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Finite-system size effects in gravity-capillary wave turbulence
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We experimentally investigate the effects of finite-system size on the dynamics of
weakly nonlinear random gravity-capillary surface waves. Experiments are conducted in
rectangular tanks with varying aspect ratios, in which the fluid surface is perturbed locally
and erratically by small, partially submerged magnets. Driven by an oscillating vertical
electromagnetic field, these magnets generate a statistically homogeneous and isotropic
random wave field. This setup enables us to probe finite-size effects without the domi-
nant influence of global forcing present in horizontally oscillated tanks. Spatiotemporal
measurements of the wave field reveal multiple branches in the wave-energy spectrum
along the unconfined direction, corresponding to sloshing modes in the confined direction.
We show that the spectral properties of these modes can be tuned by varying either the
wave steepness or the confinement. Signatures of discrete wave turbulence in the confined
direction and mesoscopic continuous wave turbulence in the unconfined direction are ob-
served. As the confinement is gradually relaxed, we further demonstrate a smooth transition
from discrete to continuous wave turbulence, consistent with the nonlinear-to-discreteness
timescale ratio. Using high-order correlation analysis, we also show that finite-size effects
alter wave dynamics by depleting two-dimensional three-wave resonant interactions along
the confined direction.

DOI: 10.1103/2w88-kh5j

I. INTRODUCTION

Weak-turbulence theory describes dynamical and statistical properties of random weakly non-
linear dispersive waves in various systems [1–3]. When wave energy cascades across scales due
to resonant nonlinear-wave interactions, the out-of-equilibrium stationary solution of the kinetic
equation yields a power-law dependence of the wave-energy spectrum on the scale (Kolmogorov-
Zakharov spectrum). Initiated in the 1960s to model the ocean wave spectrum [4], this theory has
since been applied in almost all systems involving waves, such as ocean surface waves, plasma
waves, hydroelastic waves, elastic waves on a plate, internal or inertial waves on rotating stratified
fluids, and optical waves [1–3].

Weak-turbulence theory requires many assumptions, as an infinite spatial domain or weakly
nonlinear waves. The first one is usually not achieved numerically or experimentally. For an
infinitely large system (L → ∞), the Fourier modes k are continuous, and both exact resonant and
quasiresonant wave interactions are possible. For finite L, exact wave interactions are rare since
k modes are discrete and few in number. In this case, quasiresonant wave interactions become
dominant for strong enough nonlinearity (but still weak), and the energy cascade is still continuous
in the Fourier space, as shown numerically [5,6]. However, when the system size L is too small,
Fourier modes become highly discrete and the spacing between adjacent modes (�k = π/L) can
exceed the nonlinear spectral broadening. In this regime, known as discrete wave turbulence,
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only exact resonances contribute significantly to the dynamics, as quasiresonant interactions are
weakened by frequency gaps [7,8]. Exact resonant interactions are then generally strongly depleted,
leading to nonlocal energy transfers [9–11]. The regime in which both continuous and discrete wave
turbulence can coexist [12,13] is termed “mesoscopic” wave turbulence [7]. For instance, a bursty
transfer of energy across scales, reminiscent of sandpilelike avalanches, has been proposed [14]. In
the limit of strong discreteness, the system no longer supports a cascade and is thus referred to as
“frozen turbulence” [5,15]. Taking these finite-system size effects into account is also an important
challenge in pure mathematics [16,17].

Although wave turbulence has been experimentally investigated in various systems [18–25],
the influence of finite-system size effects has received little attention, with most experimental
studies focusing on hydrodynamic surface wave turbulence [26–29]. The role of the shape of the
basin has been addressed [26] as well as its boundary condition (e.g., absorbing with a beach or
reflecting with a wall) [27]. Finite-system size effects have been explored in a rectangular tank with
a movable partition along one direction, showing discrete modes in the confined direction and a
continuous spectrum in the perpendicular direction [28]. In cylindrical containers, as a consequence
of conservation laws, gravity-wave turbulence can sustain three-wave resonant interactions due to
spatial confinement (instead of the usual four-wave ones) [30,31]. These modified interactions have
been evidenced in a gravity-wave turbulence experiment in a high-gravity environment [29].

It is therefore essential to quantify how finite-system size effects shape wave turbulence proper-
ties, particularly in experiments where they strongly impact the dynamics. To investigate finite-size
effects in gravity-capillary wave turbulence, we use an experimental setup in which the water surface
is perturbed locally and erratically by small magnets partially submerged in water. This type of
forcing generates waves with statistically homogeneous and isotropic properties, while minimizing
direct excitation of the container’s sloshing modes, unlike horizontal oscillations of the entire tank
[26,28,32], which strongly excite such modes and collinear wave interactions that mask additional
confinement effects [28]. Here, we show experimental signatures of finite-system size effects in
wave turbulence on the wave spectrum, wave interactions, and typical timescales.

II. THEORETICAL BACKGROUNDS

The linear dispersion relation of inviscid linear deep-water waves on the infinite surface of a fluid
reads [33]

ω2 = gk + γ

ρ
k3, (1)

where ω ≡ 2π f is the angular frequency, k is the wave vector (k ≡ 2π/λ = ||k||), g is the acceler-
ation due to gravity, and γ and ρ are the surface tension and density of the fluid, respectively. The
first term of the right-hand member of Eq. (1) corresponds to gravity waves, whereas the second
term corresponds to capillary waves. The transition between these two pure regimes occurs for
λgc = 2π

√
γ /(ρg) close to 1 cm for most fluids. Waves with wavelengths near this crossover are

gravity-capillary waves which follow the dispersion relationship ω(k) given by Eq. (1).
Weakly nonlinear waves can interact with one another to transfer energy between waves. This

nonlinear wave interaction process is the fundamental mechanism of weak-turbulence theory.
N nonlinear waves are in resonant interactions when they simultaneously satisfy the following
conditions on angular frequencies ωi and wave vector ki:

ω1 ± ω2 ± · · · ± ωN = 0 and k1 ± k2 ± · · · ± kN = 0, with N � 3, (2)

where each wave i = 1, 2, . . . , N follows the linear dispersion relation, ω(k), and ωi ≡ ω(||ki||).
N is the minimal number of waves for which Eq. (2) is satisfied, which thus depends on the
geometry and wave dispersion relationship. For instance, when waves propagate in two dimensions
(2D), for pure capillary waves or gravity-capillary waves, N = 3, and, for pure gravity waves,
N = 4 [1–3]. When the linear dispersion relation is broadened by weakly nonlinear or dissipative
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corrections, quasiresonant wave interactions are then possible, so that the two conditions of Eq. (2)
are approximately satisfied, such as

ω1 ± ω2 ± · · · ± ωN = 0 and k1 ± k2 ± · · · ± kN < ±δk, with N � 3. (3)

δk = ||δk|| corresponds to the nonlinear broadening of the dispersion relation. This mismatch can be
also written in δω using Eq. (1). Note that the different signs ± need to be the same in each instance
of Eq. (2) [or Eq. (3)]. Such resonant and quasiresonant interactions have been experimentally
evidenced, in particular, in gravity, gravity-capillary, and capillary wave systems (see review [23]).
Nonresonant wave interactions can also occur if the two conditions of Eq. (2) are fulfilled, but at
least one of the involved Fourier modes is not a free wave, i.e., it does not follow the linear dispersion
relation of Eq. (1), and is then called a bound wave. Such bound waves, propagating with the same
velocity as a carrier-free wave, lead to several additional branches in the dispersion relation in a
ω − k plot [34–36]. However, weak-turbulence theory needs resonant interactions (at the lowest
nonlinear order) to build wave turbulence [1,2]. In some systems, such as internal gravity waves,
nonlocal resonant interactions (i.e., involving modes with very different wave-vector lengths or
frequencies) are essential [37]. Finally, finite-size effects usually manifest through sloshing modes
in a bounded container [38], giving rise to additional sloshing branches in the ω − k spectrum, as
reported for surface waves in a fluid torus [39,40]. Distinct regimes are then expected depending on
the ratio of the nonlinear spectral broadening (δk) to the mode spacing (�k): frozen wave turbulence
when δk � �k, discrete wave turbulence and mesoscopic wave turbulence when δk ∼ �k, and
continuous wave turbulence when δk � �k.

III. EXPERIMENTAL SETUP

A schematic diagram of the experimental setup used to investigate finite-size effects in
gravity-capillary wave turbulence is presented in Fig. 1(a). The experiments are conducted in
a rectangular transparent Plexiglass container, with the length along the confined direction (x)
adjustable in the range Lx ∈ [5, 100] cm using a movable wall, while the unconfined direction is
fixed at Ly = 50 cm. The aspect ratio AR ≡ Ly/Lx is thus changed by one and a half decades
in the range AR ∈ [0.5, 10]. The distilled-water depth is maintained at h = 2 cm to ensure a
deep-water regime (λ < 2πh). Surface waves are generated by two prolate elliptical rare-earth
magnets encased in a PTFE (Polytetrafluoroethylene) coating (1 cm in diameter, 1.5 cm in
length, magnetic moment μm = 0.8 A m2 [41]) and actuated by an electromagnetic coil [42]
positioned beneath the container, directly below each magnet. Each magnet is suspended by
a flexible, nonextensible 1-mm-diameter cotton cord at the two diagonally opposite corners of
the container. The string lengths are adjusted so that the magnets remain submerged just below
the water surface. The erratic motion of each magnet is induced by an AC vertical magnetic
field B(t ) generated by each electromagnetic coil, driven with a random noise current in fre-
quency (2 ± 0.5 Hz) and amplitude (see movie MagneticRandomForcing.mp4 in the Supplemental
Material [43]). As the response of each suspended magnet to such a magnetic field is not the same,
this forcing generates waves with uncorrelated properties. Typically, the time-dependent torque
�(t ) = μM × B(t ) imposed by the coil on the magnet generates its erratic motion [44–46]. This
wave-forcing method has been developed by our group to drive, randomly in space and time, a
granular gas [44–46] or three-dimensional (3D) hydrodynamics turbulence [47–49]. The forcing
amplitude of the magnets is controlled by the current strength, I ∈ [3, 7] A , flowing into the coils
from a 2 kW power supply (QualitySource PA2000AB). Each magnet is housed inside a 3D-printed
cubic shell, 1 cm in size [see Fig. 1(b)]. The top face of the cube features a circular hole that allows
a cylindrical shell to rotate freely. A flexible, nonextensible string is attached to this cylindrical shell
to suspend the magnet assembly. The free rotation of the cylinder within the hole of the case ensures
that there is no torsion in the string when the coils energize the magnets. A crucial feature of this
forcing is that it does not directly excite the container’s sloshing modes, unlike when the entire
container is horizontally oscillated [26,28,32], thus potentially masking additional confinement
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FIG. 1. (a) Schematic diagram of the experimental setup used to generate waves in a confined environment.
Random waves are generated by two magnets partially submerged in the fluid and energized by electromagnetic
coils located beneath the container. A movable partition changes the container aspect ratio by reducing
the length in the x direction. A fringe pattern is projected on the surface of water and the spatiotemporal
deformations of the fringes are recorded using a high-speed camera. (b) Schematic diagram of the case used to
suspend a magnet.

effects when investigated [28]. Our electromagnetic forcing also leads to a homogeneous wave field
(see below) and mainly forces the free surface rather than the bulk of the fluid (as is the case when
flaps are used).

The fully space-and-time-resolved surface wave-height field, η(x, y, t ), is measured using Fourier
transform profilometry (FTP) [50,51]. A sinusoidally coded fringe pattern is projected by a full-
HD video projector (Epson EH-TW3200) on the water surface. When subjected to forcing, the
deformations of the fringes are recorded using a high-speed camera (Phantom v10), positioned
above the fluid, at 120 fps and a spatial resolution of 112 × 1800 pixels2 corresponding to a surface
of S = 1.7 × 27.4 cm2 (along the x and y directions) around the center of the container. For better
comparison, we kept the spatial resolutions in the x and y directions constant, regardless of the
confinement size. It is ensured that the magnets were not in the field of view of the camera. To
enhance water optical diffusivity and clearly project the fringe pattern onto the water surface, a
controlled amount of micrometric titanium dioxide (TiO2) particles is added to water [52]. Previous
studies have confirmed that TiO2 particles do not alter the water surface tension and viscosity [53],
ensuring that the measurements remain unaffected by the seeding particles. Due to the deformation
of the surface in the presence of waves, the phase information of the projected fringes changes
with respect to the fluid surface at rest (i.e., without forcing). This map of phase differences is
then used to calculate the wave-height field, η(x, y), at each time step. Then, a (2 + 1)D Fourier
transform provides the wave-height field in the Fourier space, η̂(kx, ky, ω), thus leading to the 3D
spectrum of the wave height Sη(kx, ky, ω) ≡ |η̂(kx, ky, ω)|2/(ST ), with T = 60 s the acquisition
time. The spatial periodicity of the projected fringe pattern is 2 mm. Note that for convenience, we
compute the spectrum of the vertical-velocity field of the waves, v(x, y, t ) = ∂η(x, y, t )/∂t , noted
Sv (kx, ky, ω). For all experiments, the wave steepness is weak enough to ensure that waves remain
weakly nonlinear. The wave steepness is indeed varied in a range in percent ε ∈ [0.3, 2]%, which
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FIG. 2. Spatial profile of the wave field gradient ||∇η(x, y, f ∗)||, near the center of the container, for
different confinements Lx (at fixed Ly = 50 cm) corresponding to different container aspect ratios AR ≡ Ly/Lx:
(a) Lx = 100 cm (unconfined case AR = 0.5), (b) Lx = 11 cm (AR = 4.54), (c) Lx = 8 cm (AR = 6.25), and
(d) Lx = 5 cm (AR = 10). Only one single Fourier mode ( f ∗ ≡ ω∗/2π = 10 Hz) is selected to estimate the
wave field gradient. Random forcing: 2 ± 0.5 Hz. ε = 2%.

is experimentally quantified by the wave mean slope as ε ≡ (
∫
S ||∇η(x, y, t )||2 dx dy/S )1/2 where

· stands for a temporal average. The typical rms wave height is of the order of 0.2 mm.

IV. FINITE-SIZE EFFECTS

A. Gradient of the wave field

To first identify the finite-size effects of the confinement, we display in Fig. 2 the experimental
maps of the local gradients of the wave field for different confinements Lx (at fixed Ly = 50 cm)
corresponding to different container aspect ratios AR. For simplicity, we select only one single
Fourier mode ( f ∗ = 10 Hz) to show the wave field gradient ||∇η(x, y, f ∗)||, corresponding to the
local slope at each point (x, y) as ∇η(x, y) ≡ ∂η

∂x x + ∂η

∂y y. The value of f ∗ is chosen within the inertial
range of the wave-turbulence cascade (see Secs. IV B and IV E). For the unconfined case [Fig. 2(a)],
the wave field is roughly homogeneous, mainly involving centimetric wavelengths as expected by
λ( f ∗) using Eq. (1). On the contrary, with confinement [Figs. 2(b)–2(d)], larger-scale waves are
more present in the system than in the unconfined case [Fig. 2(a)]. This phenomenon arises from the
emergence of multiple branches in the dispersion relation caused by the finite size of the container.
We will present, in Sec. IV B, spatiotemporal spectra at different confinements showing that larger-
scale waves are generated at a fixed frequency compared to those coming from the unconfined
dispersion relation of Eq. (1). This will also correspond to a transition from a continuous wave-
turbulence cascade (without confinement) to a discrete wave turbulence (strong confinement) (see
Sec. IV E).

B. Spatiotemporal spectrum of the wave field

Figures 3(a)–3(d) show the spatiotemporal spectra of the wave vertical-velocity field, Sv (ky, ω),
along the y direction (at kx = 0), for different confinements Lx (at fixed Ly = 50 cm). Figure 3(a)
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FIG. 3. Spatiotemporal spectra of the wave vertical-velocity field, Sv (ky, ω), for different confinements
Lx at fixed Ly = 50 cm corresponding to different container aspect ratios AR ≡ Ly/Lx: (a) Lx = 100 cm
(unconfined case AR = 0.5), (b) Lx = 11 cm (AR = 4.54), (c) Lx = 8 cm (AR = 6.25), and (d) Lx = 5 cm
(AR = 10). Logarithmic-scale colorbar. Random forcing: 2 ± 0.5 Hz. ε = 2%. The white curve represents the
theoretical dispersion relation of linear waves of Eq. (1), and the black dashed lines represent different sloshing
modes of Eq. (4). Dashed white lines in (a) correspond to the nonlinear broadening of the dispersion relation
ω(k ± δk) with δk/(2π ) = 5 m−1.

corresponds to the spectrum for the unconfined case, i.e., for the largest container (AR = 0.5), in
which almost no finite-size effects occur. Indeed, the wave energy is observed to spread from the
forcing scales (�2 Hz) down to smaller scales, over more than one decade in frequency, around
the theoretical dispersion relation of Eq. (1) (see white curve), thus indicating a wave-turbulence
cascade [23]. Homogeneity is preserved for this unconfined case, as a similar spectrum is found in
the x direction. When the aspect ratio is strongly increased [Figs. 3(b)–3(d)], this wave-turbulence
regime is preserved in the unconfined direction (and still well described by the white curve),
but finite-size effects now occur. Indeed, a significant amount of energy is now present outside
the dispersion relation, in the form of several branches, as shown in Figs. 3(b)–3(d). Due to the
finite-system size, only waves whose wavelengths are integer fractions of the system size can exist
in the confined direction, i.e., discrete modes kx = nπ/Lx, where n is an integer and Lx is the length
of the container in the confined direction. The dispersion relation of Eq. (1) is thus affected by
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FIG. 4. Experimental low-frequency cutoffs of sloshing modes [from Figs. 3(b)–3(d)], for different con-
finements (see symbols) and all tested wave steepnesses ε, as a function of the theoretical prediction, ftheo, of
Eq. (5) with n = 1, 2, 3, . . .. The black dashed line has a slope of one.

finite-size effects as

ω2 = gkn + γ

ρ
k3

n with kn =
√(

nπ

Lx

)2

+ k2
y . (4)

The black-dashed lines in Figs. 3(b)–3(d) correspond to Eq. (4) for n > 0 and different values of Lx.
Each branch corresponds to one of the modes given by the value of n = 1, 2, 3, . . .. These branches
appear in the spectral energy along the unconfined direction, when the discrete modes (kx = nπ/Lx)
in the confined direction contribute enough to modify the wave-number modulus in Eq. (4). These
branches are thus sloshing branches. When the confinement of the container is relaxed (Lx is
increased), we observe two additional effects: (i) the number of visible branches increases [e.g.,
from six in Fig. 3(d) to 13 in Fig. 3(b)], and (ii) the sloshing branches are getting closer together and
become denser as they approach the dispersion relation. This is a consequence of the kx = nπ/Lx

term in Eq. (4) which governs the spacing between the discrete modes. Moreover, for fixed ky and n,
the frequency of the discrete mode decreases as Lx increases and approaches the forcing frequency
(�2 Hz). When Lx is large enough that there is almost no confinement [Fig. 3(a)], sloshing branches
thus vanish and only the wave-turbulence regime remains. This analysis was focused on the y
direction, where the spatial resolution enables highly accurate spectral measurements, particularly
valuable under strong confinement conditions.

C. Sloshing modes

The intersection of a sloshing branch with the ω axis in Figs. 3(b)–3(d) provides its experimental
low-frequency cutoff, ωc/(2π ). For all branches and all confinements, these cutoff frequencies are
plotted in Fig. 4, as a function of their theoretical value,

ftheo = 1

2π

√
g

(
nπ

Lx

)
+ γ

ρ

(
nπ

Lx

)3

, (5)
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0.36%

2.04%

1.70%

FIG. 5. Spatiotemporal spectra of the wave vertical-velocity field, Sv (ky, ω), for the strongest confinement
(Lx = 5 cm) and different wave steepnesses: (a) ε = 0.36%, (b) ε = 1.7%, and (c) ε = 2%. Logarithmic-scale
colorbar. Random forcing: 2 ± 0.5 Hz. Experimental data in Fig. 5(c) are the same as in Fig. 3(d).

obtained by substituting ky = 0 in Eq. (4) for each value of n. We observe that the theoretical
predictions are in perfect agreement with the experimental values, as shown by the dashed-line
slope of one, and independent of the tested wave steepnesses and confinements.

D. Role of the wave steepness

Let us now focus on the effect of the wave steepness ε at a fixed confinement. The spatiotemporal
spectra of the wave vertical-velocity field, Sv (ky, ω), are shown in Fig. 5 for different wave
steepnesses ε and for the strongest confinement (Lx = 5 cm). As explained in Sec. III, different
wave steepnesses are achieved by forcing magnets using different strengths of the random current
feeding the coils. We keep the same logarithmic scale for the wave-energy magnitude in Fig. 5 to
focus on the emergence of sloshing modes and the wave-turbulence cascade. At the lowest ε, part of
the energy injected at large scales spreads towards small scales around the dispersion relation, while
a few branches of sloshing modes start to emerge. At increased nonlinearity (but still weak), the
main branch broadens and the wave-turbulence energy cascade is visible up to much smaller scales,
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FIG. 6. Frequency spectra of the wave vertical velocity along (a) the confined x direction, Sx
v (ω), and (b) the

unconfined y direction, Sy
v (ω), for different confinements Lx ∈ [5,11] cm and the unconfined case Lx = 100 cm

(from bottom to top). Spectra are vertically shifted for clarity. Random forcing: 2 ± 0.5 Hz. For the strongest
confinement (Lx = 5 cm), vertical dashed lines in (a) represent the theoretical cutoff frequencies of sloshing
modes of Eq. (4) with ky = 0, with n = 1 to 6.

while additional sloshing branches appear. These observations highlight the onset of finite-container
size effects for weak increasing nonlinearities.

E. Frequency spectrum

We now compute the frequency spectra of the wave vertical velocity, Sv (ω), for different
confinements. The frequency spectra along the confined direction, Sx

v (ω), and along the uncon-
fined direction, Sy

v (ω), are plotted in Fig. 6 to compare the container finite-size effects on wave
directions. The frequency spectrum is obtained from the spatiotemporal spectrum Sv (kx, ky, ω) as
Sy

v (ω) ≡ ∫
Sv (kx = 0, ky, ω)dky for the unconfined direction, and Sx

v (ω) ≡ ∫
Sv (kx, ky = 0, ω)dkx

for the confined direction. The Fourier spectrum in the confined direction, Sx
v (ω), in Fig. 6(a), is

completely different from that in the unconfined direction, Sy
v (ω), in Fig. 6(b). Remarkably, Sx

v (ω)
in Fig. 6(a) shows a transition from a continuous spectrum for the unconfined case (Lx = 100 cm) to
a discrete spectrum for confined cases (Lx = 5 and 11 cm), whereas the spectrum in the unconfined
direction, Sy

v (ω), is continuous regardless of the confinement level.
The distinct peaks present in the Sx

v spectrum, in Fig. 6(a), correspond well to the theoretical
cutoff frequencies of the sloshing branches of Eq. (4) with ky = 0 (see vertical dashed lines) due
to the confinement. These peaks become less separated and shift to lower frequencies when the
confinement is relaxed, as expected by Eq. (4). These observations are consistent with the one
reported experimentally for a horizontal forcing [28] and with predictions [10,14].

On the contrary, the Sy
v (ω) spectrum, in Fig. 6(b), is continuous and displays a frequency power-

law cascade corresponding to a gravity-capillary wave-turbulence cascade. The best power-law fit
typically gives Sy

v (ω) ∼ ω−5 for the wave vertical-velocity spectrum, meaning thus to a steeper
spectrum for the wave height η, i.e., Sy

η(ω) ∼ ω−7. This exponent thus deviates significantly from
weak-turbulence predictions in the pure gravity regime, Sg

η ∼ ω−4 [54], and in the pure capillary
regime, Sc

η ∼ ω−17/6 [55]. The deviation of the power-law exponent of the frequency spectrum in
the gravity regime has previously been reported in several experiments (see [23] for a review), and it
depends on several factors such as wave steepness [18,27,56–58], bound waves [35,36], dissipation
[27,32], and the container’s shape [26], but not on the confinement as observed here and in [28]. Note
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that a steepening of the gravity-wave spectrum due to finite-size effects has been only numerically
reported [59].

F. Three-wave interactions

Weakly nonlinear wave interactions lead to an energy transfer between waves towards smaller
scales (as observed in Figs. 3 and 5). At the lowest order in nonlinearity, three-wave interactions
(N = 3) are predicted to occur for pure capillary waves and for gravity-capillary waves to satisfy the
resonance conditions of Eq. (2) [1,2,23]. In contrast, four-wave interactions (N = 4) are solutions
for pure gravity waves. Let us consider three-wave interactions between gravity-capillary waves
satisfying the linear dispersion relation of Eq. (1). The geometrical solution of Eq. (2) with
N = 3 [i.e., ω1 + ω2 = ω3 and k1 + k2 = k3, with ω(ki ) given by Eq. (1)] is shown in Fig. 7(a)
and highlights the domain of existence of resonant waves. No three-wave resonant solution exists
for small frequency values in the (ω1, ω2) space, as waves are pure gravity waves. The red
solid curve represents the boundary case where only 1D resonant interactions exist, in which two
collinear gravity-capillary waves interact to create a third wave propagating in the same direction.
The gray region above this solid line (i.e., for sufficiently large values of ω1 and ω2) represents
the solutions of resonant interactions between waves propagating in distinct directions (i.e., 2D-
or noncollinear-resonant interactions). Furthermore, as mentioned in Sec. I, quasiresonant wave
interactions can exist if they satisfy the conditions given by Eq. (3), where the exact resonant
conditions of Eq. (2) have been relaxed by δk which quantifies the nonlinear broadening of the
dispersion relation. The region, where these quasiresonant interaction solutions exist, is bounded by
the dashed lines in Fig. 7(a) around the solid line.

To probe the possible existence of three-wave interactions in our experiments, we compute the
normalized third-order correlations in frequency of the wave vertical-velocity field, or bicoherence
[32,60,61],

B(ω1, ω2) ≡ |〈v̂x,y(ω1)v̂x,y(ω2)v̂∗
x,y(ω1 + ω2)〉|√〈|v̂x,y(ω1)v̂x,y(ω2)|2〉〈|v̂x,y(ω1 + ω2)|2〉 , (6)

where v̂x,y(ω) = ∫
T v(x, y, t )e−iωt dt is the frequency Fourier transform of wave vertical velocity at

(x, y) over T = 20 min, ∗ denotes its complex conjugate, and 〈·〉 represents an average over the en-
tire space. The normalization is chosen to bound B(ω1, ω2) between 0 (no correlation) and 1 (perfect
correlation). Figures 7(b)–7(d) then show the experimental bicoherences for a strong confinement
(Lx = 7 cm) computed along the confined direction [Fig. 7(b)], the unconfined direction [Fig. 7(c)],
and for all directions [Fig. 7(d)]. We also plot the theoretical solutions of resonant interactions of
Eq. (2) (white solid lines) and of quasiresonant interactions of Eq. (3) with N = 3 and a nonlinear
broadening of δk/(2π ) = 5 m−1 (white dashed lines). Pink curves correspond to the solutions of
interaction conditions between waves from the first sloshing branch [Eq. (4) with n = 1] and waves
from the dispersion relation of Eq. (1). The pink curves almost cover white ones, corresponding to
waves that belong only to the dispersion relation of Eq. (1).

In the confined direction [Fig. 7(b)], very few wave interactions are observed. This is because
modes are depleted in this direction due to confinement and thus they take discrete values. The
frequencies ω1 (or ω2) of the red region on the figure are below the forcing frequency (�2 Hz).
Henceforth, they have no significance in terms of bicoherence. However, the cyan region, above the
solid line of the 1D resonant interaction, shows 2D resonant interactions in the confined direction,
filling almost all the (ω1, ω2) parameter space homogeneously. This result contrasts strongly with
the dotted pattern observed when the confined container is horizontally oscillating [32] rather than
homogeneously forced as here. The bicoherence along the unconfined direction [Fig. 7(c)] shows
much stronger 2D resonant interactions. No collinear (1D) resonant interaction is observed here, in
contrast to the ones reported when the container is horizontally oscillating [32], which dominate and
mask the confinement effects reported here. We see in Fig. 7(b) that 2D resonant wave interactions
along the confined direction are strongly depleted with respect to the ones in Fig. 7(c) along the
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FIG. 7. (a) Theoretical solutions of three-wave resonant conditions of Eq. (2) with N = 3 and ω(k) given by
Eq. (1). The red solid line marks the boundary case of 1D resonant interactions (i.e., three collinear waves); the
gray region above this line indicates the existence of three-wave resonant interactions propagating in distinct
directions. The region bounded by dashed lines, around the solid line, corresponds to quasiresonant 1D wave
interaction conditions satisfying Eq. (3) with scalar k, N = 3, δk/(2π ) = 5 m−1, and ω(k) given by Eq. (1).
(b)–(d) Experimental bicoherence [estimated from Eq. (6)] of the wave vertical-velocity field showing the
existence of three-wave interactions along (b) the confined x direction, (c) the unconfined y direction, and
(d) all directions (total wave field). Strong confinement Lx = 7 cm (AR � 7.1), random forcing (2 ± 0.5 Hz),
and ε = 0.5%. White curves: solutions of interaction conditions of Eq. (2) (solid) or Eq. (3) (dashed), for
N = 3, between waves belonging only to the dispersion relation of Eq. (1). Pink curves: solutions of interaction
conditions between waves from the first sloshing branch [Eq. (4) with n = 1] and waves from the dispersion
relation of Eq. (1). The pink curves almost cover the white ones.

unconfined direction. Indeed, Fourier modes are not discrete in the unconfined direction and more
waves belonging to the dispersion relation and the sloshing branches [Eq. (4)] are present to interact.
The bicoherence of the full wave field (i.e., in all directions) in Fig. 7(d) resembles that of the
unconfined direction, which is not affected by the confinement. Finally, we have verified that the
bicoherence, in the unconfined case (i.e., for Lx = 100 cm), yields results qualitatively similar to
those in Figs. 7(c) and 7(d).
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FIG. 8. Wave-turbulence timescales as a function of wave frequency. Bottom solid-black line: linear
timescale τlin = 1/ω. Circles: experimental nonlinear timescale τnl for the strongest confinement (Lx = 5 cm,
blue) and unconfined case (Lx = 100 cm, green), estimated from Figs. 3(a) and 3(d). Top black curve: linear
viscous dissipation timescale τdiss (see text). Dashed lines: discreteness time τdisc of Eq. (8) for the strongest
confinement (Lx = 5 cm, blue) and unconfined case (Lx = 100 cm, green). Same colors as in Fig. 6. The critical
frequency ffroz separates discrete wave turbulence ( f < ffroz) from mesoscopic continuous wave turbulence
( f > ffroz). fcb corresponds to a critical balance frequency.

G. Discreteness timescale

Weak-turbulence theory assumes a timescale separation (regardless of ω in the inertial range) [2],
between the linear time τlin, the nonlinear time τnl, the dissipation time τdiss (quantifying dissipative
effects), and the discreteness time τdisc (quantifying finite-system size effects) [23,24,61], as

τlin(ω) � τnl(ω) � [τdiss(ω); τdisc(ω)]. (7)

The nonlinear evolution is thus assumed to be slow compared to the fast linear oscillations (wave
period), but short compared to the typical wave dissipation time and the time linked to finite-size
effects, enabling an energy cascade to occur in the inertial range. The evolutions of these timescales
with frequency are plotted in Fig. 8. The linear timescale is defined as τlin = 1/ω (black solid line).
The nonlinear timescale τnl (circles) is experimentally inferred from the wave-energy broadening
around the dispersion relation of Fig. 3, as 1/δω with δω the full-width-at-half maximum of a
Gaussian fit at each wave number. The dissipation timescale τdiss (black solid line) is computed
as τdiss = 2

√
2/[k(ω)

√
νω], the main viscous contribution from the surface boundary layer with

an inextensible film [33,62], as contaminants are present [63]. The discreteness time τdisc (dashed
lines) is computed as τdisc = 1/�ωdisc with �ωdisc = (∂ω/∂k)�k [23] and �k = 2π/Lx, the first
eigenmode of the tank, which is

τdisc(ω) =
(

∂ω

∂k
�k

)−1

= Lx

π

√
k

g

√
1 + (k/kgc)2

1 + 3(k/kgc)2
, (8)

where k(ω) is as in Eq. (1), and kgc ≡ √
ρg/γ is the crossover wave number between gravity and

capillary regimes (the inverse of the capillary length). The discreteness time of Eq. (8) is maxi-
mum for kgc/3 and reads τ

g
disc(ω) = Lx

π

√
k
g = Lx

π
ω
g for pure gravity waves and τ c

disc(ω) = Lx
3π

√
ρ

γ k =
Lx
3π

( ρ

gω )1/3 for capillary waves [23]. No discreteness effect is expected for τnl(ω) < 2τdisc(ω), i.e.,
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when the nonlinear spectral widening is larger than the half-frequency separation between adjacent
eigenmodes. When τnl(ω) > 2τdisc(ω), discrete or mesoscopic turbulence should occur, that is, for
f < ffroz. The critical (or “frozen”) frequency ffroz is defined as τnl( ffroz) = 2τdisc( ffroz) (see Fig. 8).
These finite-size effects are highlighted in the spectra along the confinement direction of Fig. 6(a)
by the emergence of a well-defined series of local peaks. When the confinement is gradually
relaxed, a smooth transition towards a continuum spectrum is observed in Fig. 6(a), in agreement
with the timescales of Fig. 8. Indeed, the timescale-separation assumption of wave turbulence, as
given by Eq. (7), is well validated experimentally in the inertial range for the unconfined case
(Lx = 100 cm), thus confirming a wave turbulence spectrum up to 20 Hz. As the discreteness
time decreases with decreasing Lx, finite-size effects become more significant, thereby reducing
the inertial range of a continuous spectrum in favor of a discrete spectrum. Finally, note that another
critical balance occur when τlin(ωcb) = τdisc(ωcb), that is, for fcb � √

g/(8πLx ), strongly breaking
the timescale-separation hypothesis for f < fcb. This balance is not achieved experimentally, as it
occurs within the forcing range (2 ± 0.5 Hz).

V. CONCLUSIONS

We experimentally investigated the influence of the finite-container size on weakly nonlinear
random gravity-capillary surface waves. By locally forcing the fluid with magnets driven erratically
by electromagnetic coils, we generated a homogeneous and isotropic random wave field without
the dominant effect of global forcing, such as in horizontally oscillated tanks. Our spatiotemporal
measurements reveal multiple branches in the spatiotemporal wave-energy spectrum in the un-
confined direction, corresponding to sloshing modes of the confined direction. We showed that
their cutoff frequencies at zero wave number and spectral properties can be tuned by varying
either the confinement or the wave steepness. Moreover, the frequency wave spectrum in the
confined direction displays discrete peaks, in contrast to the continuous frequency power law in the
unconfined direction. Using high-order correlation analysis, we demonstrate that two-dimensional
three-wave resonant interactions are significantly depleted in the confined direction, whereas the
unconfined direction retains these resonant interactions, resulting in continuous wave turbulence.
These results thus indicate discrete wave turbulence in the confined direction, and mesoscopic wave
turbulence in the unconfined direction, as the continuous frequency spectrum in this direction is
also affected by confinement. As the confinement is gradually relaxed, we further show a smooth
transition from discrete to continuous wave turbulence, consistent with the respective behaviors of
the nonlinear and discreteness timescales. These findings establish that finite-system size effects
deeply alter wave turbulence by reshaping spectral distributions and depleting two-dimensional
resonant interactions along confined directions. They thus open the way to a more systematic
understanding of how geometry constrains wave turbulence, with implications in both laboratory
and geophysical systems.
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