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ABSTRACT: We consider the problem of capillary imbibition into
an axisymmetric tube for which the tube radius decreases in the
direction of increasing imbibition. For tubes with constant radius,
imbibition is described by Washburn’s law (referred to here as the
BCLW law to recognize the contributions of Bell, Cameron, and
Lucas that predate Washburn). We show that imbibition into tubes
with a power-law relationship between the radius and axial position
generally occurs more quickly than imbibition into a constant-radius
tube. By a suitable choice of the shape exponent, it is possible to
decrease the time taken for the liquid to imbibe from one position to
another by a factor of 2 compared to the BCLW law. We then show
that a further small decrease in the imbibition time may be obtained by using a tube consisting of a cylinder joined to a cone of 3
times the cylinder length. For a given inlet radius, this composite shape attains the minimum imbibition time possible. We
confirm our theoretical results with experiments on the tips of micropipettes and discuss the possible significance of these results
for the control of liquid motion in microfluidic devices.

■ INTRODUCTION

The imbibition of a wetting liquid into a cylindrical capillary
tube is one of the classic demonstrations of interfacial tension: a
negative capillary pressure beneath the meniscus sucks liquid
into the tube at a rate that is determined by the viscous
dissipation in the liquid. In the absence of gravity (and at
sufficiently early times in the presence of gravity), the
relationship between the time t after the start of imbibition
and the penetration distance of the liquid into the medium zm is
diffusive, so that

∼z t t( )m
1/2

(1)

This classic result is usually referred to as Washburn’s law1 or
sometimes the Lucas−Washburn law since Lucas obtained the
same result prior to Washburn.2 However, it has recently been
pointed out3 that Bell and Cameron4 also derived the t1/2 law
more than a decade before either Lucas or Washburn. In view
of this, and as suggested by Reyssat et al.,3 we shall refer to eq 1
as the Bell−Cameron−Lucas−Washburn (or BCLW) imbibi-
tion law.
While the balance between surface tension and viscosity

represented by the BCLW law (eq 1) is relatively simple, in
many practical applications there are complications that modify
the picture significantly. For example, at very early times the
BCLW law predicts that the meniscus should be moving
infinitely fast. In reality, the inertia of the liquid becomes
important in these early stages so that in fact the meniscus
moves at a constant speed.5,6

In other scenarios, the geometry is not that of a single
circular capillary tube. Imbibition into a porous medium may
often be described by the BCLW law since the medium behaves

as if the pores were cylindrical1,7 while imbibition into tubes
with a noncircular (but uniform) cross section follows the
BCLW law with a modified prefactor.8 However, other
geometries alter the observed scalings considerably: in media
consisting of packed spheres, the BCLW law is observed at
early times but the meniscus subsequently advances according
to some smaller power that is believed to be driven by dynamic
contact angle effects.7,9

Even without wetting effects, the geometry of the tube may
modify the observed behavior considerably. Generally, this
behavior leads to subdiffusive growth of the wetted portion, zm
∝ tβ with β < 1/2. For example, imbibition into a vertical wedge
gives β = 1/3,10,11 while imbibition into axisymmetric tubes
with a cross-sectional radius that increases away from the
opening initially follows the BCLW law before ultimately
reaching a regime in which arbitrary values of β < 1/2 can be
observed by a suitable choice of tube shape.3 This slowing of
imbibition can be rationalized physically as follows: the capillary
suction that drives imbibition decreases as the meniscus moves
further into the tube, while the viscous dissipation resisting it is
still dominated by the radius of the opening at the inlet. In
more complicated geometries, e.g., for tubes with sections of
different radii, zm does not obey simple scaling laws,12 though
the rate of meniscus growth is a reasonably sensitive function of
the tube’s cross section. Indeed, imbibition into channels with
nonuniform but axisymmetric cross sections has been used to
infer the spatial variation of the channel radius.13,14
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In other situations, it is desired to control the rate of
imbibition. For example, some reactions in microfluidic devices
require control of the order in which reactants meet.15 In 2-D
microfluidic channels, imbibition may be sped up by making
one wall flexible: as the meniscus passes by, it pulls on the wall,
decreasing the thickness of the channel, increasing the
curvature of the meniscus, and thereby driving imbibition
faster.16,17 In this scenario, an effective coefficient of the BCLW
law is determined; flexibility is found to increase the speed of
imbibition by around 40%. The interaction between imbibition
and elasticity has also been observed on macroscopic scales: in
elastocapillary rise, the walls of the channel are completely
flexible.11,18,19 Again a modification of the BCLW law was
observed, but because the whole device is able to deform
elastically, it is found that the inlet is choked, increasing viscous
dissipation and ultimately slowing the rise compared to the
rigid case in a similar manner to rigid, diverging channels.3

In this article, we study capillary imbibition into a rigid
converging tube as shown, for example, in Figure 1. Here, the

magnitude of the capillary suction increases as the meniscus
penetrates the tube, so by analogy with the diverging tube, it is
tempting to conclude that imbibition into such a tube will
always beat the BCLW law. However, the viscous dissipation in
the neighborhood of the meniscus also increases as the
meniscus approaches the narrowest end of the tube. Under
some circumstances, therefore, it should be possible that
capillary imbibition will, in fact, be slower than under the
BCLW law. It is natural then to ask the following questions: can
imbibition into a converging tube beat the BCLW law, and if so,
when? We show that the answers to these questions depend
critically on the tube’s shape: if the tube converges too quickly,
then imbibition is slowed dramatically and can even take an
infinite time to imbibe to a fixed distance. However, for a wide
range of tube shapes, imbibition does indeed beat the BCLW
law with the time taken to travel a finite distance decreased by
more than 50%. We illustrate this effect with simple
experiments on imbibition into glass capillary tubes and glass
micropipette tips.

■ THEORETICAL RESULTS
General Formulation. We use lubrication theory20 to

describe the velocity field within the liquid during imbibition;
we also neglect the role of gravity, which is valid at the small
scales that are our primary motivation here. (Our use of
lubrication theory requires that the tube radius varies only
slowly along its axis.) As a result of this assumption, the
pressure within the liquid depends only on z, p = p(z). The
axial component of the fluid velocity, w(r, z), then satisfies the
reduced Stokes equation

μ
∂
∂

∂
∂

=⎜ ⎟⎛
⎝

⎞
⎠r r

r
w
r

p
z

1 1 d
d (2)

where μ is the dynamic viscosity of the liquid. Equation 2 is to
be solved subject to the no-slip condition w(a, z) = 0, which
immediately gives

μ
= −w

p
z

r a z
1

4
d
d

[ ( ) ]2 2

(3)

and hence the fluid flux through a horizontal slice is

∫π π
μ

= = −Q z rw r
a z p

z
( ) 2 d

[ ( )]
8

d
d

a

0

4

(4)

However, since the boundaries of the tube are assumed to be
stationary, we also have that Q must be independent of z.
Equation 4 can therefore be rearranged to give the pressure
within the liquid as a function of z, namely,

∫μ
π

= − ′ ′−p z
Q

a z z( )
8

[ ( )] d
z

0

4
(5)

where we have used the assumption that the inlet of the tube is
at atmospheric pressure, p(z = 0) = 0. The flux Q is related to
the speed of imbibition zṁ by mass conservation, Q =
πa(zm)

2zṁ, which may be substituted into eq 5 to give the
pressure everywhere within the liquid.
To determine the (a priori unknown) rate at which the

meniscus imbibes, zṁ, we use the fact that the pressure at the
meniscus, zm, must be given by the capillary suction, −2γlv/R,
where γlv is the interfacial tension and R is the radius of
curvature of the meniscus. Elementary geometry, together with
the assumption of a constant contact angle θc, gives R = a(zm)/
cos(θc − ϕ) where tan ϕ = −a′(zm) is the slope of the tube wall
relative to its axis. We therefore have that the capillary suction
driving imbibition is −2γlv cos(θc − ϕ)/a(zm), which for ϕ≪ 1
(as required by lubrication theory3) is ≈−2γ′/a(zm) with γ′ =
γlv cos θc. We therefore have

∫γ μ′ = ̇ ′ ′−

a z
a z z a z z

2
( )

8 ( ) [ ( )] d
z

m
m

2
m

0

4m

(6)

or

∫
γ
μ

̇ = ′
′ ′

−

−
z

a z

a z z4
( )

[ ( )] d
zm

m
3

0
4m

(7)

To progress any further, it is necessary to make some explicit
assumptions for the form of the radius a(z).

Finite Cones. To make the general formalism discussed
above more concrete, we first consider the problem of capillary
imbibition into a finite cone with shape equation

Figure 1. Imbibition into a converging capillary tube, whose radius
a(z) is a function of the distance from its base along the axis, z.
Imbibition occurs from a bath of liquid at atmospheric pressure, which
we take to be our pressure datum, and is driven by the capillary suction
pressure beneath the meniscus. In our analysis, we neglect the role of
gravity for simplicity.
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= − ≥⎜ ⎟
⎛
⎝

⎞
⎠a z a

L z
L

n( ) , 0
n

0 (8)

This cone has a finite radius a0 at its base and zero radius at
some length z = L. In practice, we imagine that a very small
(but finite) radius hole exists at z = L, allowing air to escape
from the tube as the meniscus advances (this is the case in our
experiments). We note also that the case n = 0 corresponds to a
tube of constant radius for which the BCLW law holds.
With the shape equation, eq 8, it is natural to introduce Zm =

zm/L and T = t × γ′a0/(μL2) as dimensionless variables; eq 7
then becomes

̇ = − − − −− −⎜ ⎟⎛
⎝

⎞
⎠Z n Z Z

1
4

[(1 ) (1 ) ]n n
m m

1
m

3 1

(9)

This may be solved (subject to Zm(0) = 0) to give the meniscus
position implicitly in terms of time as

= +
−

−
+

−
−

−

+ −⎧⎨⎩
⎫⎬⎭T T

n
Z

n
Z

n
4

4 1
(1 )

3 1
(1 )

2

n n

end
m

3 1
m

2

(10)

where

=
− +

T
n n

4
(2 )(3 1)end

(11)

is the time at which the meniscus reaches the tip of the cone,
i.e., the time at which Zm = 1. (Note that Tend gives physically
relevant values only for n < 2; we shall discuss what happens for
n ≥ 2 shortly.) The solution (eq 10) is plotted for four different
values of n in Figure 2a.
From Figure 2 we see that at early times the imbibition is

very close to that predicted by the BCLW imbibition law, which
in these dimensionless units reads

=Z T( /2)m
1/2

(12)

This can be derived by considering the RHS of eq 10 in the
limit Zm ≪ 1; physically, it reflects the fact that for small
meniscus penetration the relative changes in tube radius are
small so the meniscus moves as if it were imbibing into a tube
of constant radius. This behavior is generic and has been
observed previously in similar systems.3,13

We note from eq 11 that the dimensionless imbibition time
is positive and finite, 0 < Tend < ∞, only if n < 2: if n ≥ 2, the
meniscus does not reach the end of the cone within a finite
time. To see this more clearly and to uncover the motion of the
meniscus as it approaches the tube tip, we let Zm = 1 − ζ(T)
and consider the dominant behavior in eq 9 for ζ ≪ 1. We find
that

ζ
ζ

ζ
− ≈
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− ≥

−

−

⎜ ⎟

⎜ ⎟

⎧
⎨
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⎞
⎠

T
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d
d

1
4
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1
4

, 1/4

n

n

3

1

(13)

We then have that for ζ ≪ 1

ζ ∼

− <

− ≤ <

− =

− * >

+

−

− −
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( ) , 1/4

( ) , 1/4 2

exp( 7 /4), 2

( ) , 2

n

n

n

end
1/(3 1)

end
1/(2 )

1/( 2)
(14)

where the prefactors are determined by the full solution, as is
the constant T* for n > 2. We note that these scalings are
similar to what was found recently for the motion of drops into
a tapered wedge,21 though the different behavior for n < 1/4
was not noted there.
As expected, eq 14 shows that for n < 2 the meniscus reaches

the tip of the cone a finite time, Tend, after the beginning of
capillary imbibition. For n = 2, it reaches the tip exponentially
slowly, while for n > 2, the meniscus reaches the tip only
algebraically slowly as T → ∞. This then provides an answer to
our original question of whether the increased capillary suction
or the increased viscous dissipation dominates as the liquid
enters a narrowing tube: provided that the tube does not have
too sharp a cusp (n < 2), the increase in capillary suction
overcomes the increased dissipation and capillary imbibition
proceeds quickly.
It is also of some interest to determine for which values of n

the meniscus reaches the tip more quickly than the BCLW
imbibition (for which Tend = Tend

BCLW = 2) would. A simple
calculation reveals that Tend < 2 for all values of n ∈ (0, 5/3),

Figure 2. Analytical predictions for the imbibition of liquid into tubes with power-law radius tapering, a(Z) = a0(1 − Z)n, for various values of the
shape exponent n. (a) Main figure: The evolution of the relative meniscus position, Zm = zm/L, as a function of time T = t × γ′a0/(μL2) as predicted
by eq 10 for shape exponents n = 1/8 (red solid), n = 1 (green dotted), n = 3/2 (blue dashed−dotted line), and n = 3 (magenta dashed−double
dotted) together with the BCLW imbibition law (eq 12), (dashed curve). Inset: the shape of the corresponding tubes, using the same line styles. (b)
The approach of the meniscus to the tip of the tube for the three cases with n < 2 showing that the full analytical results do indeed recover the
predicted power law behavior, (eq 14), as the meniscus approaches the tip. Here the different line styles are the same as in (a).
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with a minimum value, Tend
min = 48/49, attained at n = nopt = 5/6.

These results are shown graphically in Figure 3. Here, we

emphasize two features of this result: (i) almost any degree of
tapering (provided it is not too sharp at the end) will decrease
the time taken to imbibe liquid to the tip when compared with
imbibition into a tube of constant radius and (ii) values of n
close to the optimal, n = 5/6, achieve imbibition times very
close to the optimal one; in particular, for n = 1 (a cone of
constant angle), Tend = 1, which is within 2% of the optimal
value.
Optimal Shapes. Having considered the specific case of

power-law-shaped tubes and found that the minimum
imbibition time for this family of shapes occurs with n = 5/6,
a natural question is whether this shape is in fact optimal
among all possible shapes. To address this question, we now
consider the problem of determining the tube shape a(z) that
minimizes the time tend taken for the fluid to imbibe to a given
distance L. Since capillary imbibition naturally occurs faster in
wider capillary tubes, we must somehow restrict the allowable
a(z) to make this problem well-posed; we choose to do so by
restricting a(z) ≤ a0 everywhere for some radius a0.
Adopting the same nondimensionalization as above and

writing a(z) = a0A(Z), the dimensionless time taken for the
meniscus to reach Z = 1 (z = L) is given by

∫ ∫= ̇ =T
Z

Z
A Z K Z Z

d
4 ( ) ( ) dend

0

1
m

m 0

1

m
3

m m
(15)

where 0 ≤ A(Z) ≤ 1 and

∫= −K Z A Z Z( ) [ ( )] d
Z

m
0

4m

(16)

A detailed calculation using the calculus of variations (given
in the Appendix) shows that the shape function A(Z) that
minimizes this time, subject to the constraint A(Z) ≤ 1, is the
piecewise linear function

=
< <

− < <

⎧
⎨⎪
⎩⎪

A Z
Z

Z Z
( )

1 0 1/4
4
3

(1 ) 1/4 1
(17)

This shape is shown in the inset to Figure 4, where it is
compared to the fastest power-law shape, A(Z) = (1 − Z)5/6.

Note that the optimal tube shape in this case consists of a
constant radius cylinder attached to a linearly tapering cone
with the cylinder occupying a fraction α = 1/4 of the total
length. The corresponding imbibition time is Tend = 7/8 ≈
0.875, which is slightly smaller than the value 48/49 ≈ 0.980
found for the optimal power-law tube A(Z) = (1 − Z)5/6.
A simple calculation also shows that for the optimal shape

(eq 17) imbibition precisely follows the BCLW law (eq 12) for
T < 1/8 but then proceeds at constant speed, Żm = 1, for 1/8 <
T < 7/8. The evolution of the meniscus position in this case is
shown as the solid curve in Figure 4. A comparison with the
evolution obtained with the fastest power-law shape, A(Z) = (1
− Z)5/6, (dashed−dotted curve in Figure 4) shows that the
meniscus in the optimal tube initially lags behind that in the
fastest power-law tube but quickly overtakes it once it reaches
the conical section. (In particular, imbibition into the optimal
tube overtakes that in an n = 5/6 tube at T ≈ 0.403, Z ≈
0.528.) It is also perhaps of interest that the optimal shape
carries a larger volume of liquid than the fastest power-law
shape.

■ EXPERIMENTS
We tested our theoretical predictions by conducting experi-
ments in which glycerol imbibes into the end of a micropipette
tip (glycerol was used to ensure that the dynamics is dominated
by viscosity). Prepulled micropipette tips with a base outer
diameter of 1 mm and a tip inner diameter of 1 μm were
obtained commercially (FivePhoton, San Diego, CA). These
tips consist of a long portion (L ≈ 5 cm) in which the inner
radius is approximately constant, a0 ≈ 330 μm. The tube then
tapers to an inner radius of ≲0.5 μm over a horizontal distance
of ∼6 mm; as a first approximation, this tapering is
approximately linear. (See Figure 5 for a sense of the linearity
of the tapering.)
We remove the portion of the tube in which the radius is

constant using a diamond-tipped scribe (RS components); the
experiments reported here were performed on just the tapered

Figure 3. Dimensionless time taken for the meniscus to reach the tip
of a power-law cone, Tend, as a function of the shape exponent, n (solid
curve). The corresponding result for a tube of constant radius (n = 0)
is shown as the dashed line, demonstrating that capillary imbibition is
“faster” for all n < 5/3, with the crossover point (5/3, 2) indicated by a
solid square. Imbibition in a power-law tube with n = 5/6 reaches the
tip of the tube first (i.e., has minimal Tend); the point (5/6, 48/49) is
indicated by a solid circle.

Figure 4. Main figure: Evolution of the meniscus position, Zm = zm/L,
as a function of time T = t × γ′a0/(μL2) for imbibition into the optimal
capillary tube (eq 17) (red solid curve), the fastest power-law tube,
A(Z) = (1 − Z)5/6, (green dashed−dotted curve), and the constant-
radius BCLW imbibition law (eq 12), (blue dashed curve). Inset:
Different shapes of these three tubes, with line styles as in the main
figure.
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tip. This was then placed horizontally on the stage of a
microscope, and a drop of glycerol was placed at the base of the
tube. (The volume of this drop, V ≳ 100 μL, was large enough
that the capillary pressure within the drop was negligible in
comparison with the capillary suction that drives imbibition.)
The imbibition was captured at 30 frames/s (using a CCD
camera attached to the microscope), and the resulting movie
was analyzed using ImageJ (NIH).
A comparison of images from the imbibition into the tapered

tube and into the constant-radius portion (normally discarded)
is shown in Figure 5. As we expect on the basis of the theory
presented above, imbibition into a tapered cone “beats” that
into a tube of constant radius. To quantify the qualitative effect
shown in Figure 5 and to facilitate a quantitative comparison
between theory and experiment, Figure 6 shows the
dimensionless meniscus position as a function of time for
both cases. (For quantitative experiments with a constant
radius, melting-point capillary tubes of constant outer diameter
1.5 mm were used.) Here we see that the experimental results
follow reasonably closely those predicted theoretically, though
in the dimensionless terms used here the main uncertainty
comes from the variation in contact angle θc between
experiments and repeated measurements in the same experi-
ment. We also see that at early times (T ≲ 0.2) the growth in
both cases appears to be linear with time. Previous studies5,6

have shown that the inertia of the liquid causes a similar linear
rise at early times, though this should6 be confined to t ≲ ρa2/
μ, or T ≲ 10−5 in our dimensionless variables. Instead, we
believe that this early time discrepancy is caused by the pressure
gradient within the feed drop of glycerol in the vicinity of the
entrance to the tube; this is comparable to that within the
capillary tube itself for zm ≲ a0 but becomes negligible as the
meniscus imbibes further into the tube. Nevertheless, the
general behavior predicted theoretically is consistent with that
measured experimentally. In particular, the time taken for the
meniscus to reach the tip of the tapered tube is roughly half the
time taken for the constant radius tube, as expected.
Furthermore, the fact that the tapered tube does not actually
shrink to zero radius does not affect the results significantly: the
additional time that the meniscus would have taken to reach the
true tip is a relatively small fraction (<10%) of the total
imbibition time.

■ TWO-DIMENSIONAL ANALOGUE
It is a simple matter to repeat the analysis presented earlier for
the case of imbibition into a 2-D channel with walls at x =
±a(z). The important changes are (i) that the suction pressure
just beneath the meniscus is now −γ′/a(zm) rather than −2γ′/
a(zm) because the meniscus is curved in only one direction and
(ii) that the integrated conservation of mass occurs only
through the thickness of the channel (rather than across the
area). The 2-D analogue of eq 7 is then

∫
γ
μ

̇ = ′
′ ′

−

−
z

a z

a z z3
[ ( )]

[ ( )] d
zm

m
2

0
3m

(18)

Figure 5. Capillary “race”: imbibition of glycerol into a cylindrical tube (top) and a tapered tube; a micropipette tip (bottom) shows that capillary
imbibition into converging tubes can happen faster than predicted by the BCLW law. Here both tubes have a maximal internal radius of a0 ≈ 330 μm
and outer diameter of 1 mm. Note that the scale bar corresponds to 1 mm and each division on the ruler corresponds to 0.5 mm. The red arrow
indicates the position of the meniscus in each image.

Figure 6. Experimental results for the imbibition of glycerol into a
prepulled micropipette tip (blue squares) and a cylindrical capillary
tube (red circles). The dimensionless depth of imbibition, Zm = zm/L,
is shown as a function of dimensionless time T = tγ′a0/(μL2). For the
approximately linear cone, the base radius is a0 ≈ 330 μm and L ≈ 6
mm, while for the capillary tube, the base radius is a0 ≈ 513 μm and L
≈ 5 mm. Theoretical results are shown for the imbibition into a linear
cone, n = 1 (solid curve), and into a capillary tube, n = 0 (dashed
curve). In both experiments, μ = 1.49 Pa s and γlv = 63 mN/m; the
value of the contact angle is measured from experimental images to be
∼75 ± 5° in each experiment. There is no parameter fitting, but error
bars for the constant tube experiments are obtained from two runs
under the same experimental conditions.
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For channels with a shape described by eq 8, this can be solved
similarly to the axisymmetric case and leads to an expression
similar to eq 10. Of most interest here, however, is that for n <
2 the meniscus reaches the tip of the wedge at a dimensionless
time

=
− +

T
n n

3
(2 )(1 2 )end

2D

(19)

(The dimensionless variables here are precisely the same as in
the axisymmetric problem.)
In this 2-D geometry, the imbibition time for a channel with

no tapering (n = 0) is Tend
BCLW = 3/2, compared to Tend

BCLW = 2 for
a tube. Apart from this quantitative difference, the behavior of
the 2-D problem is very similar to that in the axisymmetric
problem. In particular, the form of Tend(n) given by eq 19 is
qualitatively very similar to that shown in Figure 3 with the
following quantitative differences: the minimal imbibition time,
Tend
min = 24/25, is obtained with n = nopt = 3/4 (i.e., tapering

gives a reduction in imbibition time of 36% over imbibition into
a constant-width channel). Furthermore, for any 0 < n < 3/2,
Tend < Tend

BCLW = 3/2; for a broad range of channel shapes,
tapering decreases the time taken for imbibition.
Finally, repeating the minimization of the imbibition time

Tend over all shapes (modifying the variational formulation of
the problem in the Appendix), we find that the optimal shape is
again a constant-width channel attached to a section with a
constant taper to zero width at the tip, as in eq 17. In the 2-D
case, however, the optimal channel has a constant width for a
fraction α = 1/3 of its total length and gives an imbibition time
of Tend = 5/6. Table 1 summarizes the key quantities of interest
in each of the 2-D and axisymmetric imbibition problems.

■ DISCUSSION
In this article, we have quantified the degree of tapering that
allows liquid to imbibe into a tube or channel more quickly
than into a tube or channel of constant width. However, we
have also seen that very steep tapering (n > 2) prevents liquid
from ever reaching the tip of the tube or channel. In each case,
an optimal power-law shape exists that is close to, but not equal
to, a cone of constant cone angle, i.e., n ≠ 1; the optimal power-
law shapes have an imbibition time that is roughly half
(axisymmetric tube) or two-thirds (2-D channel) that in the

constant-width case. Allowing the optimization to be performed
over all shapes with maximum radius a0 (rather than simply for
power-law shapes), we found that the truly optimal shape in
both cases consists of a cylindrical tube, of length αL and radius
a0, connected to a linear cone of length (1 − α)L and base a0.
This led to a small further (10−15%) reduction in the
minimum imbibition time possible with a power-law tube.
Nevertheless, it is interesting that a conical tube always achieves
a significant improvement in the imbibition time compared to
that of a constant-radius tube and is relatively close to the true
optimum.
We note that the tapered tubes studied here are qualitatively

similar to those found in some biological systems. For example,
the optimal distribution of tracheids in a pine needle that
minimizes the pressure drop required to transport water by
transpiration has been computed.22 This optimal distribution
corresponds to a tube with an axially varying radius of the
power-law shape used here, but with n = 1/4.22 A more closely
related biological example is the wharf roach (Ligia exotica),
which uses capillary action to move water along the outside of
its legs.23 Intriguingly, the dynamics of this capillary action are
such that the meniscus moves at a constant speed, zm ∼ t,23

similar to that seen in the optimal imbibition time problem
studied here. The mechanics that lead to this motion are
unclear; the geometry of the leg of the wharf roach is extremely
complicated, with micrometer-scale surface patterning, making
any direct comparison difficult.
In technological applications, being able to move fluid as

quickly as possible using surface tension may be useful in
microfluidic applications, as was anticipated by van Honschoten
et al.16 and Anoop and Sen.17 These authors suggested that
including a flexible wall in a channel enhances the capillary
imbibition but that it still follows a BCLW-type t1/2 scaling.
However, the prefactor of the effective BCLW law is increased
by up to 29% (corresponding to a filling time that is 60% of the
corresponding rectangular filling time), with the precise
enhancement dependent on the strength of surface tension
relative to the stiffness of the flexible wall. Here we have shown
that a conical channel is able to reduce the filling time by more
than 50%. Unlike elasticity-enhanced imbibition, however, the
enhancement in the rate of imbibition due to geometry is
independent of the surface tension of the liquid. We also note
that combining the effects of a tapered tube with a noncircular
cross section8 might enhance imbibition since high curvature
due to, for example, a groove would increase the driving
suction. However, as we saw here for tubes with n > 2, this
increase in suction can be more than balanced by the
concomitant increase in viscous dissipation; a more detailed
study of this question is warranted.
Our results on imbibition in converging channels also give

new insight into the capillary rise between elastic elements, as
considered by a number of authors.18,19,24 In particular, this
elastocapillary rise often induces contact between deformed
objects so that the elastic objects spontaneously form the type
of tapered channel considered here.19,24 The shape of the
elastic elements close to the point of contact varies depending
on whether the ends are touching or sticking:24 as the meniscus
advances, surface tension at first causes contact to occur
between beams (which results in a wedge shape, n ≈ 1) but
then draws the elements to contact along a length (which
results in an approximately cubic profile, n ≈ 3). The analysis
presented in this article suggests that this difference in
geometry can profoundly affect the resulting dynamics

Table 1. Comparison of Imbibition into a Tapering Channel
(the Two-Dimensional Problem) and into a Tapering Tube
(the Axisymmetric Problem)a

problem quantity 2-D channel
axisymmetric

tube

BCLW imbibition Tend
BCLW 3/2 2

power-law tapering Tend < Tend
BCLW for 0 < n < 3/2 0 < n < 5/3

nopt 3/4 5/6
Tend
min 24/25 48/49

Tend(n = 1) 1 1
optimal tapering αopt 1/3 1/4

Tend
min 5/6 7/8

aThe optimal parameter values for imbibition into a power-law tube/
channel are shown together with those for the optimal shape beyond
power-law shapes (which in both axisymmetric and 2-D geometries is
of the form in eq 17, albeit with different optimal values of the
cylinder-to-total length ratio, α). The results for the classic BCLW
imbibition are also shown for comparison.
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(between meniscus motion at a constant rate, for touching
ends, and a meniscus that approaches the tip only asymptoti-
cally, for sticking ends). Nevertheless, the fact that the
elastocapillary rise may, in general, transition between different
effective values of n (and also that the point of contact may
itself move during motion) complicates the picture somewhat,
making this an interesting area for future research.

■ APPENDIX: OPTIMAL IMBIBITION PROBLEM
The imbibition time, given in eqs 15 and 16, may be expressed
as a functional of functions A and K

∫ λ= ≡ + − −⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠
⎤
⎦⎥T A K A K

K
Z

A Z[ , ] 4
d
d

dend
0

1
3 4

(20)

where the Lagrange multiplier λ is introduced to enforce the
relationship (eq 16) between A(Z) and K(Z).
To ensure that the function extremizing (eq 20) satisfies 0 ≤

A ≤ 1, we replace A in eq 20 with A = (1 − B2)2. The Euler−
Lagrange equation corresponding to variations in B(Z) then
gives that either B = 0 (corresponding to A(Z) = 1) or

λ = − −Z K B( )
3
4

(1 )2 14

(21)

The Euler−Lagrange equation corresponding to variations in
K(Z) then gives

λ = −
Z

B
d
d

(1 )2 6
(22)

In the case of B ≠ 0, λ may be eliminated from eq 22 using eq
21. (If B = 0, then eq 22 is merely an equation for λ.) Together
with the constraint (eq 16), we may then eliminate B in favor of
K to find that

− =⎜ ⎟⎛
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d
d
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(In deriving this result, we have neglected the possibility that 1
− B2 = 0, which corresponds to A(Z) = 0 and hence to the
maximal imbibition time.) The general solution of eq 23 may
be written K(Z) = (c1 − c2Z)

−3/(3c2), which corresponds to
A(Z) = c1 − c2Z, where c1 and c2 are constants.
Our analysis thus yields two functional forms for A(Z) that

may correspond to optimal imbibition times, A(Z) = 1 and
A(Z) = c1 − c2Z. Since A must be continuous, the optimal
solution must therefore take the piecewise linear form

α

β α
α

α
=

< <

− −
−

< <

⎧
⎨⎪
⎩⎪

A Z
Z

Z
Z

( )
1 0

1
1

1
(24)

for constants 0 ≤ α, β ≤ 1. (It is easy to check that the only
other option, connecting an initially linear section to a straight
section A(Z) = 1, does not yield a minimal value of Tend.)
Substituting this form for A(Z) back into eq 15 and minimizing
over α and β, we find that the minimum occurs for α = 1/4, β =
1. This is the optimal shape given in eq 17.
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