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Abstract — The statistics of signal increments are commonly used in order to test for possible
intermittent properties in experimental or synthetic data. However, for signals with steep power
spectra (i.e., E(w) ~w™" with n > 3), the increments are poorly informative and the classical
phenomenological relationship between the scaling exponents of the second-order structure
function and of the power spectrum does not hold. We show that in these conditions the relevant
quantities to compute are the second- or higher-degree differences of the signal. Using this
statistical framework to analyze a synthetic signal and experimental data of wave turbulence on
a fluid surface, we accurately characterize intermittency of these data with steep power spectra.
The general application of this methodology to study intermittency of experimental signals with

steep power spectra is discussed.

Copyright © EPLA, 2010

Introduction. — Since the prediction of Kolmogorov
in 1941 [1], it is well known that the spatial power
spectrum E(k) of a fluid particle velocity v in a turbulent
flow is a power law of the wave number k as k~°/3. The
—5/3 exponent of the spatial power spectrum is related
to the second-order moment of velocity increments
So(r) = ([v(l+7) —v(1)]?) ~7%/3, | and r being a position
and a spatial separation [2]. The phenomenological
relationship between both exponents comes from Fourier
transform properties. It can be generalized to any
stationary random processes: if the power spectrum of the
process is E(k) ~ k™", then Sy(r) ~ r%2 with (o =n —1[2].
This property allows to perform measurements in the
real space to reach the power law exponent of the power
spectrum. The statistics of velocity increments are also
crucial to characterize the intermittent nature of the
velocity field using the scaling properties of structure
functions:  S,(r) = (vl +7) —v()]P) ~r% (p positive
integer) [3]. A non-linear dependence of (, vs. p is the
hallmark of intermittency.

() E-mail: eric. falcon@univ-paris-diderot.fr

Steep power law spectra (~w™™ or ~k~" with n

close or larger than 3) of a process are observed in
various situations: magnetohydrodynamics turbulence [4],
atmospherics turbulence [5], gravity [6] or capillary [7]
wave turbulence on a fluid surface, and direct cascade
of two-dimensional fluid turbulence [8,9]. Whatever
the corresponding signal measured in space or in time
(e.g., fluid velocity or vorticity, surface wave height,
magnetic field, wind), such steep spectra mean that
the measured signal is at least once continuously differ-
entiable [2]. The signal differences or increments are
thus poorly informative since they are dominated by
the differentiable component of the signal. For instance,
some numerical simulations of the power law scaling
of the energy spectrum in two-dimensional turbulence
exhibited apparent contradictions with its reconstruction
from spatial correlation measurement, i.e. (o #n—1 (see
ref. [10]). Babiano et al. have systematically reconsidered
the theoretical relations between second-order structure
functions and energy spectra instead of phenomenological
or dimensional arguments [10]. They showed that the
apparent contradictions come from the fact that the
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relation (s =n—1 does not hold for steep power law
spectra. Indeed, due to the differentiable component,
the exponent of the second-order structure function is
independent of the spectrum slope as soon as this one
is steeper than —3; that is (s =2 whatever n >3 [10].
This latter property has been noted elsewhere without
derivation [2,11,12]. The indirect conclusions drawn from
the structure function analysis to reach the exponent of
the power law spectrum (using the relation (; =n — 1) are
thus misleading for n > 3, but surprisingly are still used for
some experimental signals with steep power spectra [13].

In this letter, we emphasize that the increments are not
the relevant quantities in order to statistically characterize
the fluctuations of a steep power spectrum signal and, in
particular, to probe for its possible intermittent nature.
We show analytically that, depending on the spectral
steepness, it is necessary to adapt the degree of the
difference statistics used to analyze the signal. Given an
adapted degree, we provide a general relationship between
the exponents of the second-order structure function and
of the power spectrum whatever the steepness of the
spectrum. Finally, applying this approach to a synthetic
signal, and to an experimental signal of wave turbulence
on a fluid surface allows us to accurately characterize
intermittency of these data with steep power spectra. Note
that a general framework for the study of intermittency
of a signal with arbitrary degree of regularity has been
previously proposed using more complex estimators based
on the continuous wavelet transform [14] or on inverse
statistics [15]. Here, we propose a practical approach and
provide simple rules that should be easily applicable on the
workbench to study intermittency of experimental signals
with steep spectra.

Scaling properties of irregular signals. — Let us
first recall the pioneering work of Parisi and Frisch [3]
introduced for the description of the irregular nature of
longitudinal velocity data in fully developed turbulence.
They locally described the fluctuations of an erratic
signal, n(t), by means of the singularity exponents h(tg)
which characterizes the power law behaviour of the finite
differences (or increments) of n over a time lag 7 at a time

to!
(1)

Since the characterization of non-local singularities cannot
be achieved in a purely local manner, Parisi and Frisch
introduced the p-order structure functions

Sp(7) = {[60(D)[7) , (2)

where (-) represents an average over time ¢ and from which
they defined the spectra of global exponents (, such as

(3)

Note that it is useful to consider the moment of order p
of |0;n(t)| rather than d,n(t) as used in ref. [3], so that

h(to)

6rn(to) =n(to+7) —n(te) o 7

70t

Sy(1) o 77 .

eqs. (2) and (3) are defined for all p positive real. In
the presence of homogeneous fluctuations, i.e. h(tg) =H
whatever ¢, it is straightforward that (, is a linear
function of p with (, =pH. Reciprocally, a non-linear
dependence of (, with p is the signature of non-
homogeneous fluctuations whose singularity exponents
vary with time, i.e. the hallmark of intermittency.

Scaling exponents of two point statistics. — We
now resume the relationships between the power law
exponents of the second-order structure functions, the
correlation function, and the power spectrum. Let us
consider a stochastics process 7(t) which is not necessarily
stationary (see below). We assume that finite differences
of n over a time lag 7, d,;n(t)=n(t+7) —n(t), form a
stationary process of zero mean and that n(0) =0. Let
us look at the correlation between two short intervals
(of size A) separated by a lagf, that is the quantity
oan(t+0)oan(t). We choose A equal to the sampling
time of n(t), that is the duration between two successive
measurement points. For p=2, the scaling of eq. (3)
implies a power law decay of the correlation function C'
of the increments do7 at large lags 6 as [16]

C(0) = (dan(t+0)dan(t)) 0> s 107", with £ =2 — (5.
(4)

This scaling behaviour for large lags coincides to a low-
frequency power law behaviour of the power spectrum C'
of the increments da7, defined as the Fourier transform
(FT) of the correlation function [16]

Clw)= /R C(0)e™?dh lwoc lw|™?, with 8= —1, (5)

[—0
w being the angular frequency. An estimator of the power
spectrum C'(w) is obtained taking the square modulus of
the FT of the increments dan(t) observed over a finite
time range [0, T,

2
1

T
- iwt
T /0 oan(t)e™ de

~

C(w) = Esyn(w) = (6)

In practice, a common habit is to compute the empirical
power spectrum of 7, denoted E(w), rather than that of
the increments, Es, ,(w). Indeed, these spectra are related
by Es.n(w)=2[1—cos(w)]E(w) leading to the empirical
power spectrum scaling
Blw)~—SW

- ith n= 2.
21— cos(w)] ™, with n =5+

(7)

The scaling exponents of Sa(7) <7, C(0) o |0|~" and
C(w) ocw™" for the increments thus read respectively

CQZ’I’L—l,

(®)

where n <3 (see below) is the exponent of the power
spectrum of 7(¢) (see eq. (7)).

k=3—n, and f=n—2,
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Table 1: Relationships between the spectral exponent n, the structure function exponent and the differentiability of a signal
n(t) with a self-similar power spectrum. Reference indicates the existing derivation of the relationships. Sél)(r) = (|6.(,1)17|2>,

SP() = (18%n]?) and S5V (1) = (|6Vn|?).

Power spectrum  Differentiability — Difference statistics used to test intermittency Second-order

Ew)~w™™" structure function
n<3 0 o =n(t+1) —n(t) S =1 [10]
n>3 >1 - S§Y ~ 72 [10]
n<5 1 6 = n(t+27) - 2n(t +7) +n(t) ) 1
n=5 >2 — S 4
n<7 2 0 =n(t+37) = 3n(t+27) +3n(t+7)—n(t) S5~
n=>7 >3 - 553) ~ 76

It is fundamental to note that the above stationarity
condition for the increments does not imply the station-
arity of the signal, so that the correlation function of 7
might not be defined and, thus, that £ may not be a
power spectrum in the statistical sense (i.e. the FT of
a correlation function). Also, one should be careful that
the estimation of the spectrum E(w) for a non-stationary
signal 7(t) may be significantly biased depending on the
FT numerical algorithm used. In such condition, a more
robust practice to estimate the spectral scaling exponent n
consists in numerically computing the FT of the stationary
signal 6an(t), i.e., Es n(w), and to use eq. (7) to convert
back to the usual power spectrum.

Meaning of steep power spectra. — Here, we
explain why the usual relationships of eq. (8) no longer
hold in the presence of steep power spectra (n>3). In
this case, eq. (8) leads to k<0, suggesting that the
correlation function of dan does not go to 0 but rather
diverge at large lag values (see eq. (4)). Obviously, this
is neither physically nor statistically acceptable. Indeed,
for a non-trivial stationary process d,n satisfying eq. (3),
the correlation function of eq. (4) is only defined for
Kk=2—(y>0, that is for (» <2. This implies that the
spectrum of the increments is only defined for §={; —
1 < 1. Consequently, for a process with stationary incre-
ments, the scaling exponent of the empirical power spec-
trum must satisfy n = (s + 1 < 3. Hence, for steep power
spectra (n>3), the basic assumption that increments
form a stationary process is not verified so that the struc-
ture functions of eq. (3) and the correlation function
of eq. (4) are not well defined. In practice, the classi-
cal phenomenological relation between E(w)~w™™ and
So(7) ~ 771 is thus invalid for n > 3, so that the spectral
slope can not be deduced from the measurement of the
second-order structure function. This also means that the
process n(t) is at least once differentiable at times where
n(t+7)—n(t) ~7dn/dt at the first order in 7 [2]. These
local linear trends are responsible for the non-stationarity
of signal increments and, in turns, bias the estimation
of scaling exponents. Indeed, near these times, one has
|0An(t)[P ~ 7P that corresponds to (, =p (using egs. (2)

and (3)). This means that the scaling of the exponent
of the structure functions are independent of the spec-
tral steepness. Thus, the increments of the signal do not
appear as relevant quantities when looking for possible
intermittency (i.e. a non-linear evolution of {, with p) in
signals with steep power spectra.

Using higher-degree difference statistics to
recover stationarity. — As recalled above, the
scaling exponent of the spectrum of the increments
is decreased by two with respect to the one of the
spectrum of the signal (§=n—2). Clearly, the repe-
tition of the difference process allows recovering the
power spectrum of a stationary process. For instance,
for 3<n <5, the second-degree difference of the signal
Sn(t) = 5al0an(t)] =n(t+2A) —2n(t + A) +(t) has a
power spectrum with scaling exponent 52 =n—4 <1,
which is compatible with 5(A2)77(t) being stationary. The
second-degree differences thus remove the local linear
trends in the signal 1 responsible for the saturation ¢, =p
when n > 3. Thus, when looking for possible intermittency
in this case, one should use the structure functions of
degree 2, that is Sf)(T) = (\5&2)17(t)|p> x |T|<;2). We have
indeed 452) =n—1 for n<b5. For n > 5, one have C2(2) =4
due to local quadratic trends in the signal. Thus, for
5<n<7, the power spectrum of third-degree diff-
erences 5g)n(t) =da [5(A2)7](t)] =n(t+3A)—3n(t+2A)+
3n(t+A) —n(t), is well defined and intermittency should
be tested with S[(,g)(T)E<|(5$3)’I7(t)‘p>O(|7'|Cé3). These
results are summarized in the table 1. Note that, even
though the slope of the power spectrum is reduced by
computing higher-degree difference statistics, the upper
bound of the spectral bandwidth, related to the finite
dynamic resolution of the original signal measurement, is
not bypassed.

Workbench recipe. — In practice, given a first esti-
mate of the empirical power spectrum scaling exponent
n, further statistical analysis should be performed using
difference statistics of degree d > d*, where d* is the
smallest integer such that n —2d* < 1. For instance, the
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Fig. 1: (Colour on-line) Power spectra of the experimental
data n(t) (solid line) and of a synthetic signal (dash-dotted
line). Dashed lines have slopes of —4.3 and —2.8. Inset: typical
temporal evolution of 7(t) during 10s, (n) ~0.

structure function of degree d, S](Jd)(T)E<|57(—d)77(t)‘p>O(
|T|CI(’d) should be used to test for intermittency while the
spectral analysis or correlation analysis should be done
on the degree d differences, E§(Ad)7_,(UJ) x \w|5(d) and

Coay (0) x |6|*"”"<d). The relationships between the scaling

6(d)
AN
exponents then become
CQ(d):n—l, KD =142d—n, pYD=n—-2d, (9)

for n <1+ 2d. In other words, the proposed procedure
removes the biases in the estimation of the scaling expo-
nents. These biases arise from the local regular behaviours
of a signal that can occur at different degrees of the signal
differentiability. Hence, in order to numerically check
that the signal regular components have been adequately
removed, it is good practice to check that results remain
consistent when increasing the degree d to d 4 1. In partic-
ular, one should make sure that g},"” ~ CZ(,dH). Note that
for discontinuous signals the use of increments or higher-
degree differences is unsuitable, a wavelet-based approach
is more suited [14].

Applications. — To illustrate the results of the previ-
ous section, let us now apply the proposed estimator based
on higher-degree difference statistics to signals with steep
spectra and probe their possible intermittent nature. A
synthetic signal with prescribed intermittency and exper-
imental data of wave turbulence on a fluid surface will
be tested below for comparison. To our knowledge, only
one study has compared the method of second-degree
differences with more complex estimators based on inverse
statistics in order to probe intermittency in a simulation
of two-dimensional flows [17].

Synthetic data. Here, we apply the above-suggested
estimator to synthetic data. Recently, it has been proposed
that the scaling properties of experimental velocity (trans-
verse to the mean flow) in fully developed turbulence could
be described by log-normal Random Wavelet Cascade

7 (ms)

Fig. 2: Rescaled second-order moment of the structure func-
tions Sa(7)/7" ! with n =4.3 computed from the (o) first-,
(O) second-, (¢) third- and (A) fourth-degree differences of
the signal as a function of the time lag 7. (a) Synthetic signal.
(b) Experimental signal. The correlation time is 7. ~ 63 ms.

(RWC) [18]. RWC generalizes the concept of self-similar
cascades leading to multifractal measures (—1 <n <1) to
the construction of scale-invariant signals (n > 1) using
orthonormal wavelet basis [18]. Instead of redistributing
the measure over sub-intervals with multiplicative weights,
it allocates the wavelet coefficients in a multiplicative
way on the dyadic grid. This method has been imple-
mented to generate multifractal functions from a given
deterministic or probalistic multiplicative process. From
a mathematical point of view, the convergence of the
cascade and the regularity properties of the so-obtained
stochastic functions have been discussed in ref. [19].
Intermittency of RWC is characterized by the theoretical
scaling exponents ¢, = c¢1p — c2p®/2 [19]. Here, we consider
a realization of 3 x 10° data points of the RWC process
and choose ¢; =1.92 and ¢, =0.27 to reproduce the
intermittent properties of the experimental data of wave
turbulence (see below).

We first compute the usual power spectrum of the RWC
signals allowing us to assess that its frequency power law
exponent is around 3 < n < 5. This suggests that unbiased
estimates of the scaling exponents will be obtained
using second (or higher) degree difference statistics (see
table 1). The unbiased power spectrum of this signal is
then computed using the Fourier transform (see egs. (6)
and (7)) of the second-degree differences and is shown in
fig. 1. It roughly behaves as a steep power law over one
decade in frequency, i.e. E(w)oxw™™ with n~4.3. The
second-order structure functions S;d) of this synthetic
signal are then computed using the first-, second-,
third- and fourth-degree difference statistics (d=1, 2, 3
and 4) as shown in fig. 2(a). We observe that, when using

the third-degree statistics (d =3), one has 553)(7) ~ 687
with CQ(S) =3.33 that is in good agreement with the
theoretical value (2 =2(c; —c2) =3.3, the classical rela-
tionship Cé?’) =n—1 being thus well satisfied. When

d=4, we obtain C2(4) =3.35 a value that is consistent
with the one found with d=3. For d=2, one obtains
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G

Fig. 3: Structure function exponents, (p, as a function of p for

the synthetic signal (a) and experimental data (b). (o) ,(71)

computed from the first-degree increments; () 1(,2> computed
from the second-degree differences and fitted by (dashed line)
Q(,Q) =cip—c2p®/2 with c1 =1.92 and c2 =0.27; (o) 1(73)
(L) 1(,4) computed from the third-degree and fourth-degree
differences. Solid lines are linear fits of ¢{": (a) ¢ =0.95p,

and (b) ;()1) =0.8p.

and

CQ(Q) =3.23, a value that is slightly below the previous one
since it begins to be biased by the smoother part of the
signal (two times differentiable or more). Finally, using
the usual first-degree statistics (d=1) leads to C;l) ~2
since the RWC signal is differentiable with a steep power
spectrum of exponent n > 3 (see table 1).

The estimations of the structure-function exponents C,()d)
vs. p using the first-, second-, third- and fourth-degree
difference statistics (d=1, 2, 3 and 4) are presented in
fig. 3(a). We observe that (;,(,2) is a non-linear function
of p which provides a clear evidence of the intermittent
nature of the RWC signal fluctuations. The fact that
(153) and C,(fl) estimates are consistent with the previous
ones ( ;(,2) :(I(,?’) 2(254)) provides further confidence on
this diagnosis. It is noteworthy that C;,z) z(,g) and Cz(;l)
estimates are in good agreement with the theoretical
expectation (, = c1p — cop?/2, which illustrates that the
proposed framework allows an accurate characterization
of the intermittent properties. Finally, as expected for a
differentiable signal, using first-degree increments leads
to (Z(,l) is a linear function of p with a slope close to 1.
This latter result thus leads to a misleading conclusion
that the RWC signal does not present intermittency. This
exemplifies the need to adapt the degree of the difference
statistics to the steepness of the power spectrum.

Finally, the probability density functions (PDF's) of the
first-degree increments of the synthetic signal are plotted
in fig. 4(a) for different time lags 7. All the PDFs have
the same shape independent of the scale 7, thus showing
no intermittency. In contrast, the PDFs of the second-
degree increments displayed in fig. 4(b) show a clear
evolution across scales, highlighting the intermittency of
the signal. This is consistent with the previous structure
function analysis, and further underlines that high-degree

102
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Fig. 4: (Colour on-line) PDFs of the first-degree increments
51 for different 7 from 6 to 100 ms (see arrows): (a) synthetic
data, and (c) experimental data. PDFs of the second-degree
differences 6.(,2)17 for 6 <7<100ms: (b) synthetic data, and
(d) experimental data. Dashed line: Gaussian with zero mean
and unit standard deviation. o, are the rms values. Each curve
has been shifted vertically for clarity.

difference statistics is needed to test intermittency of steep
power spectrum signals.

Wave turbulence data. We now apply the above-
proposed statistical estimator on an experimental signal
of hydrodynamics surface wave turbulence [20]. A typical
signal is the temporal evolution of the surface wave
amplitude, 7(t), measured at a given location of the
free surface of the fluid (see inset of fig. 1). Data are
recorded from 10 successive experiments of 300s each
where surface waves are generated by a wave maker
driven by random noise forcing in a frequency range
0-6 Hz [20]. Wave heights was measured at 1kHz sampling
rate (A =1ms) resulting in 3 x 10 data points. As for
the RWC signal, the initial estimation of the power
spectrum steepness indicates that 3 <n <5. In order to
probe for possible intermitent properties of this signal
with such a steep power spectrum, we thus need to use
the adapted difference statistics proposed in the previous
section.

The power spectrum of 7(t), estimated using the
Fourier transform (see eqs. (6) and (7)) of J(Az)n, is shown
in fig. 1. It displays two frequency ranges with a power
law behaviour. In the low-frequency spectrum range
(~7-30Hz) corresponding to the gravity wave turbulence
regime, we observe E(w) oc w™%3 while the high-frequency
range (~30-100 Hz) corresponding to the capillary regime
is characterized by F(w)ocw™28 [7]. The second-order
structure functions Séd) (1) of n(t) for d=1, 2, 3 and
4 are shown in fig. 2(b) as a function of the time
lag 5 <7 < 100ms. When considering structure functions
Séd) for d > 2 in the time lag range 7 < 80 ms (correspond-
ing to frequencies above the maximal forcing frequency
6Hz), we roughly observe two different power law
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scaling behaviours in the gravity regime 15 <7 < 65ms
and the capillary regime 5<S7 <15ms (a time lag 7
corresponds to a frequency f=1/(27)). We will focus
below only to the gravity regime since the transition
between both regimes in fig. 2(b) occurs rather smoothly
which significantly reduce the time lag range available
to fit the scaling exponent in the capillary regime. As
explained above, for d =1, 5’51) is dominated by the signal
differentiability and does not display both scaling regimes.
Focusing only on the gravity regime (15 <7 <65ms),
one consistently finds C2(3) =3.3 and C2(4) =3.4 in good
agreement with the spectral exponent n=4.3. When
using d = 2, the smoother transition observed between the
scaling regimes leads to a slightly underestimated value
(P =29%4n-1.

We then look for possible intermittent properties of the
turbulence wave data in the gravity regime. The evolu-
tion of CZ(,d) with p is shown in fig. 3(b) for d =1, 2, 3 and
4. When using the first-degree increments, C,(,I) ~(.8pis a
linear function of p. As underlined above, in the presence
of a steep power spectrum, C,()l) is dominated by the differ-
ential component of the signal masking possible intermit-
tency. For d=2, 3 and 4, we observe a clear non-linear
behaviour of (,(,d) vs. p. We note that while (,(,3) and Cz()4)

provide consistent estimates of ¢, for all p, C,EQ) estimates
are slightly below these latters as already observed above
for p=2. Finally, the coherence between the estimates
of (, for two successive values of the difference degree
(CI(,S) ~ C,(,4)) and with the spectral analysis (C2(3’4) ~n—1)
strongly suggests that these measurements are reliable.
We can thus conclude these data of wave turbulence are
intermittent. Fitting of C,(,?’) with the polynomial model
(p=c1p— cop?/2 yields ¢y =1.9 and an intermittency
coefficient ¢y = 0.27.

Another way to highlight the wave turbulence intermit-
tency is to observe a shape deformation of the probability
density functions (PDF's) of the signal increments with the
time lag 7. The PDFs of the first and second-degree incre-
ments of the wave amplitudes are, respectively, plotted in
figs. 4(c) and (d) for 6 < 7 < 100ms. When 7 is increased,
the PDF’s shape of the second-degree increments changes
continuously up to a nearly Gaussian shape at large 7
(see fig. 4(d)). This deformation is a direct signature of
intermittency. As predicted above, this intermittency is
not diagnose when using the first-degree estimator: almost
no deformation of the PDF shapes of the first-degree
increments is observed in fig. 4(c).

In this letter, we have proposed an easily applicable
framework based on high-degree difference statistics to
probe for possible intermittency of a signal with a steep
power spectrum. We applied it to synthetic data and to
wave turbulence data. This has led to the observation of
wave turbulence intermittency [20]. In the same way, it
can be used on previous existing data notably of magneto-
hydrodynamic [4] or two-dimensional turbulence [8], both
showing steep power spectra.
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