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Observation of Sommerfeld Precursors on a Fluid Surface
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We report the observation of two types of Sommerfeld precursors (or forerunners) on the surface of a
layer of mercury. When the fluid depth increases, we observe a transition between these two precursor
surface waves in good agreement with the predictions of asymptotic analysis. At depths thin enough
compared to the capillary length, high frequency precursors propagate ahead of the ‘‘main signal’’ and
their period and amplitude, measured at a fixed point, increase in time. For larger depths, low frequency
‘‘precursors’’ follow the main signal with a decreasing period and amplitude. These behaviors are
understood in the framework of the analysis first introduced for linear transient electromagnetic waves
in a dielectric medium by Sommerfeld [Ann. Phys. (Leipzig) 44, 177 (1914)] and Brillouin [Ann. Phys.
(Leipzig) 44, 203 (1914)].
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forerunners are found in good agreement with the pre-
dictions of asymptotic analysis based on the ‘‘stationary

higher, but the inductive technique provides a direct
measurement of the surface displacement and does not
One feature of linear wave propagation in a dispersive
medium is the existence of precursors (or forerunners).
This terminology traces back to the fact that they gen-
erally arrive sooner than the ‘‘main’’signal. This transient
response is due to the propagation of the fastest high
frequency components of the initial spectrum. Although
predicted as early as 1914 by Sommerfeld and Brillouin
[1], experimental observations of forerunners are very
few and only qualitative, mainly dealing with electro-
magnetic (e.m.) waves in a dielectric medium in the
microwave [2] or optical [3] frequency range. Such
Sommerfeld forerunners have also been predicted in vari-
ous dispersive media such as biological [4] or viscoelastic
[5] ones, and have been recently shown to be linked to the
nonviolation of Einstein causality during superluminal
light pulse propagation in the region of anomalous dis-
persion [6]. However, for waves in fluids, the observation
of forerunners is still lacking despite some effort per-
formed with acoustic waves in superfluid 3He [7] or
with pressure waves in fluid-filled collapsible tubes [8].
We report here the first observation of two types of
Sommerfeld forerunners, which can or cannot coexist,
on a thin layer of mercury. The nonmonotonous disper-
sion relation of waves on the surface of a fluid lead to a
rich variety of such transient wave phenomena. In the
shortwavelength limit, when capillary effects are domi-
nant (the analogue to ‘‘anomalous’’ dispersion [9] for e.m.
waves), only the fast high frequency components of the
initial excitation are observed arriving before the main
pulse, the so-called Sommerfeld precursor for e.m. waves.
This transient is characterized by small amplitude and
rapid oscillations (with respect to the main signal). For
longer wavelengths, when gravity is no longer negligible
(‘‘normal’’ dispersion), a slower low frequency precursor
is also observed (no analogue exists for e.m. waves). The
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phase method.’’ We note that this study also allows us to
connect the forerunner concept of electromagnetic waves
to the well-known hydrodynamic transient surface wave
phenomena [10], and their applications to submarine
eruptions [11].

The experimental setup consists of a 1.5 m long hori-
zontal Plexiglas channel, 7 cm wide, filled with mercury
up to a height, h, where: 2 & h & 14 mm. h is measured
to a precision of �0:02 mm by means of a depth gauge
using a micrometric linear positioner. The properties of
the fluid are density, � � 13:5 � 103 kg=m3, dynamic vis-
cosity, � � 1:5 � 10�3 Ns=m2 [12], and surface tension
� � 0:4 N=m [13]. Surface waves are generated by an
impulsional excitation provided by the horizontal motion
of a rectangular plunging Teflon wave maker driven by an
electromagnetic vibration exciter. They are generated
10 mm inward from one end of the channel and the local
displacement of the fluid in response to this excitation is
measured simultaneously by a nonintrusive inductive
sensor and by an optical technique [13]. The inductive
sensors, 3 mm in diameter, are suspended perpendicularly
to the fluid surface at rest. The linear sensing range of the
sensors allows distance measurements from the sensor
head to the fluid surface up to 2.5 mm with a 5 V/mm
sensitivity. An optical determination of the local slope of
the surface is also performed. Using a position sensitive
detector, we have recorded the deflection of a laser beam
by the surface wave; the computation of the surface
elevation from the optical signal is in excellent agreement
with the direct inductive measurement of the shape of the
wave [see insets of Figs. 3(b) and 3(c)]. Both sensors are
mounted on a horizontal linear positioner at a distance x
from the wave maker, 0< x< 1:2 m. The optical and
inductive methods are complementary as the spatial reso-
lution and the sensitivity of the optical technique are
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require signal processing. Both techniques are not limited
by their response time in the frequency range of surface
waves. The choice of mercury has been motivated by the
possible use of the inductive measurement technique and
also because of its low kinematic viscosity which is an
order of magnitude smaller than that of water, thus
strongly reducing wave dissipation. Photographs of the
free surface of mercury are made by means of a camera
mounted above the center of the channel. A typical pat-
tern is displayed in Fig. 1 showing the high frequency
Sommerfeld precursors, SH, ahead of the main signal
followed by low frequency ones SL.

To understand this behavior, one can introduce the dis-
persion relation for surface waves, neglecting dissipation,
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with ! the wave pulsation, k the wave number, and g the
acceleration of gravity. From Eq. (1), we can define the
capillary length, lc �
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, and the Bond number,
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2. In the long wave length approximation or

‘‘shallow water’’ limit (kh	 1), Eq. (1) may be ex-
panded, and the group velocity becomes,
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with a2 � �13 � Bo�, and a4 � �19=90� Bo=2� Bo2=3�.
Equation (2) shows that a minimum of the group velocity
exists only when 0 
 Bo < 1=3, Bo � 1=3 corresponding
to a critical depth, hc. Figure 2 shows a qualitative sketch
of the wave group velocity as a function of k, for Bo above
and below 1=3. As explained hereafter, the existence of
this minimum has a strong influence on the dispersion of
an initial disturbance.

Generally speaking, if we look at the propagation
along Ox of an initial perturbation �0�x� in a dispersive
medium, ��x; t� (e.g., the free-surface deformation) is
formally given by the Fourier Integral ��x; t� �R
�1
�1 �̂�o�k�e

i�tdk, where � � kx=t�!�k�, with !�k� so-
lution of Eq. (1) and where �̂�o�k� is the Fourier transform
of �o�x� [14]. The method of the stationary phase [14,15]
SH SL

FIG. 1. Photograph of typical wave precursors at the surface
of mercury (seen from above). Pulse fronts are located on the
left. Fluid depth is h � 3:7 mm (Bo � 0:22), and the full
vertical scale corresponds to the 7 cm canal width.
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is particulary useful for the asymptotic behavior of these
integrals: for both large x and t (x� L ’ 2 cm and t�
T ’ 100 ms, the size and the duration of the initial dis-
turbance), with x=t held fixed (for an observer traveling at
this given speed), the main contribution to the integral is
from the neighborhood of stationary points ks such that

d�
dk

�������ks

� 0; i:e:;
d!
dk

�������ks� vg�ks� � x=t; (3)

the other components oscillate too rapidly in order to
contribute. One can apply graphically this stationary
phase method to the dispersion relation of Eq. (1), as
shown in Fig. 2. At a fixed point of observation x, the
main contribution to the surface deformation ��x; t� at any
time t results from the points on the group velocity curve
equal to x=t (see Fig. 2). For h > hc (Bo < 1=3), three
types of precursor are predicted: the fastest signal is the
high frequency Sommerfeld precursor, SH (from the
capillary branch), ahead of the main signal (arriving at
t0 with velocity x=t0 �

������
gh

p
); then, the low frequency

Sommerfeld precursor, SL (from the gravity branch), and
finally, at tB, the so-called Brillouin precursor [minimum
of the vg�k� curve, i.e., �00 � 0] as defined in the frame-
work of e.m. waves. For h < hc (Bo > 1=3), only the fast
SH solution exists (see Fig. 2). Figure 2 also shows that SH
has an increasing period as time goes on (contrary to SL),
whereas the Brillouin precursor has a constant period.
This rich variety of such transient waves comes from
the nonmonotonous dispersion relation of Eq. (1).
FIG. 2. Group velocity vs wave number for gravitocapillary
waves. At fixed x and t, the stationary phase method
[vg�ks� � x=t] leads to solutions with wave number ks. For
h > hc (Bo< 1=3): at small t, high frequency Sommerfeld
precursors, SH, are predicted ahead of the ‘‘main signal’’ with a
period which increases with time (ksH decreases). When t is
large enough (x=t <

������
gh

p
) SH switches to a low frequency

Sommerfeld precursor, SL, with a decreasing period (ksL in-
creases). A Brillouin precursor corresponds to a constant pe-
riod (kmin). The typical signal amplitude vs time is sketched on
the right. The case h < hc (Bo > 1=3), where only the fast SH
solution exists, is displayed in the inset.
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FIG. 3. Free-surface profiles of Sommerfeld precursors as a
function of dimensionless time (t0 � x=

������
gh

p
): (a) type SH for

h � 2:12 mm at x � 0:2 m; (b) type SH and SL for h � 7:2 mm
at x � 0:2 m; and (c) type SL for h � 7:2 mm, x � 0:6 m.
Inductive (c) or optical (a),(b) measurements. Pulse fronts are
located on the left. The insets show a comparison between both
techniques.
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Finally, returning to the general case, one can have access
to the disturbance profile ��x; t� which is given by the
above Fourier Integral. A Taylor series expansion of ��k�
in the neighborhood of ks leads to [14,15]

��x; t� ’
X
ks

�̂�0�ks�

��������������������������
2 

tjdvg=dkjks j

s
cos���ks�t�  =4�: (4)

Thus, the shape of the precursor notably depends on the
Fourier transform of the initial disturbance, �̂�o�ks�,
whereas the temporal evolution of the precursor period
depends only on the dispersion relation through ��ks�.
Therefore, the measured period can be easily compared
with the theoretical prediction, whereas the prediction of
the experimental profile requires the precise knowledge of
the initial conditions. Note that, at the minimum of the
group velocity where the Brillouin precursor is predicted,
Eq. (4) is no longer valid, and the correct asymptotic
behavior is found by keeping higher orders in the Taylor
series for ��k� [14,15].

We have performed an experimental study of precursor
waves for a fluid layer height in the range 2:12 
 h 

13:75 mm; thus 0:02 
 Bo 
 0:67. For mercury (lc �
1:74 mm), the critical caseBo � 1=3 corresponds to hc �
3 mm. A horizontal impulsion is imposed to initiate the
surface wave. In response to this initial disturbance, the
free-surface profile is recorded at a fixed distance from
the wave generator, and displayed in Fig. 3(a) for h < hc
(Bo > 1=3), and in Fig. 3(b) for h > hc (Bo < 1=3). Fig-
ure 3(a) shows the high frequency Sommerfeld precursor
which propagates at least 2 times faster than the main
signal (t=t0 * 0:5), with an increasing period (defined as
the time between two successive extrema) as graphically
predicted in the inset of Fig. 2. For a deep enough fluid
(Bo < 1=3) this fast precursor coexists, as shown in
Fig. 3(b), with low frequency Sommerfeld precursor
which appears behind the main signal, with a decreasing
period as graphically predicted in Fig. 2. Moreover, the
amplitude of the fast precursor, SH, is much smaller than
SL [see vertical scales in Fig. 3(a) and 3(b)]. This can be
understood by assuming an initial normalized hump of
section s, �0�x� � s2=�s2 � x2�, whose Fourier transform
is �̂�0�k� � e�ks. e�ks being maximum for k � 0, the
precursor SL with the larger spatial scale has the larger
amplitude. For the same depth of fluid as in Fig. 3(b),
Fig. 3(c) shows the profile of waves after 0.6 m of propa-
gation. The fastest precursor has disappeared, and only
the contribution due to the gravity branch, i.e., SL, is
observed. This is linked to the arguments given above,
and also to viscous dissipation. The insets of Figs. 3(b) and
3(c) show good agreement between optical and inductive
measurements, except near the front wave where the
small and fast SH forerunners are not resolved by the
inductive method [see inset of Fig. 3(b)].

Finally, the period of each forerunner is measured all
along its propagation (0:2 
 x 
 0:8 m) by recording the
064502-3
time between successive maxima of the amplitude. The
periods are displayed in Fig. 4 as a function of t0=t (t0 �
x=

������
gh

p
) for various fluid depths h corresponding to

0:02 
 Bo 
 0:67. For each height corresponding to
Bo � 1=3, the SH precursor period increases as the waves
propagate. For 0 
 Bo < 1=3, both SH and SL precursors
are observed, and the period of SL decreases with time.
064502-3



FIG. 4. Period of Sommerfeld precursors SH and SL as a
function of �x=t�=

������
gh

p
for various heights h � 2:12 for de-

pression (5) or elevation (4) pulses, 3.4 (�), 5.6 (�),
7.2 (�), 10.4 (�), 13.75 (*) mm with 0:2 
 x 
 0:8 m. For
each value of h, the theoretical Sommerfeld (solid line) and
Brillouin (dashed line) precursor periods are extracted from
Eq. (1) (see text for details).
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We can map Fig. 4 on Fig. 2 with a 90o rotation and
�x=t�=

������
gh

p
can then roughly be viewed as the group

velocity curve of the stationary mode ks as a function
of 1=ks. Therefore, Fig. 4 shows that SH precursor veloci-
ties are supersonic [vg�ksH � � x=t >

������
gh

p
], whereas SL

precursor is subsonic [vg�ksL�<
������
gh

p
]. For each h, all the

data recorded at different x, lie on a single curve pre-
dicted by Eq. (1), which is the parametric plot of 2 =!�k�
as a function of vg�k� � d!=dk for various values of k.
Note that a Brillouin forerunner is never observed in our
experiments, and SH disappear for large h (the absence of
* and � marks on Fig. 4). Note also the absence of SH for
�x=t�=

������
gh

p
< 1. Although they are predicted from Fig. 2,

they are much smaller than SL, and thus cannot be ob-
served when they travel at the same velocity.

In conclusion, we have reported the observation of
Sommerfeld forerunners in the shallow water limit of
surface waves and found that their period is in good
agreement with theoretical predictions. An extension of
this work, much easier to study in the context of hydro-
dynamics than in the one of electromagnetism, is to
understand how the dynamics of precursors are changed
when the main signal amplitude is increased such that
nonlinear effects become important.
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‘‘Phénomènes hors équilibre’’ of CNRS.
064502-4
*Corresponding author.
Email address: Eric.Falcon@ens-lyon.fr
Electronic address: http://www.ens-lyon.fr/~efalcon/

[1] L. Brillouin, Wave Propagation And Group Velocity
(Academic Press, Inc., New York, 1960), notably includ-
ing the English translation of A. Sommerfeld, Ann. Phys.
(Leipzig) 44, 177 (1914); L. Brillouin, ibid. 44, 203
(1914).
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