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Three-dimensional turbulence generated homogeneously
by magnetic particles
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Three-dimensional turbulence is usually studied experimentally by using a spatially
localized forcing at large scales (e.g., via rotating blades or oscillating grids), often in
a deterministic way. Here, we report an original technique where the fluid is forced in
volume, randomly in space and time, using small magnetic particles remotely driven.
Such a forcing generates almost no mean flow and is closer to those of direct numerical
simulations of isotropic homogeneous turbulence. We compute the energy spectra and
structure functions using local and spatiotemporal flow velocity measurements. The energy
dissipation rate is also evaluated consistently in five different ways. Our experimental
results confirm the stationary, homogeneous, and isotropic features of such turbulence,
and, in particular, the Tennekes’ model for which the Tennekes’ constant is experimentally
estimated.
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I. INTRODUCTION

Turbulence concerns swirling motions of fluids occurring irregularly in space and time. This
phenomenon occurs in most geophysical or astrophysical flows, as well as in many industrial pro-
cesses [1,2]. However, attempts to find analytical solutions to the forced Navier-Stokes equations in
a turbulent regime still remain unsuccessful. Three-dimensional turbulence is thus mainly described
phenomenologically using dimensional and similarity arguments assuming, notably, homogeneity,
isotropy, and statistical stationarity [1,3–6]. For a long time, three-dimensional (3D) turbulence
experiments consisted of uniform grids of bars in a wind tunnel (freely decaying turbulence) to get
closer to ideal isotropic and homogeneous turbulence [1,5]. Nowadays, most laboratory experiments
on 3D stationary turbulence are performed in a closed container where energy is injected from
a boundary of the container, at large scales and often in a deterministic way, such as oscillating
grids [7–10], counter-rotating disks (von Kármán flow) [11], several fans [12] or propellers [13],
or multiple jets [14–16]. In contrast, direct numerical simulations (DNS) of 3D turbulence use a
forcing in volume either in spectral space [17] or, more recently, in physical space [18]. To be
able to experimentally force turbulence in the whole volume of a container (if possible, randomly
in time and space) is a challenge. It would also lead to a better comparison with direct numerical
simulations [19].

Here, we present an original forcing technique where the fluid is forced in volume randomly in
space and time, by using small magnetic particles remotely driven. An external oscillating magnetic
field drives the stochastic rotation of each magnetic particle, whereas the collisions between particles
or with the container boundaries lead to erratic translational motions. Such a forcing within
the bulk favors the statistical homogeneity of the velocity field with nearly no mean flow. The
measured energy spectra, structure functions, and energy dissipation rate (evaluated consistently in
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FIG. 1. Experimental setup showing the 3D container of fluid and the encapsulated magnets together with
PIV and LDV measurements. Top left: enlargement of a magnetic particle. A vertical oscillating magnetic
field B(t ) drives time-dependent rotations of each magnetic particle by applying a torque �� over its magnetic
moment �m.

five different ways) confirm the stationary, homogeneous, and isotropy features of such generated
turbulence that could be easily implemented in different domains.

Beyond its implementation to measure global dissipated power in 3D turbulence [20], this forcing
mechanism can also be easily used in other systems, as in soft matter, to study a 3D granular “gas” in
air (showing several major differences with a boundary-driven system) [21]. Furthermore, colloidal
magnetic spinners on a fluid surface, as well as active (self-propelled) swimmers, can generate flow
reminiscent of 2D turbulence [22,23].

II. THEORETICAL BACKGROUNDS

For large enough Reynolds numbers and 3D stationary, homogeneous, and isotropic turbulence,
the energy spectrum is predicted dimensionally as E (k) = Cε2/3k−5/3 [3], with ε the energy dis-
sipation rate per unit mass and k the Fourier spatial scale, and C ≈ 1.6 the Kolmogorov constant
measured experimentally [5,24]. ε also represents the mean flux of kinetic energy cascading from
the large (forcing) scale to the small (dissipative) scale. This energy transfer through this inertial
range is due to the nonlinearities. The theory predicts that the unidimensional (transverse and
longitudinal) energy spectra are proportionate as E⊥(kx ) = 4/3E‖(kx ) with E‖(kx ) = Cε2/3k−5/3

x
and C = 18C/55 [5,24]. The second-order moment of the velocity increments at a distance r (or
structure function) S2(r) ≡ 〈[v(x + r) − v(x)]2〉 is dimensionally predicted as S2(r) = C2ε

2/3r2/3

[3], where x is a spatial coordinate and C2 ≈ 2.0 is an experimentally measured constant [5].
The third-order structure function is analytically derived as S3(r) = −4/5εr (the only exact result
known for turbulence) and is called Kolmogorov’s 4/5 law [4]. Finally, intermittency occurs if the
structure functions of the order of p, Sp(r) ≡ 〈[v(x + r) − v(x)]p〉, scale as rζp with a nonlinear
dependence of ζp with p [25], instead of ζp = p/3 [3]. For finite Reynolds numbers, the previous
laws have several corrections [5,26].

III. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 1. A Plexiglas square-section container of length
L = 11.5 cm and height h = 9 cm is filled with distilled water. N homemade magnetic particles
are put within the container (N ∈ [1, 60]). Each particle is made of a cylindrical permanent
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FIG. 2. Fluid tracer trajectories within the laser sheet followed over 10 consecutive images (0.05 s). Forcing
parameters: N = 10, B = 115 G, and F = 50 Hz. σu = 2.3 cm/s.

neodymium magnet (NdFeB, N52, 0.5 cm diameter, 0.2 cm thickness) encased and axially aligned
in a cylindrical Plexiglas shell (1 cm outer diameter and 1 cm length) to strongly reduce the dipolar
interaction between particles [20]. The container is sealed with a transparent lid and sits between
two Helmholtz coils powered by a sinusoidal current of amplitude I ∈ [0, 9] A and frequency
F ∈ [0, 50] Hz. A vertical oscillating magnetic field B(t ) = B sin (2πFt ) is thus generated with
an amplitude B ∈ [0, 207] G measured with a Gauss Meter (FW Bell). B is spatially homogeneous
in the container volume with a 5% accuracy. The AC magnetic field transfers angular momentum
into each particle, which is converted into linear momentum during collisions, leading to erratic
translational and rotational motions of the particles (see [20] for details). The fluid is thus forced
homogeneously in volume, and randomly in both space and time. The fluid velocity is measured in
a single point over time by nonintrusive laser doppler velocimetry (LDV, Dantec Flow Explorer
1D) to access its frequency spectrum. The fluid velocity field is measured in a horizontal xy
plane (11 × 9 cm2) over time by particle image velocimetry (PIV) [27], in particular to access the
wave-number spectrum and structure functions. The fluid flow is visualized using Polyamide fluid
tracers (50 μm) illuminated by a horizontal laser sheet. A high-resolution video camera (Phantom
V10, 2400 × 1800 pixel2 at 200 fps), located on the top of the fluid container, records the motion
of the fluid tracers. The spatial resolution is 0.8 mm (i.e., spacing between adjacent velocity field
vectors). Note that less than 3% of the acquired images are discarded and correspond to rare events
of a magnetic particle passing through the laser sheet. This leads to experiments for PIV with a
lower N and at lower fluid rms velocity (σu � 4 cm/s) than for LDV (σu � 18 cm/s). For most of
the results presented below, the volume fraction is 0.7% (corresponding to N = 10).

Figure 2 shows the typical fluid motions characteristic of a turbulent flow (see, also, movies in the
Supplemental Material [28]). Strong spatial and temporal fluctuations of the flow are observed over
various scales, together with eddies. We will hereafter characterize the properties of such turbulent
flow generated by this forcing. We will also verify if a self-similar energy transfer through the scales
occurs by nonlinearity.

IV. HOMOGENEITY, ISOTROPY AND LEVEL OF TURBULENCE
WITH CONTROL PARAMETERS

The longitudinal and transverse horizontal fluid velocities at the coordinate x are defined as
u(x, t ) and v(x, t ), and the vertical one is w(x, t ). Using PIV, we first check that the rms fluctuating
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FIG. 3. Frequency power spectrum of the velocity u(t ) compensated by f −5/3, Su( f ) f 5/3, for different N
from 10 (bottom) to 60 (top), with F = 30 Hz and B = 161 G. Dashed lines correspond to the predictions
(see text). Inset: compensated power spectra Su( f ) f 5/3 rescaled by N4/3B8/9F 8/9 for various N ∈ [10, 60],
B ∈ [103, 184] G, and F ∈ [5, 55] Hz.

velocity σu is invariant by translation in the xy plane, and by rotation of the latter, meaning that the
velocity field is homogeneous and isotropic in the horizontal plane. The isotropy ratios are indeed
σu/σv = 0.97 ± 0.01 and σu/σw = 0.87 ± 0.01. Moreover, the mean velocity 〈u〉t,x is found to be
much smaller than the rms fluctuations (i.e., 〈u〉t,x/〈σu〉x < 11%) to be able to neglect the mean flow
afterward (see the Supplemental Material [28]).

Using single-point LDV measurements, we now focus on the scalings of the fluid velocity fluc-
tuations with the forcing parameters (number of magnetic particles N , amplitude B, and frequency
F of the magnetic field). The fluid rms velocity fluctuations σu =

√
〈u2〉t are found to depend on

the forcing parameters as σu ∼ N1/2B1/3F 1/3 (see the Supplemental Material [28]). The magnetic
particle velocity was previously found to scale as Vp ∼ N0B1/3F 1/3 from the power budget between
the injected power into the fluid by the magnetic particles and the power dissipated [20]. The latter is
mainly due to viscous dissipation by a turbulent translational drag on the particles and by inelastic
collisions between particles (or with the container walls) [20]. Assuming that the kinetic energy
of the fluid is proportional to the particle ones ∼NV 2

p , the rms fluid velocity scales indeed as
σu ∼ (NV 2

p )1/2 ∼ N1/2B1/3F 1/3.

V. FREQUENCY SPECTRUM AND TENNEKES CONSTANT

The power spectrum density Su( f ) of the fluid velocity u(t ) measured by LDV is shown in Fig. 3
and compensated by f −5/3 for an increasing number N of magnetic particles at fixed B and F .
The spectrum amplitude is found to increase with N . More importantly, each spectrum follows a
frequency power law in f −5/3 over more than one decade in frequency. For zero-mean velocity
flows, Tennekes’ model (large-scale advection of turbulent eddies) predicts the frequency spectrum
to scale as f −5/3 [29], as observed here. More precisely, one would expect S(ω) = βε2/3q2/3ω−5/3,
with β an empirical constant and q ≡ √

(σ 2
u + σ 2

v + σ 2
w ) [29]. Since ε ∼ σ 3

u (see below), S(ω) has
to scale as σ 8/3

u . We thus plot in the inset of Fig. 3 the compensated spectra Su( f ) f 5/3 rescaled
by N4/3B8/9F 8/9 for a large range of forcing parameters (N , B, and F ). All rescaled spectra are
well superimposed on a master curve with a plateau over more than one decade. As we confirm
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FIG. 4. 1D wave-number power spectrum Euu(kx ) (blue) and Evv (kx ) (red) in the x direction of the velocity
components u and v. N = 10, B = 115 G, and F = 50 Hz. σu = 2 cm/s. Dashed lines: k−5/3

x prediction (blue
one is adjusted and red one is inferred from the prediction Evv = 4

3 Euu). Vertical lines correspond to the inverse
length scales L−1

i (dotted line) and L−1
λ (dot-dashed line). Inset: Second-order structure functions S (u)

2 (r) (blue)
and S (v)

2 (r) (red). Blue dashed line: best fit of S (u)
2 in r2/3. The red dashed line is derived from the blue line

using the relationship S (v)
2 = 4

3S
(u)
2 .

the Tennekes’ model, we are then able to experimentally infer the Tennekes’ constant from the
compensated spectra and ε values. We find β = 0.64 ± 0.15. This value is in good agreement with
the assumed Tennekes’ constant of the order of 1 [29] and simulations leading to β = 0.82 [30].
Note that the rare previous experimental estimates (mainly on smaller inertial ranges) vary from β =
0.14 [16] (0.23 [15]) using multiple jets forcing, without (with) a free surface, to β ∈ [0.48, 0.62]
[8] and 5.5 [9] using oscillating grids forcing but without PIV measurements, or β ∈ [0.28, 3.5] for
low Reynolds number flows [10].

VI. WAVE-NUMBER SPECTRUM AND CHARACTERISTIC SCALES

Using PIV, the 1D wave-number power spectra (in the x direction), Euu(kx ) and Evv (kx ), of the
longitudinal and transverse components (u and v) of the velocity field are shown in Fig. 4. The
longitudinal spectrum Euu(kx ) scales as k−5/3

x over a decade, as expected from Kolmogorov’s law
Euu = Cε2/3k−5/3

x [3]. We also observe that the transverse spectrum Evv (kx ) is proportional to the
longitudinal one, in agreement with Evv (kx ) = 4

3 Euu(kx ) [5] (see dashed lines in Fig. 4). The degree
of isotropy is thus comparable to that in DNS where the same equivalence between 1D spectra is
found [31].

The inertial scales of turbulence are located between the container size L and the small dissipative
Kolmogorov scale η = (ν3/ε)1/4 [3]. Here, one has η ≈ 0.2 mm for a typical mean dissipation rate
ε = 10−3 m2/s3 (see Sec. VIII); ν = 10−6 m2/s is the fluid kinematic viscosity. The integral length
scale cannot be accurately computed from the autocorrelation function of the velocity field since
the container size L is not eight times larger than the integral scale [5,32]. We evaluate the integral
scale Li = 5 cm from the abscissa of the maximum of the second-order structure function S2(r) (see
inset of Fig. 4), corresponding to roughly the beginning of the inertial range (see main Fig. 4). The
corresponding turbulent Reynolds number at Li thus reads ReLi = σuLi/ν ≈ 103, with σu = 2 cm/s.
The Taylor length scale is estimated as Lλ ≈ 6 mm (well located between Li and η; see main Fig. 4)
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FIG. 5. Different estimations of ε as a function of σ 3
u inferred from (∗) the wave-number spectrum Euu, (×)

the second-order structure function S2(r), (+) the third-order structure function S3(r), and (◦) the dissipation
rate definition (see text). The solid line is the prediction cσ 3

u /Li with c = 1.1. Inset: Third-order structure
function S3(r) (solid line). Dashed line is a linear fit. Vertical lines correspond to Lλ and Li.

using Lλ = Li

√
15/ReLi [1]. The corresponding Taylor Reynolds number is Reλ = σuLλ/ν ≈ 122,

a value of the same order of magnitude as the ones in boundary forced turbulence experiments
[11–14].

VII. STRUCTURE FUNCTIONS

The structure functions of the velocity field are also computed from the PIV measurements. The
inset of Fig. 4 shows the second-order structure functions S2(r) in the x direction of the horizontal
components of the velocity field, u and v. The structure functions S2(r) are roughly proportional to
r2/3 in the inertial range, as expected by the 2/3 Kolmogorov’s law (see Sec. II) [3]. Moreover, as
for the spectra, the transverse and longitudinal components are found proportional as S (v)

2 = 4
3S

(u)
2

(see dashed lines), as expected theoretically. From S (u)
2 and Euu, one can also infer the ratio of

the 2/3 law constant over the Kolmogorov’s constant, C2/C = 5.3 ± 2.8, not so far from previous
experimental evaluations ≈ 4 [5]. The third-order structure function S (u)

3 of the longitudinal velocity
field is also computed and shown in the inset of Fig. 5. S (u)

3 is found to decrease linearly with r
over one decade in the inertial range, in good agreement with the 4/5 Kolmogorov’s law [4] and
with DNS [33]. This corresponds to the negative asymmetry of the velocity fluctuation gradients
quantified by the skewness S (u)

3 /(S (u)
2 )3/2 = −0.3 ± 0.2 close to the value inferred from the 4/5

law, −4/(5C2) = −0.4 [5].

VIII. ENERGY DISSIPATION RATE

Finally, the mean energy dissipation rate ε is estimated in five different ways: (i) as E3/2
uu k5/2

x /C3/2

from the experimental 1D wave-number spectrum and the Kolmogorov’s spectrum, (ii) as
[S (u)

2 /C2]3/2/r from the experimental S (u)
2 and the 2/3 law, (iii) as −5S (u)

3 /(4r) from the experi-
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mental S (u)
3 and the 4/5 law, (iv) from its definition for isotropic turbulence ε ≡ 15ν〈(∂ux/∂x)2〉

[5,34], and (v) from dimensional analysis. These different estimations of ε are plotted in Fig. 5 as a
function of σ 3

u . All ε values are found of the same order of magnitude at fixed σu and are proportional
to σ 3

u regardless of the method used. Dimensional arguments estimate the dissipation rate from the
velocity fluctuations as ε = cσ 3

u /Li [34,35] involving the integral scale Li, and c a constant of the
order of unity [36,37]. Here, one finds c = 1.1 close to the values found with a boundary forcing
(grid turbulence) [35,38]. These estimations of ε by five different methods are hardly obtained
experimentally [39] and are found here to all be consistent as a consequence of the stationary,
homogeneous, and isotropic turbulence generated by this forcing in volume. Note that higher
turbulence levels can be explored with this forcing (e.g., ε ∼ 6 × 10−3 m2/s3 for σu ∼ 0.18 m/s
or ReLi = 9 × 103 measured with LDV).

IX. CONCLUSION

We developed an original technique to generate 3D turbulence by injecting energy in volume,
randomly in time and space, by using small magnetic particles remotely driven. This forcing
contrasts with previous ones in which a spatially localized forcing is applied at large scale from
a container boundary. We characterize the turbulence generated by this forcing in volume by local
and spatiotemporal measurements of the fluid velocity. Almost no mean flow is involved, and all
measured properties confirm the stationary, homogeneous, and isotropic features of such turbulence.
In particular, we experimentally confirm the Tennekes’ model and resolve the disagreement between
previously suggested values of the Tennekes’ constant. Possible intermittency of such generated
turbulence could be explored in the future [40], as well as its Lagrangian properties [41]. Moreover,
this forcing mechanism is closer to those of direct numerical simulations and is rather flexible (e.g.,
either random in space and time or random only in space or only in time). It appears very promising
to study large-scale properties of 3D turbulence (i.e., scales larger than the injection scale) and its
possible description by statistical mechanics tools [42]. It could also be applied to smart control
of turbulence [43]. Finally, this homogeneous forcing could be used to better explore geophysical-
or astrophysical-like turbulent flows (rotating, stratified, or multiphase flows), and could provide a
technological breakthrough in turbulent mixing.
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