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Fluctuations of energy flux in a simple dissipative out-of-equilibrium system
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We report the statistical properties of the fluctuations of the energy flux in an electronic RC circuit driven
with a stochastic voltage. The fluctuations of the power injected in the circuit are measured as a function of the
damping rate and the forcing parameters. We show that its distribution exhibits a cusp close to zero and two
asymmetric exponential tails, with the asymmetry being driven by the mean dissipation. This simple experi-
ment allows one to capture the qualitative features of the energy flux distribution observed in more complex
dissipative systems. We also show that the large fluctuations of injected power averaged on a time lag do not
verify the fluctuation theorem even for long averaging time. This is in contrast to the findings of previous
experiments due to their small range of explored fluctuation amplitude. The injected power in a system of N
components either correlated or not is also studied to mimic systems with large number of particles, such as in

a dilute granular gas.
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I. INTRODUCTION

Global quantities (i.e., quantities averaged over the
boundaries or the entire volume of the system) are of para-
mount importance in describing the dynamics and the statis-
tics of dissipative out-of-equilibrium systems [1]. For in-
stance, the injected power is necessary to maintain a
dissipative system in an out-of-equilibrium regime. A system
thus reaches a stationary nonequilibrium state when a bal-
ance between the mean injected power and the mean dissi-
pated power is achieved. The usual tools of equilibrium sta-
tistical mechanics do not apply to such systems or are
reduced to the fluctuation-dissipation theorem [2]. Even
more, the injected power I is a fluctuating quantity and can-
not be regarded only as a constant parameter. Their fluctua-
tions display values that can be several times larger than its
average, and their statistics (even averaged over a macro-
scopic volume) present large deviations [1,3,4]. It is thus of
crucial interest to study the statistical properties of the en-
ergy flux driving a system far from equilibrium and its rela-
tion to its internal energy. In some systems, the energy flux
fluctuations can be directly related to the internal energy by
means of the fluctuation theorem (FT).

The FT is of fundamental importance for microscopic sys-
tems far from equilibrium in a stationary state. It was first
introduced numerically for a fluid under an external shear
[5], then mathematical proof was given [6,7]. For a nonequi-
librium dissipative system, this theorem describes the asym-
metry of distribution of a fluctuating global quantity I, (en-
ergy flux, entropy production rate, etc.) averaged over a time
7much larger than its typical correlation time 7... For systems
close to equilibrium or for macroscopic ones, the FT gives a
generalization of the second law of thermodynamics and also
implies the Green-Kubo relations for linear transport coeffi-
cients when combined with the central limit theorem [8].
Moreover, it can be applied to nonequilibrium transitions be-
tween two different equilibrium states, leading to the so-
called Jarzynski equality [9]. Its derivation requires the as-
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sumption of time reversibility of the system dynamics,
ergodic consistency, and a certain initial distribution of par-
ticle states. Finally, it does not require or imply that the dis-
tribution of time-averaged fluctuating quantity /. is Gaussian.

Experimental tests of the fluctuation theorem relation
have been reported in various systems: in granular gases
[10], in turbulent flows (thermal convection [11,12] and
swirling flows [13]), in liquid crystals [14] with an electric
dipole [15] or a mechanical oscillator [16], in a two-level
atomic system [17], and by means of a colloid particle [18]
or an RNA molecule [19] in an optical trap. In all these
experiments, the fluctuation theorem is found to be verified
with good accuracy despite the fact that some of these sys-
tems do not satisfy the microscopic reversibility hypothesis.
Such a good agreement has been also reported in numerical
simulations of granular gases [1,4], turbulence [1,20], and
earthquakes [1]. The reasons of this apparent verification of
the FT are two fold: either due to the small range of explored
fluctuation amplitude e=1_/{I) [1,4,20] or due to the long
averaging time 7 needed [1,4,21]. Only small relative fluc-
tuation amplitudes (e<0.8 for 7=207,) have been reached
in the above experiments [10-13]. Very recently, large range
of € has been attained, even for 7> 7., by measuring the
fluctuating injected power in an experiment of wave turbu-
lence on a fluid surface [22]. This experiment then shows
that the FT is not satisfied for high enough €. Such a dis-
agreement was also predicted theoretically in a system de-
scribed by a Langevin equation [23]. Note that the break-
down of FT has been recently reported numerically [20] or
theoretically [24] in other systems.

In this paper, the fluctuations of energy flux in an elec-
tronic circuit are measured to test the fluctuation theorem
within a large range of accessible value of fluctuation ampli-
tude (e=3) even for long averaging time (7/7,.=20). The
electronic circuit is a resistor of resistance R in series with a
capacitor of capacitance C driven with a stochastic voltage.
This circuit can be viewed as an electronic analog of the
Langevin equation [25] which describes usually the Brown-
ian motion of a particle [26]. It is important to notice that in
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our experiment the dissipation is selected by the system it-
self. No ad hoc dissipation or thermostat is introduced to
ensure the FT hypothesis (i.e., the time reversibility of the
system). The study of the statistical properties of the injected
power in such a circuit points out three important results.

First, the probability density function (PDF) of the fluc-
tuations of the injected power in the circuit is studied as a
function of the control parameters (damping rate and ampli-
tude of the stochastic forcing). The PDF asymmetry is shown
to be driven by the damping rate. The more the mean dissi-
pation increases, the less the negative events of injected
power occur. This electronic circuit is one of the simplest
systems used to understand the properties of the energy flux
fluctuations shared by other dissipative out-of-equilibrium
systems (such as in granular gases [10], wave turbulence
[22], and convection [12,27]).

Second, we show that the fluctuations of injected power
averaged on a time 7 do not verify the fluctuation theorem at
large values of € even for 7> 7. This occurs for values of €
larger than the most probable value of the injected power
PDEF. This electronic circuit thus appears to be a very useful
tool to test the fluctuation theorem in the different limits of
the averaging time and of the fluctuation amplitude.

Third, the injected power in a system constituted by an
ensemble of N uncorrelated components is then studied. This
mimics a dissipative multicomponent system driven out of
equilibrium without spatial correlation between them. The
fluctuations of the time-averaged injected power of the N
components then verify the fluctuation theorem for finite
time. This bridges the gap between results about the test of
the FT for systems with low particle number (such as the
ones described by the Langevin equation) and systems with
large number of uncorrelated particles (such as in a dilute
granular gas). The link between them can be understood as a
consequence of the central limit theorem.

It is well known that electronic circuits are very useful
analog experiments to study stochastic nonlinear problems
[28]. However, one could wonder their relevance with re-
spect to numerical simulations. Analog circuits get the ad-
vantages that any naturally occurring noise necessarily has a
finite correlation time, and thus avoid to preselect a corre-
lated noise type (Ito-Stratanovivch dilemma) in writing the
numerical code [28]. Moreover, the simulation leads to the
accumulation of truncation errors, and it takes a longer time
to implement and to compute [28].

This paper is organized as follows. Section II explains the
experimental setup of the RC circuit. Section III contains the
results about the statistical properties of the injected power in
the circuit. Some of the experimental results of Sec. III are
then recovered in Sec. IV with a simple model based on a
Langevin equation with a Gaussian colored noise [the so-
called Orstein-Ulhembeck (OU) noise] [22,29]. Section V
contains the experimental test of the fluctuation theorem for
the energy flux in a RC circuit. Finally, Sec. VI is devoted to
the experimental study of the injected power in a system
constituted by a set of N uncorrelated components, as well as
the test of the fluctuation theorem for its energy flux.

II. EXPERIMENTAL SETUP

The experimental setup consists of a resistor, R, in series
with a capacitor, C, driven with an external stochastic volt-
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FIG. 1. Scheme of the electronic circuit as an analog of the
Langevin equation.

age {(z) as displayed in Fig. 1. The equation of continuity for
the voltage V across the resistor R leads to

_,dV(t)
dt

+ V() =), (1)

where v '=RC. As will be shown below, the injected power
in the RC circuit is

1(t) = yV()¢(). (2)

The zero mean Gaussian random noise () is generated by a
spectrum analyzer (Hewlett-Packard HP 35670A). This noise
is low-pass filtered at a cutoff frequency N fixed to 5 kHz,
unless specified otherwise. The control parameter is the noise
amplitude D defined by the constant value of its power spec-
tral density, as an analogy to the white-noise limit. C is fixed
to 1 uF, and R can be varied between 200 () and 10 kQ
leading to values of vy between 50 Hz and 10 kHz. The out-
put V(z) of the RC circuit is multiplied by the random forcing
{(t) by means of an analog multiplier (Analog Devices
AD540). The resulting voltage V(r){(¢) is proportional to the
injected power (see below) and is acquired with a digital-to-
analog acquisition card (AT-MIO-16X) at 100 kHz sampling
frequency for 10 s with a precision of 0.3 mV.

Equation (1) is the analog of the Langevin equation that
usually describes the dynamics of a Brownian particle of
velocity v as [26]

du(t)
dt

+ (1) = f(1), (3)

where 7 is the inverse of a damping time. f is an external
Gaussian random forcing with zero mean and a given auto-
correlation function. In the singular limit of zero-correlation
time (i.e., for a white-noise forcing), this function reads
(f()f(t")y=fo8(t—1") and the fluctuation-dissipation theorem
is satisfied with (v?)=f,/(2), with f, being the noise inten-
sity [2]. For a non-zero-correlation time (as in this study), the
system cannot be in equilibrium, and another viscous term
different from that of Eq. (3) must be used to recover the
equilibrium state [30]. Multiplying Eq. (3) by v gives

d | v(r)? —

dt{ 5 } = (@) = (1), 4)

meaning that the energy budget of the system is driven by
the injected power, f(f)v(1), and the dissipative one, Jv(f)%.
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FIG. 2. (Color online) Probability density functions of the in-
jected power I for two different noise amplitudes, [(a) and (b)] D
=1.56X 1073 VZ /Hz and [(c) and (d)] D=0.75X 107 V2 /Hz,

and damping rates, [(a) and (c)] y=200 Hz and [(b) and (d)]
y=2000 Hz.

This analogy thus shows easily that Eq. (2) is the injected
power in the electronic circuit.

The aim is now to study the probability distribution func-
tion (PDF) of the injected power in the RC circuit, described
by a Langevin equation as the simplest dissipative system
driven out of equilibrium by an external force. The objective
is to probe the out-of-equilibrium statistical properties of the
injected power and its relation with the fluctuation theorem.
It is noteworthy to underline that in this simple system the
forcing f(r) is not in any case a thermal bath. Due to the
non-zero-correlation time of the forcing, this system is
strongly out of equilibrium and the fluctuation-dissipation
theorem does not hold [2]. This is mainly due to the non-
Gaussian shape of the injected power distribution, in contrast
to other experimental devices where the injected power fluc-
tuations are quasinormal [15,16].

III. STATISTICAL PROPERTIES OF THE INJECTED
POWER

The probability density function of the injected power,
(1), is shown in Fig. 2 for different values of the noise am-
plitude D and the damping rate 7. For all values of D and 7,
the PDFs exhibit two asymmetric exponential tails and a
cusp near /=0. Note that this typical PDF shape has been
also observed in various more complex systems (granular
gases [10], wave turbulence [22], and convection [12,27]).
As shown in Fig. 2, the PDF skewness increases strongly
with vy at a fixed D. Moreover, the extremal fluctuations in-
crease strongly with D at a fixed .

At a fixed value of vy, the PDFs of I are plotted in Fig. 3
for nine different noise amplitudes. As shown in the inset of
Fig. 3, all these PDFs collapse on the same curve when plot-
ted in the centered-reduced variable, (I-(I))/ o;, where oy is
the rms value of I and (I) its mean value. Such a collapse
means that all the moments of / scale as ;. As shown in Fig.
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FIG. 3. (Color online) Probability density functions of injected
power, I, for D=0.06—1.56X 1073 mes/HZ (see the arrow) for

v=200 Hz. Inset: probability density functions in the rescaled vari-
able (I-(I))/ o}.

4, oy (as well as (I)) scales linearly with D. This linear de-
pendence with D of the PDF of I can be recovered by di-
mensional analysis. Thus, since the slopes of the exponential
tails scale as D~!, when the noise amplitude D is doubled,
the largest injected power fluctuation reached is doubled.
The noise amplitude D is now fixed in order to take into
account the effect of the damping rate y on the injected
power fluctuations. For different values of 7y, (I) and o, are
plotted in Fig. 5. Both moments scale as a power law of y
with two different exponents. Therefore no collapse occurs
when the PDFs of [ are plotted in the centered-reduced vari-
able. However, as displayed in Fig. 6, both the exponential
tails of positive and negative values of I show power-law
dependences with . The slope of the positive exponential
tails scales as ~y 193*005 whereas the negative one scales
as ~y 13*005 This means that the probability of having
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FIG. 4. (Color online) Mean (I) and standard deviation a; of the
injected power as a function of the noise amplitude D. y=200 Hz.
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FIG. 5. (Color online) Mean (/) and standard deviation o
of the injected power as a function of the damping rate 7.
D=0.75%x1073 meS/HZ. (-): linear best fits of slopes 1.9 and 1.59
V, respectively.

negative values of injected power decreases faster than the
probability of having positive ones as the system becomes
more and more dissipative.

Taking into account both the effect of D and vy, the PDF
of the positive values of I behaves, far from the cusp at /
=(), as

P.(I) ~ exp(— a+ﬁ>. (5)
Similarly, the PDF of the negative values of / behaves as
P_(I) ~ exp(a_%) , (6)
Dy

where @ are two constants. As shown below in Sec. IV, an
explicit formula of the PDF of I can be computed [22],
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FIG. 6. (Color online) Scaling of the PDFs of the negative val-
ues (left) and the positive values (right) of injected power I for nine
values of D and ten values of 7y.
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FIG. 7. (Color online) Scaling of the mean (I) and standard
deviation o; with the cutoff frequency \. (-): linear best fits of
slopes 0.11 and 0.56 V, respectively.

which can capture the properties of the distribution found
here: a cusp close to zero and asymmetric exponential tails
(see Sec. IV).

Both D and vy are now fixed in order to study the effect of
the random noise cutoff frequency N on (/) and o;. As shown
in Fig. 7, when \ is varied from 3 to 40 kHz, the mean
injected power is roughly found independent of N with our
experimental accuracy, whereas o; scales as the square root
of \.

Finally, to summarize all the experimental results, the two
first moments of injected power behave like

() ~Dy"" and o, ~ Dy" I\, (7)

Note that all the previous exponents are experimentally mea-
sured with an accuracy of *£0.05. Thus, the noise amplitude
D is found to drive the scale of the injected power fluctua-
tions whereas the damping rate 7y controls the asymmetry of
the PDF of 1.

IV. LANGEVIN-TYPE MODEL WITH AN ORSTEIN-
ULHEMBECK FORCING

Using a simple model that has been recently presented in
Ref. [22] and will be discussed in details in another paper
[29], let us try to recover the above experimental results: the
shape of the injected power distribution and the scaling of its
first cumulants ({(/) and o) with the parameters D, 7, and \.
From Eq. (1) of the electronic circuit, and the fact that the
stochastic forcing {(r) is low-pass filtered at frequency \, one
can write the following coupled linear equations:

dVv(t)

2 T Y(1) = ¥4(1), (8)
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FIG. 8. (Color online) PDFs of /(). Comparison between ex-
periment (=) and theory [(—-—) from Eq. (10)] for two different
values of the damping rate y=2000 Hz (r——LL—O 45) [black line]
and y=200 Hz (r=0.15) [red (light gray) lme] The cutoff fre-
quency A is fixed to 10 kHz.

A\ = 0, ©)

with V(z) as the voltage, y"!=RC as the damping parameter,
() as the colored random forcing, and &(r) as the Gaussian
white noise with (&(r)&('))=D&(t—1t"), where D is the noise
amplitude. Note that if we only used a Gaussian white noise
in Eq. (8), then one finds (/) ~o;~D but with no depen-
dence with 7y [2] contrarily to the experimental results [see
Eq. (7)]. A dependence with 7y is obtained when using a
colored type of noise for (), such as the OU one of Eq. (9)
[2]. The colored noise indeed introduces a typical frequency
needed to simulate the frequency cutoff N experienced by the
low-passed filtered Gaussian white noise in the experiment.

As shown in Sec. II, the injected power in the circuit
writes ()= y{(r)V(r). Using the fact that both variables V(z)
and {(¢) are Gaussian with zero mean, the PDF (/) can be
written in an explicit way [22]. Let us rapidly recall the main
points of its derivation. First, the stationary joint PDF (V,{)
writes as a Gaussian bivariate which depends only on the
correlation coefficient r= / ayo; between both random
variables [31], where o,=D/(2\) and oy are the rms values
of {(¢) and v(z), respectively. Second, by means of a change

of variables, the PDF (I={V=1I/7) then is computed as [22]
[_ 2 7 7
~ Vl-=r rl 1

P(I) = CXP[_}Ko[U], (10)
T c c

where ¢=(1-r*)oyo, and Ko[-] is the zeroth-order modified
Bessel function of the second kind. One also has r
=Vy/(y+\) [22], meaning that at fixed \, r is directly re-
lated to the damping coefficient . Equation (10) then is
determined once r is known, i.e., when (I), oy, and o are
known. Since these quantities are measured, we can compare
the theoretical PDF (I) of Eq. (10) with the experimental one
with no adjustable parameter. This is shown in Fig. 8 for two
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different values of y (or r). The computed PDFs display a
cusp at /=0 and exponential asymmetrical tails for large val-
ues of /, in good agreement with the experimental shapes. As
shown in Fig. 8, increasing the damping rate vy leads to a
PDF that is more and more asymmetrical with less and less
negative events. The asymmetry then increases when the
damping rate 7y increases. The asymmetry or the skewness of
the injected power distribution is then controlled by the
damping parameter 7y (or the correlation coefficient r at fixed
cutoff frequency \).

For other dissipative out-of-equilibrium systems showing
energy flux fluctuations, an analog of the parameter 7y can be
found. For instance, in an experiment of wave turbulence on
a fluid surface [22], the distribution shapes of the injected
power I by the wavemaker resemble the ones found here.
When the fluid used is mercury, the PDF (I) is strongly
asymmetrical whereas with water, it is much more symmetri-
cal. This is due to the mean dissipation which is different for
each fluid. The analog of the y parameter for wave turbu-
lence experiment is indeed related to the inverse of a typical
damping time of the wavemaker which is linear with the
fluid density [22].

With the Langevin-type model of Egs. (8) and (9), one
can also calculate the first cuamulants of /(). By solving the
linear part of Egs. (8) and (9), the first cumulants of /(z) in
the stationary limit read [31]

(D= Vh+y (11)
D\
o= ’yzm (12)

In the limit y/N <1, Eq. (11) yields
()~ DY\, (13)

which does not depend on the cutoff frequency A, and Eq.
(12) yields

~Dy\'"2. (14)

The range of 7y used experimentally is between 50 and 2000
Hz, and the frequency cutoff \ is in the range from 3 to 40
kHz. This leads to y/\~0.1 in the worst case. The first two
cumulants of Egs. (13) and (14) derived from the OU process
thus are in good agreement with the experimental results of

Eq. (7).

V. RELATION WITH THE FLUCTUATION THEOREM

The smoothing average of the injected power /I, is com-
puted from the previous data of I as

I1(1) = 1rfl(t’)dt’, (15)

where 7 stands for the time of average of the signal, which is
several times the correlation time 7. of the injected power /.
For our experiment, the correlation time 7, is the inverse of
the cutoff frequency, 1/, which is now fixed to 107% s
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To describe the asymmetry of the time-averaged injected
power I, distribution, the quantity p(e) is computed as

ple) = 11n;%1n[%}, (16)

where P(e=1_/(I)) is the probability to have a € equal to a
certain value I./(I). p(e€) is usually called the asymmetrical
function [23]. Equation (16) is called the fluctuation theorem
which states that for times 7 larger than 7., this function
depends only on € [5,7,8]. In a certain limit, Eq. (16) takes
the form

P(E) = :86» (17)

where f is a dimensionless constant. It means that the prob-
ability ratio to have a positive value of injected power (€)
with respect to its negative value (—€) increases exponen-
tially with € at large 7. Note that a similar relation called the
Gallavotti-Cohen relationship has been derived under spe-
cific conditions [6]. The hypotheses for deriving Eq. (17) are
three: the system should be microscopically reversible, dis-
sipative, and the dynamics on the phase space should be
chaotic [5,7,8]. For our dissipative system, the reversibility
condition is obviously not fulfilled. However, let us try to
test the relation of Eq. (17) with our experimental data of
injected power.

Figure 9 displays the PDF of the time-averaged injected
power I./{I) when 7/ 7, is increased. Several features appear.
First, the negative injected power events decrease with in-
creasing 7 until they disappear for 7=57,. Second, when
7/ 7. is increased, the PDF shape for negative values of 1./{I)
changes from an exponential shape to a Gaussian one,
whereas the exponential shape of the positive part is quite
robust. Only when 7> 7,, the PDF shape close to the maxi-
mum tends toward a Gaussian, as one would expect from the
central limit theorem. In Fig. 9, when 7/7,. increases, the
PDF most probable value €* (i.e., where the PDF amplitude
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FIG. 10. (Color online) Same as Fig. 9 for y=200 Hz.

is maximum) increases slowly from 1./{I)=0 to 1 (the mean
value of the injected power). This dependence of €” is shown
in Fig. 11 as a function of 7/7,. This dependence will be of
fundamental importance when probing the FT (see below).

The large deviation function (LDF) f(e€) is generally de-
fined as

f(€) = lim—In[P(e = ID)], (18)

7—0 T

and Eq. (16) thus leads to

ple) =f(e) - f(- e). (19)

The LDF describes the probability of very large and uncom-
mon events of €. It is consequently very hard to measure it.
The computed LDF as in Eq. (18) approaches its theoretical
limit only for large values of 7/7.. With our experimental
data, one can probe large values of 7/ 7. and therefore calcu-
late a very accurate estimate of the LDF. Developing Eq.
(19) up to the first order in € means regarding only the terms
€=0), thus leads easily to verify Egs. (16) and (17). This was
first conjectured by Aumaitre et al. [1] and then predicted in
a particular system by Farago [23]. But what would happen
if € was far from zero?

The experimental values of the asymmetrical function
p(e) are shown in Figs. 12 and 13 for two different values of
v, as a function of € with 0=e€e<3. For small €, p(€) in-
creases linearly as expected, then p(e) saturates when € in-
creases further. For each value of 7/ 7., the beginning of the
saturation occurs for a critical € value called €.<1. Thus, the
linear prediction p(e) ~ € is valid at finite 7 only for e<e,. It
is important to notice that the saturation value €, of Figs. 12
and 13 corresponds to the maximum value € of the PDF (see
Fig. 11). The fact that p(e) + € for values of € greater than
€,=€" is due to the different shapes of the PDF (e) for
e<—¢€" and for €>€" (see Figs. 9 and 10). By extension to
nonfinite 7, this thus means that the FT relation of Eq. (17)
does not hold for values of energy flux greater than its most
probable value €".
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FIG. 11. (Color online) Most probable value € of PDF (I,/I))
as a function of 7/ 7, for y=50, 100, 200, 500, and 1000 Hz. For
e< €, the relation p(e) ~ € is verified at finite 7, whereas it does not
hold for e> €* (see text).

When 7/ 7, increases, it is predicted that the most probable
value €” of the PDF converges to 1 slowly as a power law of
7/ 7, [24]. This power-law dependence is not found experi-
mentally with our data (not shown here), and Fig. 11 clearly
shows the convergence of € to 1 as a consequence of the
convergence of the computed f(e) toward the LDF. An ana-
lytical prediction for the LDF of the injected power distribu-
tion has been derived for a Langevin equation either with a
white noise [23] or with a colored noise (OU) forcing [30].
At high 7/7,, the shape of our experimental PDF roughly
tends toward a Gaussian (see Figs. 9 and 10 at 7/7,=200)
contrarily to the asymmetrical prediction of the LDF with a
white or a colored noise. However, we have to be careful
during this comparison due to our low statistics at very long
averaged times (see the vertical range in the Figs. 9 and 10 at
7/ 7,=200).

Increasing now v, at fixed 7/7,, leads to a decrease in
available values of € necessary to probe the fluctuation theo-
rem (see Figs. 12 and 13). It comes from the fact that when
v is increased, the number of negative injected power events,
€< 0, decreases (y controls the skewness of the PDF at a
given 7.~ 1/\). We stress the fact that the damping rate 7,
and therefore the mean dissipation, is not chosen in this
simple experiment in an ad hoc manner to satisfy time re-
versibility. The smoothing of the signal around (/) also de-
creased the number of available negative events.

In most of the previous experimental test of the fluctua-
tion theorem [10-13], the limit of Eq. (17) is well followed
because of the small range of explored e=0.8 at high 7/7,
=20. However, very recently, large range of € has been mea-
sured experimentally [22] and the fluctuation theorem was
not satisfied. In our experiment, large range of € (up to 3) is
also available even for high 7/ 7.==20. This thus allows us to
test deeply the fluctuation theorem. As explained above, the
FT works only for € values smaller than the most probable
value € (see Fig. 11). Above this value saturation occurs due
to the different behavior of the PDF; for values larger than
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FIG. 12. (Color online) Asymmetrical function p(e)
=%ln[§_%] as a function of € for different integration times

7/7.=1 (%) to 31 (+) at fixed y=100 Hz and D=1.56 mV2, /Hz.

rms

the most probable value, the PDF remains exponential,
whereas for values smaller than € it is smoother. Thus, large
events of injected power are not well described by the FT
and lead to the observed saturation of p(e).

VI. ON THE INJECTED POWER CORRELATIONS

Dissipative stochastic systems driven out of equilibrium
are generally constituted of several components (e.g., in
granular gases [1,10]) that may display correlations in space
and time. One can wonder how these spatio-temporal corre-
lations change the PDF of the injected power. Even more, it
is important to study their relevance in the fulfillment of the
fluctuation theorem.

The correlation time of the injected power into our simple
experimental system can be tuned as a control parameter. To
wit, the averaged injected power signal /.(¢) is expressed as a
sum of correlated variables where their temporal correlations

FIG. 13. (Color online) Same as Fig. 12 for y=50 Hz.
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mimic the spatial correlations in extended high-dimensional
systems (see Sec. VI A). One can also look at the sum of
N-independent random variables distributed as 1(¢) (see Sec.
VI B). These two kinds of signal processing are performed to
understand if a set of statistically dependent or independent
components has an effect over the fulfillment of the FT (see
Sec. VIC).

A. Correlated components

For a single electronic circuit, the smoothing average I, of
the numerically sampled injected power I(z), defined in Eq.
(15), can be written as the discrete sum over N points,

N

1) = ]%[2 1(t + kAt), (20)
k=1

with 7=NAr and Ar as the inverse of the sampling fre-
quency. In our experiment, Az is fixed at 10 us. Since the
correlation time of the injected power, 7.=1/A=100 us, is
greater than Az, the elements of the sum above have a non-
zero temporal correlation.

This smoothing average can be also viewed as a sum of N
statistically dependent components as

1o 1
1) = Ng I(t + kAr) = Ng L), (21)

where I,(z) corresponds to the injected power of the kth cor-
related component.

B. Uncorrelated components

Let us now focus on the case where correlations between
components are neglected. That is to say each component
losses its memory of the effect of the rest of the system faster
than its internal dynamics, such as the case of a dilute granu-
lar gas where every particle dissipates its energy by colli-
sions. After each collision, due to the low density of the gas,
the particle losses its memory of its initial conditions, deco-
rrelating the injected power events in time.

We study N statistically independent variables each dis-
tributed as I(z). For each time 7, each injected power I;(¢) of
the ith noncorrelated component is summed to obtain the
ensemble average of the injected power, I\{7), defined as

1 N
mmzﬁgg@, (22)
i=1

with I;(¢) distributed as in Eq. (10). This ensemble average
I\(t) should have different statistical properties than the
smoothing one 7(7). Indeed, I){r) results from the sum over
N statistically independent components [see Eq. (22)],
whereas I(f) comes from the sum over N statistically depen-
dent or correlated components [see Eq. (21)].

C. Results

The statistical properties of the injected power into both
systems described above display striking differences. Figures
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FIG. 14. (Color online) (a) Computed large deviation functions
%ln[P(IT/ (I))] of 7/7, correlated variables with 7/7.=3 (CJ) to 50
(x) for y=100 Hz. (b) Computed large deviation functions
ﬁln[P(I /{D))] of N uncorrelated variables with N'=2 (), 4 (O), 6
(+), 8 (), and 10 (>>) for y=100 Hz. Inset: same with N'=10 (>>),
20 (O), 30 (+), 40 (*) and 50 (7). The dashed lines show the mean
injected power (/).

14(a) and 14(b) show the computed LDFs of I and Iy, re-

T(‘

spectively, defined by —In[P(Z./<I))] [see Eq. (18)] and by
/%/ln[P(I v/ {I))]. These LDFs describe how the fluctuations of
both averages with respect to the mean (/) behave when the
number of variables taken into account in the each sum, A or
7/ 7,, becomes larger and larger. The computed LDF of I .(z)
is always asymmetric with exponential tails whenever the
value of 7> 7,, whereas the computed LDF of I,{r) tends
toward a parabola when A/ increases.

For the system of statistically dependent components, the
LDF of the injected power is not parabolic (as it should be if
its PDF was a Gaussian) as shown in Fig. 14(a). The conver-
gence to its asymptotic shape is slow, depending strongly on
the number of components of the system (i.e., of the dura-
tions of the time averaging, 7/7.). Moreover, when 7/ 7, in-
creases, Fig. 14(a) shows also that the PDF maximum slowly
tends toward the mean value (I), as already noticed in Sec. V
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FIG. 15. (Color online) Asymmetrical function p(Ix;/{I)) of
N-independent variables for different integration times 7/ 7.=1 (%)
to 31 (+). N'=10-100 with a 10 step.

(see Fig. 11). As already shown in Fig. 12 in this case the
fluctuation theorem is not satisfied.

For the A uncorrelated or statistically independent sys-
tems, the computed LDF of I, shown in Fig. 14(b) has ex-
ponential tails whatever the value of A/ as expected from the
distribution of /,(¢) [see Eq. (10)]. When N is increased from
2 to 10, the center of the LDF becomes more and more
parabolic (its PDF becomes more and more Gaussian) as
shown in Fig. 14(b). This is due to the central limit theorem
which can be seen as a quadratic expansion of the LDF
around the mean of the distribution. At higher A/>10, no
deviation from a parabola is observed in the inset of Fig.
14(b) due to the small fluctuation values probed. Indeed, if
larger fluctuations could be accessed, one should expect ex-
ponential tails in the distribution.

Let us finally test the FT for an ensemble of
N-independent variables. The smoothing average of (1)
over a time 7 is defined as

+7

1 N
Ly,(1) = J\_/TE I(t")dt". (23)
i=1 J¢t

The asymmetrical function p(I,,/{I)) of the N-independent
variables (10=AN'=<100) is plotted in Fig. 15 for ten different
integration times 7/7,. Whatever the value of N and 7/,
p(Iy/{D)) increases linearly with I,,/{I). Thus, for the sys-
tem of N uncorrelated variables (e.g., a system without spa-
tial or temporal correlations), this means that the asymmetric
function p(e=1,.,/(I)) satisfies the fluctuation theorem as
soon as N> 10 [see Eq. (16)]. However, one should be care-
ful with this statement. Our range of accessible fluctuations e
decreases with increasing A and 7/ 7. Consequently, one can
only probe the Gaussian part of the PDF (€) but not the
exponential tails, leading to the linear behavior observed for
p(e). Larger € values should be reached in order to observe
the effect of the exponential tails on the validity of the FT.

PHYSICAL REVIEW E 79, 041110 (2009)

VII. CONCLUSION

In conclusion, we have studied the statistical properties of
the instantaneous injected power I(¢) in one of the simplest
dissipative out-of-equilibrium system: an electronic RC cir-
cuit submitted to a stochastic voltage. The probability distri-
bution function (PDF) of () is measured for different values
of the forcing amplitude and of the damping rate 7y. It dis-
plays a cusp near /=0 and asymmetric exponential tails.
This typical PDF shape has been observed in more complex
dissipative systems (such as in granular gases [10], wave
turbulence [22], and convection [12,27]). The relevant pa-
rameters of the system can be easily changed in our simple
experiment. This leads to a heuristic understanding of the
features of the injected power PDF by means of a Langevin-
type model. The system response V() and the forcing {(r)
are indeed described by two Orstein-Ulhembeck random
variables that follow the linear coupled Langevin equations
[22,29]. Their correlation coefficient r=(V{)/ oo, (related
directly to the mean injected power) is the only control pa-
rameter driving the asymmetry of the distribution of /(z). The
larger the damping rate 7, the larger r and the larger the
asymmetry of the PDF. Moreover, from this model, the scal-
ing of (I) and oy is found to be in good agreement with the
experimental measurements.

The fluctuation theorem (FT) has then been probed by
measuring the asymmetrical function p(e) with e=I_/(I),
where /. is the smoothing average on a time lag 7. Contrary
to previous experiments, the range of available fluctuation
amplitude is large (e=3) even for long averaging time
(7/7,=20). This experiment thus allows one to probe the FT
in the limit of large € and large 7/ 7.. We have found out that
the FT is only satisfied for values of € smaller than the most
probable value, € (i.e., the maximum of the PDF of €). For
values larger than €, the asymmetrical function is no more
linear with € but saturates. Thus, the FT does not hold for the
large available values of € even at large 7/ 7,. This disagree-
ment is not particular of this electronic system but seems to
be generic to other systems. It has been also recently ob-
served with a wave turbulence experiment [22]. This model
experiment thus appears as a useful tool to probe the FT in
different limits of averaging time and fluctuation amplitudes.

Finally, this electronic experiment can be extended to
mimic the behavior of more complex out-of-equilibrium sys-
tems. To wit, we have studied the injected power fluctuations
in (i) a system of N statistically independent components and
(ii) a system of N statistically dependent components. The
latter can be viewed as an archetype of a dilute granular gas
of uncorrelated particles. The FT for the time-averaged in-
jected power has then been tested for the case of the corre-
lated and uncorrelated systems. In the presence of non-zero-
correlation between components the FT is not satisfied,
whereas it is satisfied for the uncorrelated system for finite
average time 7. In the last case, the fulfillment of the relation
is just a consequence of the central limit theorem. Finally,
this work also points out that the agreement with the FT
relation is dependent on how the averaging process is per-
formed (nonoverlapping bins of duration 7> 7, [10] or over-
lapping ones are two different processes related, respectively,
to statistically independent or dependent components of the
system under study).
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