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“Turbulent” electrical transport in copper powders
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PACS. 45.70.-n – Granular systems.
PACS. 05.40.-a – Fluctuation phenomena, random processes, noise, and Brownian motion.
PACS. 72.80.-r – Conductivity of specific materials.

Abstract. – Compressed copper powder has a very large electrical resistance (1MΩ), due to
the oxide layer on grains (100µm). We observe that its voltage-current U -I characteristics are
nonlinear, and undergo an instability, from an insulating to a conductive state at relatively small
applied voltages. Current through the powder is then noisy, and the noise has interesting self-
similar properties, including intermittency and scale invariance. We show that heat dissipation
plays an essential role in the physics of the system. One piece of evidence is that the instability
threshold always corresponds to the same Joule dissipated power whatever the applied stress.
In addition, we observe long-time correlations which suggest that thermal expansion locally
creates or destroys contacts, and is the driving mechanism behind the instability and noise
observed in this granular system.

Introduction. – For over a century [1], electrical transport in metallic powders has gen-
erated interest [2]. These powders have fascinating properties, such as extreme sensitivity
to electromagnetic waves, highly nonlinear U -I characteristics, hysteresis, and 1/f noise, for
which fully satisfactory explanations are still lacking. The experiments presented here were
motivated by the work of Kamarinos et al. [3] on compressed copper powders. These authors
observed an insulating-to-conducting transition at rather low pressure-dependent voltages,
associated with strong 1/f noise. Just above the conduction transition threshold, we ob-
serve slow temporal evolution of the powder resistance with a noisy component. Electrical
breakdown of the oxide layers on grains has been invoked [3, 4] for the transition, but this
explanation is unsatisfactory, for we observe that the noise involves both increasing and de-
creasing the electrical resistance of the powder. In this letter, we show that this electrical
noise has interesting scale-invariant properties. Scale invariance [5] occurs for various physical
signals: turbulent velocity [6], financial stock market data [7], earthquake energy release [5],
or worldwide information traffic [8]. One of the goals of this study is to use the analytic
tools developed for turbulent signals in the case of this granular system. We shall focus the
comparison on two aspects: The statistics of current increments, I(t+ τ)− I(t), depending on
the tested time scale τ , and the correlations between the amplitudes of these increments. This
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Fig. 1 – Normalized U -I characteristics for various applied forces: F = 640 (✷), 700 (◦), 750 (∗),
800 (�) and 850 (�) N. Slope of unity (−). Slope 2 (−−), i.e. Inl/I = 1/2, is close to the instability
threshold (see the text for details).

Fig. 2 – The relative nonlinear part of the current, Inl/I, vs. (UI)1/2. The �-mark is the point where
Inl/I = 1/2, (UI = 0.12mW; UInl = U2/R0 = 0.06mW), close to the instability threshold (see the
text for details). Symbols are as in fig. 1.

latter will show that the electrical noise in this granular system has a hierarchical organization
through the time scales.

Experimental setup. – Two kinds of experiments are performed with commercial copper
powder samples of 100 µm “spherical particles” [9]: U -I characteristics on the one hand, and
noise and relaxation measurements on the other. In both cases, the powder samples are con-
fined in a polymethylmethacrylate (PMMA) cylinder, of 10 mm inner diameter, capped with
two metallic electrodes (stainless-steel or brass cylinders). The container is filled with powder
up to a height of 5 mm, roughly corresponding to 500000 particles. For the U -I characteristics,
a sensor measures the force applied to the powder through the electrodes. We occasionally
embedded two wires inside the powder to check that the resistance is not controlled by the
electrode-powder interface. Generally, before each experimental run, the container is refilled
with a new sample of powder. This procedure ensures better reproducibility than simply
relaxing the confining pressure and shaking the container.

U -I characteristics. – The DC current, I, is provided by a Kepco Power Supply (BOP
50-4M). We first apply a static force, F , to a new sample. Then we measure the voltage, U ,
across the sample, as a function of increasing values of the current, I. A single run typically
lasts 10 s.

Figure 1 displays the U -I characteristics for various applied forces ranging from F = 640
to 850 N. I is normalized by the sample resistance R0(F ) at low U , and thus the slope of
each characteristic is 1 at the origin. We see that at a higher applied force, the departure
from linear behavior occurs at lower voltages (see fig. 1). Note that R0(F ) decreases with F ,
1 MΩ being a typical value. We define Inl ≡ I − (U/R0) as the departure from linearity, that
is the nonlinear part of I. Figure 2 then shows that plotting Inl/I as a function of (UI)1/2

collapses all data. At first glance, a simple interpretation for this (UI)1/2-dependence can be
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developed. Indeed, developing I in powers of U such as

I = (U/R0) + cU2

yields
Inl/I � R0cU � cR

3/2
0 (UI)1/2.

However, due to the symmetry of the system, c should be zero. Thus, this interpretation does
not hold. We prefer to focus on the main observation: The relative nonlinear component of
the current, Inl/I, seems to depend only on the total dissipated power in the sample, UI. An
interpretation along these lines will be proposed in what follows.

Transition and relaxation. – In a new series of experiments, the PMMA cylinder is filled
with 5 mm of powder, then vibrated and embedded in a cylindrical brass press with 5 mm
thick walls. The pressure on the sample is generated by means of the lid press acting as a
screw. At constant low voltage (U � 0.5 V), the sample resistance, R0, is monitored during
the stepwise pressing of the sample until a maximum pressure, Pm, is reached. R0 is found
to decrease with increasing Pm, and to reach a value ranging from 100 kΩ to 500 kΩ, at the
end of the pressing process (half an hour later). We then let the system relax for one day.
After checking that R0 and Pm are constant in time, a fixed voltage, U , is suddenly applied
to the sample, and the current, I, is monitored. If U is smaller than a threshold value Uc, the
sample is in a weakly conducting state with very slow temporal evolutions of I, if any. When
U > Uc, an instability occurs. I rapidly increases at constant U which can be interpreted
as the resistance relaxing down. The larger U is, the faster the resistance relaxes. Similar
features have been observed by Kamarinos et al. [3].

When the above experiment is repeated for different values of Pm, it shows that both Uc and
R0 depend on Pm. However, the critical ratio U2

c /R0 is found to be independent of the applied
pressure, with a value close to 0.07 mW. This value is close to the point where Inl/I = 1/2
(see �-mark in fig. 2). All these observations suggest that this spontaneous transition from an
insulating to conducting state is a thermal instability. To further characterize the phenomenon
observed for U > Uc, let us make three remarks:

– Due to the strong sample pressure, vibrations have no effect; even a strong jolt applied
to the press has no visible consequence on the signal.

– We occasionally followed the relaxation down to a resistance of 500 Ω, which is almost
three orders of magnitude lower than the initial one R0; however, this resistance remains
much higher than a metallic contact would produce between the grains, no matter how
small the contact [2].

– The temporal evolution of the current, at constant U > Uc, is not monotonic. Both
increasing and decreasing events occur for the current. However, the former dominate
and control the global evolution. This is contradictory to what would result from a
cascading electrical breakdown for the oxide layers, as supposed by Kamarinos et al. [3].

Finally, we observe that the direction of the global evolution of the resistance depends
on the applied voltage. As shown in fig. 3, we first apply to the sample a voltage U = 4 V
(U2/R0 = 0.1 mW > U2

c /R0), which triggers the relaxation. Half an hour later, we decrease
U to 0.5 V, and the conductance goes down. Two hours later, we increase U to 3.5 V and we
see that the conductance goes up again. Consequently, with a well-chosen applied voltage, we
can obtain an approximately constant conductance. Note that these observations are coherent
with the last item above. We exploit them in what follows.
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Fig. 3 – Temporal evolution of the sample conductance. The 4V first applied are above the threshold.
In the second part, 0.5V are applied, and finally 3.5V.

Fig. 4 – Quasi-stationary current noise can be obtained with both increasing and decreasing events.

Noise. – Our goal is now to obtain a quasi-stationary current signal in order to apply
the usual tools of signal processing (e.g., spectral analysis), and more sophisticated ones
developed in the framework of studies of turbulence time series [6]. To start, we consider
an initial sample resistance of R0 = 0.5 MΩ. To obtain the relaxation, we apply U � 7 V
(U2/R0 � 0.1 mW > U2

c /R0). Five minutes later, the resistance reaches 830 Ω, we then apply
U = 0.5 V, and the resistance goes up, reaching 1 kΩ one hour later. Applying now U = 2 V,
the resistance slowly decreases to a value of 950 Ω after one hour. Finally, applying U = 1.6 V
leads to an approximately constant current for hours, with stochastic fluctuations (see fig. 4).
At fixed voltage U = 1.6 V, the current I is recorded through an acquisition system, with a
sampling frequency of fH = 25.6 kHz (respectively, fL = 128 Hz), the signal being previously
filtered at 10 kHz (respectively, 50 Hz) to avoid aliasing. The signal is recorded during 20 s
(respectively, 65 min) leading to a file of 0.5 Mpt. This type of data acquisition was repeated
20 times, first at fH, then at fL, to extract averaged quantities, due to the quasi-stationarity
feature of the signal.

Figure 5 displays the log-log power spectra of filtered signals of current recorded at fL and
fH. At first sight, this power spectrum of current fluctuations seems to be a power law of
the frequency. However, when one examines the spectra carefully, a small curvature appears
in fig. 5. Letting τ designate a time lag or a time scale, we define the i-th–order structure
function Si(τ) = 〈[I(t + τ)− I(t)]i〉, where 〈·〉 represents an average over time t. We focus on
the structure function of order four as a function of fHτ , as shown in fig. 6. In this log-log plot,
high sampling frequency data present a power law dependence on fHτ . Deviations from this
are observed at large times (e.g., log2 fHτ � 16), that is at times τ greater than a critical time
scale τc � 3 s. This critical time τc can be understood as a typical effective diffusive time of a
thermal pertubation within our typical size sample, L � 2.5–5 mm, estimates corresponding to
τc � 1–10 s. This order-of-magnitude agreement supports the hypothesis of a thermally driven
phenomenon. With similar reasoning the heat diffusion in a single grain provides the short-
time limit, τinf � 0.1 ms, which is on the order of the inverse of our 10 kHz filtered frequency.
For high-frequency data, S4(τ) ∝ τα4 , with α4 � 0.57. The same data give S2(τ) ∝ τα2 ,
with α2 � 0.31. These power law behaviors are consistent with scale invariance over more
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Fig. 5 – Average power spectra of current fluctuations sampled at low (�) and high (�) frequencies.

Fig. 6 – The fourth moment of current differences, S4(τ), vs. the nondimensional time scale, fHτ .
Same symbols as in fig. 5.

than 3 decades in time. Intermittency, corresponding to α4 < 2α2, appears more clearly from
the direct examination of probability density functions, and correlations, in the next sections.
Here, α4 and 2α2 differ only by one standard error.

Probability density functions. – We concentrate now on the high-frequency part of the
signal, which presents nice scale invariance properties for τinf < τ < τc. Figure 7 shows,
for three different τ , the probability density functions (PDF) of current differences, δIτ (t) =
I(t + τ) − I(t), normalized to their respective root mean square, σ. The exact shape of these
PDF is rather sensitive to the statistics (see PDF tails in fig. 7), and would have led to
smoother curves with a greater quantities of data. However, two remarks can be made in the
light of what is known for velocity signals in turbulence [6]:

– The PDF shape changes with the time scale τ —this is a direct signature of intermittency,
as S4 cannot be proportional to S2

2 and thus α4 �= 2α2.

– Current difference PDF are symmetric —time reversal, which a priori should not be
invoked here, is the only symmetry able to lead to this behavior. Turbulent velocity
differences have a skewed PDF, S3 being proportional to the dissipated power [6]. How-
ever, even in turbulence, global quantities, like the total dissipated power (equivalent to
what we measure here), have rather symmetric time difference PDF [10].

Multiplicative cascade. – A signal with scale invariance is called self-similar since its
statistical properties can be described by the same laws at various scales. If the shape of
time difference PDF changes across scales with a self-similar law of deformation, this signal is
generally described either in terms of a “multifractal set of singularities”, or a “multiplicative
cascade” across scales, both approaches being considered equivalent [11]. In the “multiplicative
cascade”, a given scale (e.g., average gradients on a time interval) conditions smaller scales
(e.g., smaller intervals within this one) in a random Markovian way. It induces not only
intermittency (evolution of distribution shape across scales), but also long-range correlations
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Fig. 7 – Probability density function of the current differences for various time scales: τ = 0.15, 2.5
and 40ms (from top to bottom). Factor-of-2 shifts have been applied for clarity.

Fig. 8 – Comparison between the variance of the logarithms of current differences (C2) and their
correlation (L2

θ with fHθ = 22). Both are close and depend logarithmically on the time separation
τ , in agreement with multiplicative cascade models (see text). The solid line of the slope −µ ln 2 =
−1.4 · 10−3 is shown.

between short intervals [11, 12]. Therefore, if our current signal can be described by a self-
similar multiplicative cascade, then the mean-squared deviation of ln |δIτ | should linearly
depend on ln τ , such that

C2(τ) =
〈
[ln |δIτ | − 〈ln |δIτ |〉]2

〉
= −µ ln(τ/T ) + c,

where T is some large-time scale. Also, as shown by [12], the log-correlation between two
short intervals (of size θ) should depend linearly on ln τ ,

L2
θ(τ) =

〈
[ln |δIθ(t + τ)| ln |δIθ(t)| − 〈ln |δIθ|〉2]

〉

= −µ ln(τ/T ) + c′,

with the same coefficient µ, c and c′ being two constants.
Figure 8 shows the two experimental quantities C2(τ) and L2

θ(τ), shifted by appropriate
constants. The agreement between them and the linearity in ln τ strongly supports a multi-
plicative cascade description. As in the case of turbulence, large-scale events condition those
at a smaller scale. Any physical interpretation of the phenomenon discussed in this paper
must address these points.

Interpretation. – We can now take stock of all of our results and propose a physical
picture of what is taking place. As shown above, the driving parameter is the total dissipated
power. This suggests either local heating, able to change the electrical properties of contacts
(several hundred degrees are needed in this case), or thermal expansion, which locally creates
or destroys contacts. The power involved is of the order of 10−4 W. When divided by the
number of contacts, it remains so small that only electrons can undergo significant heating.
Such “hot” electron effects have been reported in systems having some analogies with this
one [13]. However, the influence of the large scales on the small ones, as shown by the observed
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logarithmic correlations, cannot be taken into account by such a local process. Therefore,
thermal expansion seems to be the mechanism driving the instability and the associated noise.

In this spirit, we attempt to show the correspondence between the formal multiplicative
cascade and electrical conduction in our powder. Since the contact distribution in a powder
is very inhomogeneous, one would also expect an inhomogeneous current distribution. Thus
Joule heating should create inhomogeneous increasing stresses in the powder. Very small
thermal expansion can result in dramatic changes in the current paths, thus in the distribution
of this Joule heating, and so on. Such events can occur at any scale, ranging from the size of the
sample and the grain size. The large-scale events should influence the small ones, as suggested
by our study. A full confirmation of this idea requires longer carefully controlled studies.

Conclusion. – The results of this work are twofold. First, we show that the sponta-
neous decrease in resistance of a copper powder sample above a voltage threshold is due to a
thermal instability, and not to electrical breakdown, as had previously been proposed. This
conclusion results from the observation that dissipated power drives the phenomenon, in spite
of the probable smallness of the induced temperature inhomogeneities. Second, we propose
a procedure yielding an interesting self-similar process in this non-equilibrium system. Our
system displays both intermittency and multiplicative cascade-like two-point correlations, in
ways that are interesting to compare and contrast with the archetypical case of turbulence.
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