bursts on gravity waves.
Using standard signal processing tools, one finds criteria to
detect such structures that allow us to study their statis-
tics and their possible role in the origin of intermittency.
We also show that intermittency depends on the power
injected into the waves. The power law exponent of the
frequency spectrum of gravity waves is known to depend
on the forcing parameters [14]. We show that this depen-
dence is not related to these coherent structures.
The experimental setup has been described previ-

ously [14]. It consists of a square vessel, 20× 20 cm2 filled
with mercury up to a height of 2.6 cm. Similar results
are found with water. Surface waves are generated by
the horizontal motion of a rectangular plunging plastic
wave maker driven by an electromagnetic exciter. This
vibration exciter is driven with a random forcing within
a narrow low-frequency range (typically 0.1 to 5Hz), and
a rms voltage amplitude σU from 0.1 to 0.8V leading to
wave mean steepnesses (ratio of crest-to-trough amplitude
to its duration) from 1 up to 4 cm/s. The rms value σV of
the velocity fluctuations of the wave maker is proportional
to σU . The mean injected power 〈I〉 into the fluid scales
as 〈I〉 ∼ σ2V ∼ σ

2
U [15]. ε≡ 〈I〉/(ρA) is the mean energy

flux where ρ is the fluid density and A the immersed
area of the wave maker. The surface wave amplitude,
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Fig. 1: (Color online) Temporal evolutions of the surface wave
amplitude (top) and of the local slope of the wave (bottom)
for a strong forcing (σU = 0.8V) during 5 s.

η(t), is measured at a given location of the surface by
a capacitive wire gauge [14]. η(t) is low-pass filtered at
1 kHz and recorded with a 4 kHz sampling rate during
3000 s, leading to N = 1.2× 107 points. This signal is
cut in 10 files of 300 s. The statistical properties of each
file are then computed, the rms value of the computed
quantity giving its error bar. This also allows us to check
the signal stationarity.
For a weak forcing, the wave amplitude η(t) is found

to fluctuate around a zero mean value in a roughly
Gaussian way, as well as the local slope of the surface
waves δη(t) computed from the differential of η(t). For a
higher forcing amplitude, a typical temporal recording of
the wave amplitude is displayed in fig. 1: η(t) fluctuates
even more and has more probable high-crest waves than
deep-trough waves. This comes from nonlinear effects due
to the strong steepness of the waves. The corresponding
local slope δη(t) is also strongly erratic (see fig. 1), and
two typical events can be observed: short peaks of very
high amplitudes, and trains of oscillations of much smaller
amplitudes (see fig. 1 and below). Both events occur
randomly, and are always found close to the maximum
of the local slope of the wave.
Figure 2 shows such typical events that are detected

on the wave amplitude signal once the forcing is high
enough. Figure 2a shows the first kind of event: a burst
of high-frequency capillary waves on a gravity wave.
This is a well-known phenomenon occurring when the
gravity wave is steep enough [9]. Indeed, when the gravity
wave amplitude increases, the local curvature at the crest
increases rapidly leading to strong surface-tension effects
close to the crest. A train of capillary waves then is emitted
propagating down the gravity wavefront face as predicted
theoretically [16]. One can also observe in fig. 2a that
the wave is much steeper in the front than in the rear.
The capillary wave frequency (obtained from the period
between two successive peaks in the slope trace) is found to
increase with the index of number of capillary waves from
the gravity wave crest as already shown experimentally [9]
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Fig. 2: (Color online) Typical events occurring near the crest
of a steep gravity wave: a) Capillary waves generation (σU =
0.4V). b) Wave breaking (σU = 0.8V). Both events occur on
the forward face of the gravity wave (the wavefront is the left-
hand side). The axis of the wave amplitude (respectively, local
slope) is on the left-hand side (respectively, right-hand side).
The upper (respectively, lower) curve corresponds to the wave
amplitude (respectively, wave slope).

and predicted theoretically [16]. The typical frequency of
the carrier gravity wave is of the order of 5Hz, whereas
those of the capillary wave ones are in the range 80–250Hz.
Figure 2b shows the second type of event observed at

high enough forcing. Sharp peaks occur on the wave slope
signal, corresponding to the early stage of a wave breaking:
a “bulge” is formed on the forward face near the crest
preceded by small-amplitude capillary waves. It is well-
known that as the wave steepens, the amplitude of the
bulge increases [10]. The leading edge of the bulge (also
called the “toe”) marks the formation of a train of small-
amplitude capillary waves. These capillary waves generally
grow rapidly with time leading to the breaking of the
wave [10].
As shown in fig. 2, a wave breaking has a larger slope

amplitude than the one of a burst of ripples generated on
the gravity wave. Consequently, one can find a criterion
to detect wave-breaking events in order to study their
statistics. To wit, the local acceleration of the surface
waves is computed from the second differential of η(t). The
probability density function (PDF) of the acceleration,
acc, normalized to its rms value, σacc, is shown in fig. 3
for different forcing amplitudes. The core of the PDF is
Gaussian and independent of the forcing up to a critical
wave acceleration of ±4σacc. Above this value, the PDF
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Fig. 3: (Color online) PDF of the normalized wave acceleration,
acc/σacc, for different forcings σU = 0.2 (▽), 0.3 (×), 0.4 (◦), 0.5
(⋄) and 0.8 (�) V (from bottom to top). Gaussian with zero
mean and unit standard deviation (black dashed line). Wave-
breaking onset is ±4σacc (red (light gray) dot-dashed lines).
Inset: σacc as a function of the forcing.

tails depend on the forcing: the larger the forcing, the more
probable the rare events are. This critical acceleration is
the onset of wave breakings. Indeed, as directly observed
on the acceleration signal, wave breakings occur when
acc� 4σacc. One can thus remove from the acceleration
statistics the wave-breaking events, i.e. a set of short
signal durations δt≡ tf − ti where the absolute value of
the acceleration becomes larger at time ti (respectively,
lower at tf ) than this threshold (typically δt≃ 100ms).
When removing these wave-breaking events, the PDF
of the filtered acceleration is then found to be almost
Gaussian whatever the forcing. Note that this should not
be confused with a lack of intermittency (see below). The
inset of fig. 3 shows that σacc increases with the forcing
as expected.
Statistics of wave breakings is then performed using the

above detection criterion. Figure 4c shows the number
of wave breakings detected as a function of the forcing.
For the smallest forcing, no wave breaking occurs on the
fluid surface. When the forcing is increased, the number
of wave breakings increases. Note that the PDF of the
time lag between two consecutive wave-breaking events is
found to exponentially decrease as expected for Poissonian
statistics (not shown here). The PDF of a number of events
occurring in a fixed period of time is also found to follow
a Poisson law with an occurrence rate of events increasing
with the forcing.
Let us now focus on the detection of capillary bursts on

gravity waves. A time-frequency analysis based on wavelet
transforms is a useful method to analyse signals with
multiple time-varying frequencies [17]. It provides tempo-
ral and spectral information simultaneously and is thus
well adapted to detect capillary-burst events by thresh-
olding the energy (i.e., the wavelet coefficients squared)
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Fig. 4: (Color online) PDF of normalized increments Δη/σ∆η
for different time lags τ = 20, 23, 27, 32, 38, 51, 70, 132ms
(from top to bottom) computed from: a) whole signal, b) signal
without wave-breaking and capillary-burst events. Gaussian fit
(dashed line). Curves have been shifted for clarity. σU = 0.3V.
c) Number of detected events vs. the forcing.

contains in the bandwidth 50–250Hz. One thus obtains
a set of signal durations δt= tf − ti, where the wavelets
coefficients are above the threshold. δt is of the order
of 40 to 80ms from the smallest to the strongest forc-
ing. Figure 4c shows the number of capillary bursts
detected by this process as a function of the forcing.
When the forcing is increased, the number of capil-
lary bursts is found to increase. We also find that the
statistics of capillary bursts does not follow a Poissonian
distribution.
Wave-breaking and capillary-burst events are two

different coherent structures that can independently be
detected within the signal η(t) (see above). One can
thus probe their respective role in the intermittency
phenomenon in wave turbulence. The intermittent prop-
erties of a stochastic stationary signal are generally
tested by computing the structure functions using the
first-order differences of the signal δη(τ)≡ η(t+ τ)− η(t).
However, when the signal has a steep power spectrum,
Eη(f)∼ f

−n with n> 3, high-order difference statistics is
required [8]. For gravity wave turbulence, the theoretical
exponent of the power spectrum of wave amplitude is
n= 4 [18], whereas experimentally it is found to depend
on the forcing with n� 4 [14], the origin of the discrep-
ancy being an open problem. We found that statistical
convergence of the structure functions is reached when
using the fourth-order (or higher) difference statistics.
This is due to our locally multi-derivable signal [19].
The fourth-order differences of the signal Δηt(τ)≡
η(t+2τ)− 4η(t+ τ)+ 6η(t)− 4η(t− τ)+ η(t− 2τ), are
thus computed in the following.
The PDFs of Δηt(τ) normalized to their rms values

σ∆η are computed, for different time lags 20� τ � 130ms,
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Fig. 5: (Color online) Structure functions Sp(τ) of the fourth-
order differences of the wave amplitude, Δη, as functions of
the time lag τ , for 1� p� 6 (as labeled). Solid line: power law
fits, Sp ∼ τ

ξp , where the slopes ξp depend on the order p (see
fig. 6). Curves have been shifted for clarity. σU = 0.3V.

either from the whole signal η(t) (see fig. 4a) or from
the signal where both wave-breaking and capillary-burst
events are removed (see fig. 4b). In both cases, a shape
deformation of the PDFs is observed with τ . The PDF
is roughly Gaussian at large τ , and its shape changes
continuously when τ is decreased. This is a direct signature
of intermittency [20]. Since this latter is observed in
both cases (fig. 4a and b), it clearly means that wave-
breaking and capillary-burst events are not the origin of
intermittency.
The structure functions are defined by

Sp(τ)≡ 〈|Δηt(τ)|
p〉=

1

N

N∑

t=1

|Δηt(τ)|
p , (1)

where N is the total number of points in the signal.
Sp(τ) are shown in fig. 5 for a fixed forcing. For 15�
τ � 100ms, all the structure functions of order p (from
1 to 6) are found to be power laws of τ : Sp(τ)∼ τ

ξp

where ξp is an increasing function of the order p. The
exponents ξp of the structure functions are then plotted
in the main fig. 6 as a function of p for different forcings.
ξp is found to be a nonlinear function of p such that
ξp = c1p−

c2
2 p
2, where the values of c1 and c2 are found

to both depend on the forcing (see ◦-symbols in the top
and bottom insets of fig. 6). The nonlinearity of ξp (c2 �= 0)
is a second signature of intermittency [20]. The so-called
intermittency coefficient c2 is found to increase from 0.2
up to 0.4 when the forcing is increased whereas c1 is found
to decrease from 2.8 to 2.2. Intermittency is observed
here over almost one decade in time (15� τ � 100ms),
corresponding to frequencies 5� 1/(2τ)� 33Hz related to
gravity wave turbulence regime. Indeed, as observed on
the power spectrum of the wave amplitudes (not shown
here), this upper boundary value is the crossover frequency
between gravity and capillary wave turbulence regimes for
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Fig. 6: (Color online) Exponents ξp of the structure functions
as a function of p for different forcings: σU = (▽) 0.2, (×) 0.3,
(◦) 0.4, (⋄) 0.5 and (�) 0.8 V (from top to bottom). Solid
lines are best fits ξp = c1p−

c2
2
p2. ξp are computed from the

fourth-order differences with 15� τ � 100ms (e.g., see fig. 5).
Top and bottom insets: evolution of c1 and c2 with the forcing:
(◦) whole signal, (�) signal without wave breakings, and
(∗) signal without wave breakings and capillary bursts (for the
three lowest forcings).

the driving frequency bandwidth used. This crossover is
known to depend on the forcing parameters [14], and is
thus slightly increased with respect to the one between

linear gravity and capillary waves 1
√

2π
( g
3ρ
γ )
1/4 (≃ 17Hz

for mercury).
From the definition of the structure functions of eq. (1),

one can remove the coefficients Δηt(τ) obtained at times t
in a given neighborough of a wave-breaking or a capillary-
burst event, i.e. for t∈ [ti−T, tf +T ]. We choose T =
160ms to ensure that all retained coefficients are not
polluted by the event. Moreover, T has to be larger than
the maximum time scale (100ms) used for the estima-
tion of ξp. The drawback of this method is that a lot of
statistics is removed just for a single event. Using this
signal processing protocol, one can thus perform a struc-
ture function analysis by removing either all the wave-
breaking events detected (�-symbols in the insets of fig. 6),
or by removing both the wave-breaking and capillary-
burst events (∗-symbols in the insets) from the statistics
in eq. (1). When wave breakings are removed, the inter-
mittency coefficient c2 is found to slightly decreases for
a fixed forcing, but c2 is still non-zero whatever the forc-
ing (see �-symbols in the bottom inset of fig. 6). This
means that intermittency is still observed, and thus cannot
be ascribed to the wave breakings. For a fixed forcing,
when both wave-breaking and capillary-burst events are
removed, c2 strongly decreases (∗-symbols), but it is still
above 0.1, that is, one order of magnitude larger than
the typical values found in usual hydrodynamic turbu-
lence [20]. Capillary bursts thus enhance intermittency
but are not its primary origin. We have checked that these
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results do not depend on the signal processing used. When
changing T strongly (from 160 to 650ms), intermittency
is still observed (c2 decreases slightly from 0.13 to 0.11 for
the lowest forcing). This means that although from 15%
to 40% of the original signal is removed, intermittency is
very robust and could not be ascribed to possible miss-
ing events of the signal processing. To sum up, both PDF
and structure function analyses lead to coherent results
showing that intermittency occurs even when two typical
coherent structures (wave breakings and capillary bursts)
are not taken into account.
Finally, let us now focus on the frequency exponent, n,

of the gravity wave spectrum that is related to the second-
order structure function by n= ξ2+1= 2(c1− c2)+ 1.
From the values of c1 and c2, our measurements show a
decrease of n from 6.2 to 4.6 for an increasing forcing.
When removing the coherent structures from the signal,
the value of c1 is found to be independent of the presence
of these two events (see top inset of fig. 6), and the
exponent n of the gravity spectrum, estimated from n=
2(c1− c2)+ 1, is still found to be a decreasing function
of the forcing amplitude. Coherent structures are thus
not the origin of the forcing-dependent exponent of the
frequency-power law spectrum of gravity waves. Such
a forcing-dependent exponent is coherent with previous
direct observations of the gravity wave spectrum [14,21].
This departure from the theoretical spectrum of gravity
wave Etheoη (f)∼ ε1/3gf−4 (with g the acceleration of
the gravity and ε the mean energy flux) [18] could be
related to the finite-size effect of the container and/or
to the strong nonlinear effect of high wave steepness
in experiments [14,21]. Indeed, weak-turbulence theory
assumes infinite basin and weak nonlinearity [18]. For this
weak regime, a simple dimensional analysis thus leads to
Stheop (τ)∼ εp/6gp/2τ3p/2. Here, one finds experimentally,
for small p, Sp(τ)∼ ε

αpτ c1p, where α= 0.4± 0.05 and c1
depends on the forcing (see top inset of fig. 6).
In conclusion, we have shown that intermittency in

wave turbulence persists when two typical large-scale
coherent structures (wave breakings and capillary bursts
on steep gravity waves) are removed from the wave
amplitude signal. The power law exponent of the gravity-
wave spectrum is known to be non-universal in laboratory
experiments [14,21]. Here, we show that this exponent
dependence on the forcing parameters cannot also be
ascribed to these coherent structures. The origin of the
intermittency phenomenon in wave turbulence is still an
open issue. It could be ascribed to the large fluctuations of
the energy flux [15] or to other possible wave structures.
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