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ABSTRACT
Steady motion of long, non-wetting droplets carried by a surrounding liquid in a circular capillary has been the subject of many experimental,
theoretical, and numerical simulation studies. Theoretical approaches, even after the application of lubrication approximation in hydrody-
namic equations and after neglecting inertia and gravity effects, still lead to a numerical procedure to determine the speed of a droplet or the
thickness of the film between a droplet and the wall of the capillary. Here, we develop the lubrication approximation further to introduce an
analytical formula for the speed of droplets as a function of the capillary number and of the ratio of the viscosity coefficients of the two immis-
cible phases. We achieve this by identification of a scaling function within the lubrication approximation. The equations that we propose here
corroborate well with the results of numerical simulations of droplet flow in circular capillaries.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5087722

INTRODUCTION

We consider the stationary motion of a long, non-wetting vis-
cous droplet in a tube of circular cross section. The practical moti-
vation for the interest in the speed of droplets is fueled by the
dynamic development and use of the techniques of droplet microflu-
idics. Droplets are used in biological experiments to cultivate micro-
organisms1 and in chemical experiments as reactors.2 The ability to
link the mobility (or speed) of droplets with the material parameters
of their content could allow the development of label free methods
to infer properties of droplets from their speeds, as, for example, to
judge the density of a bacterial culture inside the droplet from the
measurement of its speed.3

In this article, we describe an intermediate step to achieve this
goal by introducing an algebraic formula for the thickness of the film
between a droplet and a capillary and for the speed of a long, non-
wetting droplet in a channel of circular cross section.

Fairbrother and Stubbs were one of the first who raised the
question whether the speed of the flow of a gas bubble moving in
a tube filled with a liquid may serve as a proxy for the speed of the
liquid itself.4 The speed of a long, non-wetting droplet which flows
in a steady motion in a tube also differs from the average speed of the
surrounding (continuous) liquid that wets the walls of the tubing.5

Between the droplet and the wall, there is a thin wetting film of the

continuous liquid. As a result, the cross section swept by the droplet
is smaller than the lumen of the tube (Fig. 1). We study the mobility
β of the droplet defined by the ratio of the speed of the droplet U to
the average speed of the continuous phase

β =
U
V

. (1)

Fairbrother and Stubbs observed that the length of a bubble l does
not affect its mobility, when the length is larger than three tube
radii, l > 3r. A theoretical expression of the mobility of a bubble has
been introduced by Bretherton.6 To find the mobility of a bubble,
Bretherton used Stokes equations with surface tension on the liquid’s
interface. In the region where the profile of the interface is almost
parallel to the channel’s wall, Bretherton neglected perpendicular
components of the velocity (lubrication approximation). He also
considered no-slip boundary conditions on both the interfaces—
between the droplet and the continuous liquid and between the con-
tinuous phase and the walls of the channel. This leads to an ordinary
differential equation for the profile of the film—i.e., the thickness of
the film along the length of the droplet. Bretherton also used the fact
that at small values of the capillary number, the front of the bub-
ble has a hemi-spherical shape. By matching the curvature of the
profile of the film with the curvature of a semi-spherical cap in a
small-slope region, he was able to calculate the film thickness, � ≡ b/r,
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FIG. 1. Schematic sketch of the droplet moving in a circular tube.

as a function of the capillary number

� = 0.643(3Ca)
2
3 . (2)

Bretherton also derived the formula for the mobility which we
represent by

β = 1 + 1.29(3Ca)
2
3 . (3)

The film thickness and the mobility of a bubble are determined solely
by the capillary number Ca = (Uµc)/σ, which contains the viscosity
of the continuous phase, µc, and the surface tension, σ. Bretherton
obtained the above formula for a droplet with zero viscosity, µd = 0,
in a tube in the limit of small capillary numbers by neglecting the
effects of inertia in hydrodynamic equations, neglecting also gravity
effects, and assuming uniform distribution of the surface tension.

Bretherton’s approach has later been extended to the case of
a viscous droplet. Finite viscosity of the liquid inside the droplet
requires taking into account viscous forces exerted by the droplet
phase on the surrounding continuous liquid. The procedure can be
found, e.g., in the papers of Schwartz et al.7 and Teletzke et al.,8
and it is also described in detail in the recent paper of Balestra
et al.9 Within the lubrication approximation, Bretherton neglected
the components of the velocity and pressure field in Stokes equations
which are perpendicular to the tube axis. He used this assumption in
the layer between the droplet and the wall of the channel. In the case
of a viscous droplet, lubrication approximation is extended for the
velocity field inside the droplet.7–9 For a viscous droplet, formula (2)
generalizes to the following equation:

� = (3Ca)
2
3 P(λ�) (4)

[cf. Eq. (3.18) in Ref. 7], with function P(m) which Schwartz et al.7
determined numerically. For a given viscosity ratio λ and the capil-
lary number Ca, one must solve numerically Eq. (4) to calculate the
film thickness, ϵ. Knowing the film thickness, one can determine the
mobility of a long viscous droplet from the formula of Goldsmith
and Mason5

β =

1 + (2� − �2
)(−1 + 2λ)

1 + (4� − 6�2 + 4�3
− �4
)(−1 + λ)

. (5)

According to our knowledge, the above procedure is the state of the
art, i.e., the simplest method to calculate the film thickness around a
long non-wetting droplet and its speeds in the limit of small capillary
numbers within the lubrication approximation. Equation (4) cannot

be solved analytically, as it requires iterative numerical approxima-
tions. Here, we show that further analysis within the lubrication
approximation for viscous droplets is possible.

First, we identify a scaling equation for the film thickness. Sec-
ond, we derive algebraic formulas to determine the mobility of a
long, non-wetting droplet in terms of the capillary number and the
contrast of viscosity coefficients between the droplet and continuous
liquids.

RESULTS

The starting point for the derivation is formula (4). It has three
independent parameters �, λ, and Ca. When used in such a form, it
must be solved numerically for each pair of values of Ca and λ. Here,
we show that the notation can be simplified to avoid the need for
numerical solutions. We multiply both sides of Eq. (4) by the viscos-
ity ratio λ, obtaining λ� = λ(3Ca)

2
3 P(λ�). The resulting equation

can be expressed in terms of only two independent parameters

m ≡ λ� (6)

and
g ≡ λ(3Ca)

2
3 . (7)

This substitution simplifies formula (4) to the following equation
m = gP(m). Solution of this equation defines m as a function of g,
which we represent in the following form:

m = gM(g). (8)

We determine M(g) numerically and introduce the following fitting
formula for our numerical solution:

M(g) ≈ Mfit(g) = b0 +
g + b4g2 + (b022/3

− b0)g3

b1 + b2g + b3g2 + g3 , (9)

b0 = 0.643, b1 = 4.109, b2 = 8.906, b3 = 10.144, b4 = 3.575.

Figure 2 shows the function Mfit(g). The relative error of the fit
in comparison with the numerically exact result, ∣M(g) −Mfit(g)∣/
M(g), is less than 4 × 10−3 for the whole range of g ∈ (0, ∞), as
shown in Fig. 3.

Combination of Eqs. (6)–(8) leads to the following expression:

� = (3Ca)
2
3 M(λ(3Ca)

2
3 ), (10)

and with the fit given by formula (9), it determines the film thick-
ness. Along with formula (5), the above equation also determines
the mobility of droplets. For the case of inviscid droplets, λ = 0, we
recover Bretherton’s results for the film thickness and mobility given
by Eqs. (2) and (3), respectively.

Importantly, the film thickness in Eq. (10) is represented by
a single parameter function, M(g). It follows that the combination
of the film thickness and capillary number �/(3Ca)

2
3 collapses into

a single curve, �/(3Ca)
2
3 = M(λ(3Ca)

2
3 ) described by the M(g)

function. For this reason, we call M(g) the scaling function.
Algebraic formulas (5), (9), and (10) for the film thickness and

mobility of droplets contain the capillary number, Ca = Uµc/σ, based
on the speed of droplets. It is also interesting to know the form of
those formulas in terms of capillary numbers based on the speed
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FIG. 2. Scaling function Mfit (g) from Eq. (9).

of the continuous phase, Cac = Vµc/σ. Both capillary numbers are
related by the mobility, Ca = Cacβ. Using this relation in Eqs. (5),
(9), and (10), one can obtain expressions for the film thickness and
mobility in terms of Cac. To the leading order for small capillary
numbers, those expressions are the same as Eqs. (5), (9), and (10),
but with Cac instead of Ca. The difference between using capillary
numbers based on the speed of droplets and the speed of the contin-
uous phase in Eqs. (5), (9), and (10) is of the order of �2 for the film
thickness and the mobility.

Figure 4 compares the film thickness obtained by our proce-
dure with the results of numerical simulations. Among different
available results,10–15 we use the results by Balestra et al.9 who per-
formed numerical simulations for a wide range of capillary numbers
including the careful study of capillary numbers around 10−3. In
the limit of small capillary numbers, we expect a perfect agreement

FIG. 3. Difference between the scaling function determined numerically using the
method described by Schwartz et al.7 denoted by Mnum(g) and its fit Mfit (g) from
Eq. (9).

FIG. 4. Film thickness between the wall and the droplet as a function of the capillary
number Ca for different viscosity ratios λ = 0, 1, and 100. The lines represent
lubrication approximation given by Eqs. (9) and (10). The squares represent the
numerical simulations from Balestra et al.9

between the numerical and analytical results because the approxi-
mations used to derive our formulas are expected to work in this
regime. Consequently, for higher capillary numbers, the analytical
results should start deviating from numerical results. This picture is
confirmed by the comparison presented in Fig. 4. The comparison
for viscosity ratios λ = 0, 1, 100 shows that the lubrication approxi-
mation described by Eqs. (9) and (10) follows numerical simulations.
In both cases, the film thickness increases with the capillary number
and decreases with the viscosity ratio. The difference between the
lubrication approximation and the numerical simulations increases
with the capillary number, but it would be possible to recognize the

FIG. 5. Droplet’s mobility as a function of the capillary number Ca for different
viscosity ratios λ = 0, 1, and 100. The lines represent lubrication approximation
given by Eqs. (5), (9), and (10). The squares represent the numerical simulations
from Balestra et al.9
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difference between droplets with λ = 0 and λ = 100 for capillary
numbers up to Ca ≈ 10−2. For example, in case of water droplets in
hexadecane, this value corresponds to the speed 0.8 m/s. We found
similar agreement between the numerical simulations and the lubri-
cation approximation for the case of speeds of viscous droplets. The
comparison is presented in Fig. 5. Up to Ca ≈ 10−2, the difference
between numerical and our theoretical values, ∣β − βsim∣/(βsim − 1),
is less than 10%.

DISCUSSION

The key point of this article is identification of the scaling func-
tion for the film thickness in the lubrication approximation for long,
non-wetting droplets. This is expressed by passing from Eq. (4) to
expression (10), and it allows the introduction of algebraic formu-
las (5), (9), and (10) for the film thickness and mobility of droplets.
In perspective, it can be used to infer properties of a droplet from
its speed in microfluidic experiments, such as recent very precise
measurements of the film thickness16 and speed of droplets for cap-
illary numbers below 10−3.3,17 The speed of the droplet requires
measuring distance and time, which can be done very precisely. For
example, Sklodowska et al.3 measured time of passage between two
sensors with the relative accuracy about 10−4 for capillary number
Ca ≈ 10−4. Answering the question how precisely the viscosity (or
surface tension) can be inferred from the lubrication approximation
with our algebraic formulas demands further study. There is also
an open question whether the above concept of scaling function
can be applied in the case of channels of different cross sections,
in approaches going beyond lubrication approximations such as
Hodges et al.,18 in extensions for higher capillary numbers,19–21 or
in determination of pressure drop induced by the droplet.9,22
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