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We investigate experimentally the decay of three-dimensional hydrodynamic turbulence, initially
generated by the erratic motions of centimeter-size magnetic stirrers in a closed container. Such zero-mean-
flow homogeneous isotropic turbulence is well suited to test Saffman’s model and Batchelor’s model of
freely decaying turbulence. Here, we report a consistent set of experimental measurements (temporal decay
of the turbulent kinetic energy, of the energy dissipation rate, and growth of the integral scale) strongly
supporting the Saffman model. We also measure the conservation of the Saffman invariant at early times of
the decay and show that the energy spectrum scales as k2 at large scales and keeps its self-similar shape
during the decay. This Letter thus presents the first experimental evidence of the validity of the connection
between the Saffman invariant and the k2-energy spectrum of the large scales. The final decay regime
closely corresponds to Saffman’s model when the container size is sufficiently large.
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Introduction.—The decay of three-dimensional (3D)
turbulent flows has been extensively investigated to com-
prehend the energy transfer and the dynamics of the large
scales, the scales larger than the forcing scale [1].
Understanding the decay rate of turbulent kinetic energy
is important for fundamental theories, numerical simula-
tions of turbulence, and applications such as weather
forecasting or energy harvesting. However, the physical
mechanisms that control the decay rate of fully developed
homogeneous turbulence are not clearly identified [1].
Currently, the Batchelor model [2,3] and Saffman model

[4] have competing hypotheses to describe the decay of
homogeneous turbulence. Both models assume distinct
invariants depending on how the turbulence is initially
generated, and this distinction is reflected in the scaling of
the energy spectrum at large scales. Specifically, a turbulent
flow with significant linear momentum possesses an energy
spectrum at large scales given by EðkÞ ∼ k2 (Saffman) [4].
Conversely, a turbulent flow initially generated by a strong
angular impulse and a negligible linear impulse exhibits a
EðkÞ ∼ k4 energy spectrum at large scales (Batchelor) [3].
Both types of turbulence can be generated in direct

numerical simulations [1,5–9], and this raises questions
about how the initial conditions or energy injection
methods control the decay of turbulent flows. Direct
numerical simulation studies on freely decaying turbulence
impose the spectrum at large scales using a Gaussian
process to inject energy [10], while the small scales are
not turbulent and do not exhibit a k−5=3 power-law
spectrum.
Experimental open systems, such as grid turbulence,

can reach a Reynolds number up to 5 × 106 [11] and are
plausible candidates to measure the decay of turbulence.

However, they possess a mean flow and different decay
rates were then reported using passive grids [3,11–14],
fractal grids with multiscale grids [15–18], or active grids
[19–21]. On the other hand, there exist complementary
laboratory experiments in closed systems (where fans,
loudspeakers, jets, or rotating elements energize the fluid)
generating zero-mean-flow homogeneous isotropic turbu-
lence (HIT) to study the decay of turbulence [22]. However,
the decay rate in such closed systems is influenced by the
different degrees of isotropy, the asymmetry of the forcing,
or secondary large-scale flows [22]. Indeed, the influence
of a mean flow or secondary flows affects the energy
budget and the time dependence of the turbulent kinetic
energy, which stresses why isotropy is crucial to test the
decay law [23]. More direct evidence in zero-mean-flow
HIT experimental setups is thus required to confirm
Saffman’s or Batchelor’s model and to clarify the con-
nection between the large-scale energy spectrum and the
invariants of freely decaying turbulence.
Here, we initially generate 3D hydrodynamic turbulence

using centimeter-size magnetic stirrers immersed in a
large liquid reservoir and we then halt the forcing to study
freely decaying turbulence. The advantage of such volume
forcing is to generate sufficient zero-mean-flow HIT
required to compare Saffman’s model and Batchelor’s
model of freely decaying turbulence. Using this technique,
we report a consistent set of experimental observations
(kinetic energy, dissipation rate, and integral scale) robustly
supporting the Saffman model. We also measure the
conservation of the Saffman invariant at early times of
the decay. The energy spectrum scales as k2 at large scales
and conserves a self-similar shape during the decay.
Theoretical backgrounds.—Assuming that the energy

spectrum Eðk; tÞ is analytic at k ¼ 0, a Taylor expansion
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at small kr (large scales) shows the following leading
terms [16]:

Eðk; tÞ ¼ Lk2

4π2
þ Ik4

24π2
þ � � � ; ð1Þ

with L ¼ R
∞
0 huðx; tÞ · uðxþ r; tÞidr is Saffman’s inte-

gral, a measure of the linear momentum held in the
turbulence [24], I ¼ −

R∞
0 huðx; tÞ · uðxþ r; tÞir2dr is

Loitsyansky’s integral, suggested to be related to the
angular momentum [25], and huðx; tÞ · uðxþ r; tÞi the
autocorrelation function of the velocity field u [1,24].
In fully developed freely decaying HIT, L ∼ u2l3 with l the
integral scale defined as l ¼ R∞

0 fðr; tÞdr, where fðr; tÞ is
the longitudinal velocity autocorrelation function. Unlike
L, the integral I is not, in general, an invariant during the
initial decay [1,3,26].
The decay rate of the squared velocity fluctuations

u2 ¼ hu2i=3 can be evaluated by assuming that du2=dt
is equal to minus the dissipation rate −ϵ [2],

du2

dt
¼ −ϵ ¼ −C

u3

l
; ð2Þ

with C a constant of order unity, which depends on the
Taylor Reynolds number and the large-scale forcing pro-
cedures [27–31]. Using the invariant u2l3 (Saffman) or u2l5

(Batchelor), the time dependence of u2, l, and ϵ can be
derived [1,24], as summarized in Table I. The decay of the
kinetic energy during the final period of decay is also
shown in Table I.
Experimental setup.—Experiments are carried out in two

different fluid square containers sealed by a transparent lid.
The dimensions are 11 × 11 × 8 cm3 (small tank) and
33 × 33 × 20 cm3 (large tank) (see the schematics in the

Supplemental Material [32]). The choice of these varying
sizes allows for assessing finite-size effects in the exper-
imental observations. In the small tank, measurements are
taken using two different liquids: either water or a lower-
viscosity liquid (Novec), while exclusively water is used
for measurements in the large tank. Both fluids are seeded
with hollow glass sphere fluid tracers (10 μm, concen-
tration of 0.21 ppm) illuminated by a horizontal laser sheet,
and a high-speed camera (Phantom v1840) records high-
resolution movies (2048 × 1952 pixels2) at a range of
speeds 100–400 fps. Energy is transferred into the fluid
by the continuous erratic motions of N magnetic stirrers
(1 cm in size) driven by a monochromatic vertical magnetic
field of frequency F [33–35], which generate a turbulent
flow [36,37].
The control parameters in the small tank are the number

of magnetic stirrers N ¼ 50, the frequency of the oscillat-
ing magnetic field F ¼ 50 Hz, and the magnetic field
intensity B ¼ 240 G, and correspond to the maximal
values of this system (see the illustrative movie in the
Supplemental Material [32]). The typical rms velocity of
the magnetic stirrers in water is 20 cm=s [35]. The control
parameters in the large tank are N ¼ 450, F ¼ 20 Hz,
and B ¼ 360 G.
At t ¼ 0, turning off the magnetic field stops the energy

injection and settles the stirrers at the container’s bottom.
During this transient regime of turbulent decay, a non-
intrusive particle image velocimetry (PIV) technique [38]
using the PIVlab algorithm [39] measures the fluid velocity
field in the xy horizontal plane. For the small tank, the
initial value of the standard deviation of the fluid velocity is
equal to u0 ¼ 6.6 cm=s, giving the initial Reynolds number
Re0 ¼ u0l0=νw ¼ 3000, with l0 ¼ 5 cm the initial integral
length scale and νw ¼ 10−6 m2=s the kinematic viscosity
of water.
Mean-flow free, homogeneity, and isotropy.—Using the

horizontal velocity fluctuations ux and uy, the structure
functions Sux2 ðrÞ ¼ h½uxðxþ rÞ − uxðxÞ�2ix and S

uy
2 ðrÞ are

measured nearly identical, illustrating the homogeneity and
isotropy of the velocity field during the decay in the small
tank (see Supplemental Material [32]). The isotropy coef-
ficient is also measured using the ratio of the standard
deviations. σux=σuy is equal to 1� 0.004 on average during
the decay. The ratio of the mean velocity and standard
deviation, huxi=σux and huyi=σuy , are 2.2% and 7%,
respectively (see Supplemental Material [32]), confirming
the isotropy, the absence of mean and secondary flows.
Initial decay.—The initial decay in the small tank is

evaluated using exclusively water. PIV measurements of
the horizontal ux and vertical velocity uz between z ¼ 6 to
8 cm confirm the turbulent decay is not affected by the
downward motion of the stirrers (see Supplemental
Material [32]). Figure 1 shows that the quantity u2l3 is
invariant at the beginning of the decay until it decreases
after a time t1 ¼ 0.54 s. This illustrates the invariance of

TABLE I. Time evolution of u2, l, and ϵ during the initial decay
and of u2 during the final decay depending on the initial
conditions of the turbulent flow. The large-scale energy spectrum
EðkÞ ∼ k2 corresponds to Saffman’s model and EðkÞ ∼ k4 cor-
responds to Batchelor’s model. The values of the constants are
a ¼ 5

6
Cu0=l0 and b ¼ 7

10
Cu0=l0. The initial values are indexed

with 0: u0, l0, and ϵ0.

Model Saffman Batchelor
Large-scale spectrum EðkÞ ∼ k2 EðkÞ ∼ k4

Initial decay
Invariant L ∼ u2l3 I ∼ u2l5

u2=u20 ð1þ atÞ−6=5 ð1þ btÞ−10=7
l=l0 ð1þ atÞ2=5 ð1þ btÞ2=7
ϵ=ϵ0 ð1þ atÞ−11=5 ð1þ btÞ−17=7
Final decay
u2 ðt − t�Þ−3=2 ðt − t�Þ−5=2
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Saffman’s integral L ∼ u2l3 and the conservation of linear
momentum during the initial decay (t < t1). The present
measurement supports the hypothesis that the magnetic
stirrers inject strong linear momentum into the turbulent
eddies (L > 0), which is also endorsed by the comparison
of the time evolutions of the quantities u2l3 and u2l5 shown
in Supplemental Material [32]. The inset of Fig. 1 also
illustrates a power-law relationship between 1=u and l with
a 2=3 slope consistent with Saffman’s theory, as indicated
by the solid line.
The measurements shown in Fig. 1 suggest a potential

Saffman turbulence scenario (second column in Table I) in
which the turbulent kinetic energy should decay as u2=u20 ¼
ð1þ atÞ−6=5 and the integral length scale increases as
l=l0 ¼ ð1þ atÞ2=5, with a ¼ 5Cu0=ð6l0Þ. The value a ¼
2.7 s−1 is inferred from the initial values of u0 and l0, and the
constantC ¼ 0.37� 0.02measured from Eq. (2). A correct
definition of this value is essential for accurately assessing
the time dependence of u and l during the decay [13].
Figure 2 shows the decay of u2=u20 as a function of the

rescaled time 1þ at. It confirms the power-law relationship
between these two quantities and the agreement with
Saffman’s model for t ≤ t1. The inset of Fig. 2 illustrates
that the integral length scale l increases during the decay and
then saturates at ð1þ atÞ ≈ 6 (i.e., t ≈ 1.85 s). For t ≤ t1,
l=l0 is well fitted by the solid line given by Saffman’s model
and depicts a stronger increase in l than in Batchelor’s
model. Deviations of u2 and l from the Saffman laws (solid
lines) are observed after a time 1þ at1 ¼ 2.4 because the
size of the biggest eddies [lðt1Þ ¼ 7 cm] becomes compa-
rable with the size of the container.

The rate at which the kinetic energy is dissipated is
computed from the expression ϵ ¼ 15νhð∂ux=∂xÞ2ix;y,
which is derived assuming HIT [40]. The measured initial
dissipation rate is equal to ϵ0 ¼ 2.1 × 10−3 m2=s3. Figure 3
shows that the decrease of ϵ is in good agreement with
Saffman’s model. The measurements are very well fitted by

FIG. 1. Time evolution of Saffman invariant u2l3 using water as
working fluid. The solid line represents the mean value of the
invariant up to t1 ¼ 0.54 s. Inset: l=l0 as a function of u0=u.
The equation of the solid line is y ¼ ðu0=uÞ2=3 (Saffman) and the
dashed line is y ¼ ðu0=uÞ2=5 (Batchelor). The black arrow
represents the direction of time and the dashed line gives the
time t1 after which u2l3 decreases significantly.

FIG. 2. Decay of the squared velocity fluctuations u2 as a
function of the rescaled time 1þ at (water). The solid line
corresponds to a power law defined as ð1þ atÞ−6=5 (Saffman)
and the dashed line represents the power law ð1þ atÞ−10=7
(Batchelor). Inset: time evolution of the integral scale l. The
solid line represents the power law ð1þ atÞ2=5 (Saffman) and the
dashed line ð1þ atÞ2=7 (Batchelor).

FIG. 3. Decay of the energy dissipation rate ϵ as a function of
the rescaled time 1þ at, with water as working fluid. The solid
line represents ð1þ atÞ−11=5 (Saffman) and the dashed line
ð1þ atÞ−17=7 (Batchelor). The initial value of the dissipation
rate is ϵ0 ¼ 2.1 × 10−3 m2=s3. Inset: time evolution of the
constant C measured from the ratio ϵl=u3. The solid line
represents the mean value of C for t ≤ t1.
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ð1þ atÞ−11=5, which is represented by the solid line in
Fig. 3. The inset of Fig. 3 represents the time evolution of
the constant C given by Eq. (2). This illustrates that C is
approximately constant up to t ¼ t1, suggesting that the
velocity field is not fully turbulent after t1 and that different
physical mechanisms dissipate the turbulent kinetic energy
of the liquid such as dissipation at the tank boundaries.
Final decay.—After t1, the nonlinear inertial terms in the

equations of motion are supposedly negligible and the
dissipation of the turbulent kinetic energy solely depends
on the viscosity ν. The evolution of the turbulent kinetic
energy during this final decay period can be derived from
the initial large-scale spectrum (see Supplemental Material
[32]). As summarized in Table I, the expression is given by
eitheru2 ∼ ðt − t�Þ−3=2 forEðkÞ ∼ k2 [4] oru2 ∼ ðt − t�Þ−5=2
for EðkÞ ∼ k4 [41], where t� denotes some instant of time
inside the final period [41]. These power laws are derived
under the assumptions that ðt − t�Þ → ∞, which is chal-
lenging to achieve in experimental systems during the
final decay stage. In addition, Ref. [42] pointed out that
the value of the power-law exponent α in ðt − t�Þ−α is highly
sensitive to the choice of the virtual time parameter t�.
Consequently, we have chosen to directly fit the experi-
mental data using a power-law model without introducing a
virtual time origin t�.
We first conducted experiments in the small tank using

two fluids (water or Novec) with different densities and
viscosities to explore how these fluids dissipate turbulent
kinetic energy during the final decay. The kinematic
viscosity of Novec 7100 is νn ¼ 0.4 × 10−6 m2=s and its
density is ρn ¼ 1.5 × 103 kg=m3 [43]. Figure 4 illustrates
the decays of the turbulent kinetic energy with water

(circles) and Novec (squares) that are both very well fitted
by a t−1 power law. The exponents of the power laws are
independent of the kinematic viscosity ν, which is con-
sistent with the theoretical derivation (see Supplemental
Material [32]). The deviation of the exponent from the
value −3=2 derived in Saffman’s model is likely due to the
size of the biggest eddies [lðt1Þ ¼ 7 cm] becoming com-
parable with the size of the container. This effect is known
to alter the power-law exponent of the decay [42,44,45].
Additionally, finite Reynolds number effects contribute to
this deviation [9].
To reduce the finite-size effects of the small tank and the

dissipation at its boundaries, we also conducted experiments
within the large tank. The inset of Fig. 4 shows that a t−1.25

power law is observed for 1 order ofmagnitude. This supports
the fact that the finite-size effects control the decay rate during
the final period of decay and the time power-law exponent
becomes closer to −3=2 (Saffman’s model) in the large tank
experiment. Note that the initial decay is not observed in the
large tank because the initial Reynolds number is too small
(Re00¼u00l0=νw¼650, with u00¼1.3 cm=s). Indeed, Fig. 5
illustrates that the k−5=3 power spectrum is no longer observed
after only 0.01 s, which is clearly insufficient to resolve
correctly the initial decay.
Energy spectrum.—In the absence of nonlinear transfer

of energy across scales, Lin’s equation, given by
∂Eðk; tÞ=∂t ∼ −2νk2Eðk; tÞ, implies that the expected k2

energy spectrum at large scales should persist over time
throughout the decay. Measurements performed in the large
tank confirm the conservation of the k2 power law during
the final decay stage, whereas the smaller scales lose their
turbulent characteristics and exhibit a steeper power-law
trend (Fig. 5). These observations align with the idea that

FIG. 4. Decay of the turbulent kinetic energy in the small tank
with two different fluids. The blue circles correspond to the
measurement performed with water and the green squares
correspond to Novec. The solid lines represent a t−1 power
law. Inset: measurements performed in the large reservoir filled
with water. The solid line represents a t−1.25 power law.

FIG. 5. Decay of the energy spectrum in the large reservoir. The
vertical dashed line corresponds to the initial inverse integral
length 1=l0 separating the large and small scales. Here, t ¼ 0,
0.09, 3.66, 5.96, 15.83, 42.01, and 104.99 s.
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viscosity dissipates the excess energy during the final decay
and suggest that Saffman turbulence is observed here.
Conclusion.—We report on the freely decaying 3D

turbulence, initially generated by the erratic motions of
centimeter-size magnetic stirrers in a closed experimental
setup. Such isotropic, mean-flow-free turbulence is well
suited to compare Saffman and Batchelor models of freely
decaying turbulence. Our experimental measurements
(temporal decay of the turbulent energy kinetic, of the
energy dissipation rate, and growth of the integral scale)
robustly support Saffman model. Saffman invariant is also
well conserved at early times of the decay. The energy
spectrum scales as k2 at large scales and conserves a self-
similar shape during the decay. This Letter thus presents the
first experimental evidence of the connection between
Saffman invariant L ∼ u2l3 and the large-scale energy
spectrum in k2. The final decay is also reported in two
different-size experimental systems. All these results sup-
port the existence of freely decaying Saffman turbulence
involving turbulent eddies with a significant linear momen-
tum input. Our results could be applied to physical,
geophysical, or industrial turbulent flows with a finite
mean flow and are of primary importance.
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