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Magnetic levitation in the field of a rotating dipole
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It is well known that two permanent magnets of fixed orientation will either always repel or attract one another
regardless of the distance between them. However, if one magnet is rotated at sufficient speed, a stable position at
a given equilibrium distance can exist for a second free magnet. The equilibrium is produced by magnetic forces
alone, which are strong enough to maintain a levitating state under gravity. We show that a stable levitation can be
obtained when the rotating magnet is tilted from the rotation axis, with no offset in its position. In this regime, the
levitating magnet remains centered and its spinning rate remains negligible, while its magnetic moment precesses
in synchronization with the driving magnet. We provide a physical explanation of the levitation through a model
relying on static dipolar interactions between the two magnets and present experimental results which validate
the proposed theory.
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I. INTRODUCTION

Recently a new way to obtain magnetic levitation—i.e., the
hovering of an object in the air due to magnetic forces—was
discovered: a fast rotating permanent magnet (the rotor) being
able to "lock in" another magnet (termed here the levitating
magnet) [1]. This differs from a number of other well-known
techniques allowing for magnetic levitation. For example,
electromagnetic suspension, where an active control system
using an electromagnet stabilizes a permanent magnet, can
be used with high speed machinery [2]. Another approach
is generating an opposing magnetic field either using eddy
currents in conductive materials in the case of electrodynamic
suspension (for example in the Maglev train [3]) or directly
using diamagnetic materials, or exploiting the Meissner effect
of superconductors [4]. One can also mechanically limit the
degrees of the freedom of a levitating magnet, use a rotating
magnetic quadrupole to form a magnetic Paul trap [5] or make
stabilizing use of the gyroscopic torque as in the case of the
Levitron [6–8].

The magnetic levitation by dipole rotation is simple to
observe and the experiment is easily doable by students or
amateurs but is surprisingly difficult to explain and describe
quantitatively. In 2021, Ucar published a first general de-
scription of this levitation technique [1]. His seminal article
provided an overview of the phenomenon, including a com-
pendium of experimental realizations, and laid out the main
physical ingredients to explain it. The phenomenon started
gaining interest after being exposed to the general public
[9,10] and notably one of the subjects of the International
Physicists’ Tournament 2023 consisted in investigating the
limitations of the phenomenon.

A more systematic study was recently published by Her-
mansen et al. [11]. Its authors focus experimentally on the
case of a centered rotor whose magnetic moment is normal to
the rotation axis, observing semistable states of finite lifetime.

Notably, they measure the lifetime of the levitation, describe
how it stops, and study the influence of the magnet size and
magnetization on the minimum rotation rate for levitation.
The dynamics is further explored by simulations of a model
based on the same ingredients as Ucar, which reproduce lev-
itation provided the rotor is slightly shifted off axis or tilted
and dissipation is added at least initially.

While both the works of Ucar and of Hermansen et al.
properly identify the fundamental physical mechanism be-
hind the levitation, and resort to numerical simulation of the
derived complex evolution equation for the translational and
rotational degres of freedom of the levitating magnet, neither
provides a quantitative comparison of the derived model to
experimental measurements. The goal of this paper is to pro-
vide a synthetic physical picture of the phenomenon, and to
back it using quantitative experimental evidence. We propose
a model based on physical ingredients in line with the pre-
ceding literature, valid for small tilt angles γ and θ of both
magnets with respect to an orthogonal configuration (Fig. 1)
but otherwise general, that yields scaling laws without the
need for numerical simulation. In particular we characterize
the axial equilibrium position. Confronting the scaling laws
and some analytical predictions to observations, we provide
the first quantitative comparison between experimental data
and an analytic model of the levitation. This allows us to
validate the levitation mechanism suggested by Ucar.

II. THE LEVITATION MECHANISM

A. Qualitative description and notations

The typical experimental setup needed to observe the mag-
netic levitation in the regime studied here is as follows. One
magnet (termed rotor magnet, or rotor) is fixed and rotates at a
rate ω, typically around 150 to 300 Hz, around a vertical axis
to which its magnetic moment is almost (yet not rigorously)
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FIG. 1. Left: Instantaneous picture of the experiment taken with a high speed camera. The top magnet is rotated at a rate of f =
(216 ± 2) Hz and its dipolar moment mr is inclined by an angle γ relatively to the plane of rotation (the rotation axis is vertical here).
The bottom magnet levitates at a distance r from the top magnet and its dipolar moment ml makes an angle θ with the vertical axis. For this
experiment, the top magnet is a sphere of diameter 12.7 mm and the levitating magnet is a cylinder of radius 5 mm and height 5 mm. Other
magnet shapes (sphere, cylinder, cube,...) both for rotating and levitating magnets can produce the levitation effect, as noted previously [1]
(see also Supplemental Movies S2 and S3 [12]). Right: schematics and geometrical notations for the model. The basis (i, j, k) is attached to
the rotating magnet with k aligned with the rotation axis and the magnetic moment in the (j, k) plane. The basis (I, J, K) is attached to the
levitating magnet, with I = i, and K along the magnetic moment. I‖ and I⊥ are the moments of inertia, parallel to the dipolar moment and
perpendicular, respectively.

perpendicular. The angle between the horizontal plane and the
magnetic moment of the rotor is noted γ and is a few degrees.
Below the rotor, another magnet (the levitating magnet, or
levitator) hovers midair (video S1 [12]). It is inclined through
an angle θ compared to the vertical. In this levitating regime,
both magnetic moments remain comprised in the same plane,
evidencing the synchronization between the rotation of the
rotor and the precession of the levitator. We have checked ex-
perimentally that this synchronization is respected. A picture
of the plane taken from the video, as well as a schematics, are
displayed in Fig. 1, showing that at any given instant the north
pole of the levitator points on the side of the north pole of the
rotor magnet (i.e., θ > 0).

Experimentally, the levitator remains at a fixed distance
from the rotor for several tens of seconds when no dissipation
is present, to minutes or even hours when in presence of
dissipation obtained by placing an aluminium block nearby
the levitating magnet to enhance eddy current damping. But
even the shortest lifetimes, around ten seconds, are very long
compared to one period of rotation (around 5 ms). Thus, the
levitation can be considered stable, lasting for thousands of
cycles before eventually failing. In the present work, we focus
on the existence of this stable position.

In this article, we will always consider that the dipolar
magnetic moment ml of the levitating magnet is localized at
the center of mass and aligns with a principal axis of inertia
(Fig. 1). We write I‖ the moment of inertia around this axis
and I⊥ the other two principal moments which we suppose
identical. The levitation can be realized for a variety of ratios
I⊥/I‖, as can be seen in Supplemental Movie S3 [12]. The
model applies whenever the magnetic field of the levitating
magnet is dipolar in first approximation, including nonspher-
ical magnets such as cylinders or cubes, as can be seen in
Supplemental Movie S2 [12].

For the convenience of forthcoming calculations, we de-
fine two orthonormal bases, both rotating around the vertical

(magnet-to-magnet) axis synchronously at rate ω. The basis
(i, j, k) is so that k is pointing up and the rotor magnetic
moment is in the plane spanned by (j, k). The basis (I, J, K) is
attached to the levitating magnet: K points along its magnetic
moment and principal inertial axis, inclined by an angle θ

from the vertical, and I = i.
We consider the center of the rotor to be vertically aligned

with that of the levitating magnet (i.e., no horizontal offset for
either magnets) at a distance r. Both magnetic moments turn-
ing around the vertical axis at constant rotation rate ω = 2π f
(as discussed below, as opposed to the rotor which is rotating,
the levitator precesses with often negligible spin). The rotor is
modeled as a perfect magnetic dipole of moment mr contained
in the (j, k) plane and inclined from the horizontal by a small
angle γ � 1 (Fig. 1).

B. Counteracting forces

Let us first offer a qualitative explanation for the existence
of a stable point. The reason the levitator stays at a fixed
distance to the rotor is because it is constrained there by a
repulsive and an attractive force, both of magnetic origin. In
general, these magnetic forces dominate over gravity, which is
why the levitation can be maintained even on an upside-down
configuration, as shown in previous literature [1].

The attractive force comes from the fact that the rotor is
slightly inclined, the vertical component mr · k generating a
vertical magnetic field. Given the relative orientations of the
magnets (see Fig. 2) this component of the magnetic interac-
tion is attractive and proportional to γ .

The repulsive force comes from the slight inclination of the
levitator magnetic moment (θ ), whose horizontal component
interacts with the horizontal magnetic field generated by the
rotor. Seeing that the north and south poles of both magnets
face each other (see Fig. 2), this interaction is repulsive, like
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FIG. 2. Schematics of the magnetic interactions (forces and
torques) between the rotor magnet and the levitating magnet.

the one between two parallel dipoles. Its intensity is propor-
tional to the polar angle θ .

Aside from the qualitative explanation, one can rigorously
compute the forces acting between the two dipoles. The mag-
netic field of the rotor magnet at the center of mass of the
levitating magnet reads [13]

Br(L) = μ0mr

4πr3
(cos γ j + 2 sin γ k). (1)

Thus, the magnetic force acting on the levitating magnet is

F = ∇(ml · Br(L))

= 3G

r4
((2 sin γ cos θ − sin θ cos γ )k + cos(θ − γ )j)

≈ 3G

r4
((2γ − θ )k + j) with G = μ0mrml

4π
. (2)

The direction j rotates at rate ω in the inertial laboratory
frame, so that the corresponding force component has vanish-
ing time average. The corresponding orbiting of the levitating
magnet in the plane normal to the axis is imperceptible ex-
perimentally, due to inertia at these high rotation rates. We
therefore neglect this motion in the following.

The vertical force comprises two components of opposite
directions. In our experiment γ is fixed, but we observe ex-
perimentally that the levitator tilt θ strongly varies with the
distance r between the two magnets. An equilibrium position
for the motion along the vertical axis is reached when

θ = 2γ (3)

is verified. At this stage, however, the inclination of the levita-
tor θ remains unknown, so that Eq. (3) tells us little about the
equilibrium position for the levitator. In order to predict the
equilibrium distance, one needs to understand the relationship
between the polar angle, θ , and the distance, r. We will now
show that the torque balance provides this dependency.

C. Torque balance

To study the inclination of the levitating magnet, one can
work in the frame of reference in rotation at rate ω. The
angle θ is given by the equilibrium between all the different
torques acting on the levitating magnet. The magnetic torque
� can be decomposed into two contributions. The horizontal

component of the rotor magnetic moment and the vertical
component of the levitator magnetic moment interact through
the horizontal magnetic field generated by the rotor, inducing
an inclining torque, which tends to align the levitator in the
reverse horizontal direction, so that the opposite poles of both
contribution face each other.

In contrast, the small vertical magnetic moment of the rotor
creates a vertical magnetic field, and its action on the horizon-
tal magnetic moment of the levitator creates an axis-aligning
torque, which tends to align the levitator with the rotation axis.
Since this contribution is proportional to both γ and θ , which
are chosen to be small, it is always negligible compared to the
inclining torque:

� = ml×Br(L)

= −G

r3
(cos γ cos θ + 2 sin γ sin θ ) i with G = μ0mrml

4π

≈ −G

r3
(1 + 2γ θ ) i. (4)

If this torque were static, the magnet would align with the
field on a timescale

√
I⊥/�. The observed levitator orientation

almost aligned with the rotation axis is possible only if the
torque changes orientation on a shorter timescale. The mini-
mum rotation rate should therefore scale as

√
�/I⊥. Using the

magnetic moment of the magnet used and typical levitation
distances gives a minimum rotation frequency of ∼100 Hz,
which is the correct order of magnitude.

We now need to apply the laws of mechanics of an axi-
ally symmetric rigid body rotating around a fixed point (which
are formally identical to the ones governing the movement of a
symmetric spinning top). By applying the angular momentum
theorem to the levitating magnet at point L (see Fig. 1) in the
rotating frame of reference [14], we obtain

� · K = I‖
dωs

dt
with ωs = ω cos θ + ωK , (5)

� · J = I⊥(ω̇ sin θ + 2ωθ̇ cos θ ) − I‖θ̇ωs, (6)

� · I = I⊥θ̈ + I‖ωωs sin θ − I⊥ω2 cos θ sin θ. (7)

The quantity ωs is the levitating magnet spin, i.e., the angular
rotation frequency of the magnet around its own magnetic
moment, in the laboratory frame of reference. It is accessible
experimentally for small polar angle θ and is always observed
to be considerably smaller than the rotor frequency ω. Indeed,
levitation can be obtained for a levitator with no or even
reverse spin. When unconstrained, however, the levitator will
eventually start spinning in the same direction as the rotor.
Yet, the spinning rate of the levitator remains five to ten times
smaller than that of the rotor. Note that, since we are interested
in the rapid (on the timescale of one cycle) dynamics of the
evolution of θ , we consider an inviscid situation with no dis-
sipation. Air drag, as well as dissipation due to eddy currents,
need not be taken into account on such short timescale, where
inertia and magnetic actions largely dominate. The quantity
ωK represents the speed of rotation of the magnet around its
magnetic moment in the rotating frame of reference turning
at speed ω, in which the direction of the magnetic moment is
fixed.

045003-3



GRÉGOIRE LE LAY et al. PHYSICAL REVIEW E 110, 045003 (2024)

Due to the fact that the magnetic torques cannot be colinear
to the magnetic moment of the levitator, we have

dωs

dt
= 0, (8)

so that the quantity ωs is conserved. Indeed, we always ob-
serve experimentally that ωs is constant (with ∼2 % margin)
for all the duration of an experiment. We always observe ωs

to be inferior to ω, being often negligible. It is also possible to
change this quantity using a string attached to the levitator or
a static magnet on the side of the experiment, and still observe
levitation. This justifies in the following that we neglect the
role of ωs. But in the general case we have ωs �= 0, as can be
seen in the Supplemental Movies we provide [12] (see Supple-
mental Movies S1–S3) or those from Hermansen et al. [11],
even though their model predicts ωs to be null at all times.

Multiplying Eq. (6) by sin θ gives us

dLk

dt
= 0 with Lk = I⊥ω sin2 θ + I‖ωs cos θ, (9)

which is a second conserved quantity, corresponding to the
angular momentum along the axis k. And since both ω and
ωs are unchanging, we necessarily have θ = cst. In the in-
viscid situation that we placed ourselves in, valid for the
shortest timescales, the problem is mathematically extremely
constrained and the inclination of the levitating magnet cannot
change significantly.

We can now use Eq. (7) to find the value of θ :

− G

r3
(1 + 2γ θ ) = (I‖ωωs − I⊥ω2)θ. (10)

On the left-hand term of Eq. (10), we see the magnetic torque
formed of the two contributions discussed earlier. On the
right-hand term we find the inertial torque, which comes from
the fact that we placed ourselves in the rotating frame of
reference. There are two contributions to the inertial torque.

The leftmost term consists of the gyroscopic torque, pro-
portional to the axial moment of inertia, which tends to incline
the levitator toward the vertical axis. This is the term that
governs the equilibrium of spinning tops and gyroscopes, but
here this term is not dominating as ωs is usually small. Indeed,
at first order, the levitating magnet is not properly spinning
around the vertical axis: rather its magnetic moment is pre-
cessing on a cone around the vertical axis, but a point on the
equator of the levitator hardly spins around said axis.

The last term consists of the centrifugal contribution of
the inertial torque. It is the torque generated by the addition
of all the centrifugal forces along the levitator, which is pro-
portional to the transverse moment of inertia and tends to lay
down the levitator in the horizontal plane perpendicular to the
rotation axis. Note that this torque is termed "gyroscopic" in
Ref. [11] because of formal resemblance, in the rest frame
of the levitator where it has spin −ω, thus slightly stretching
the textbook usage as a torque linked to proper spin [15–18].
We favor a distinct naming to stress an original feature of
this kind of magnetic levitation, and a fundamental difference
compared to the levitron: here the levitator is not a gyroscope,
and gyroscopic effects, if any, are destabilizing.

Using θ, γ � 1 and ωs � ω, we can keep only the dom-
inating terms of Eq. (10) to see that the value of θ is given

FIG. 3. The different torques in play. The magnetic torque is the
sum of an inclining torque, which tends to lay the magnet down
to θ = −π/2, and an axis-aligning torque, which pushes θ to 0.
Since we are in the rotating frame of reference, we see torques of
inertial origin: the gyroscopic torque which, as for a spinning top,
straightens up the magnet to the vertical, and the centrifugal torque,
i.e., the torque resulting from centrifugal forces, that tends to incline
the levitating magnet.

by a balance between the centrifugal inertial torque and the
inclining magnetic torque as illustrated in Fig. 3. We deduce
from this the dependency of θ in r:

θ ≈ G

r3

1

I⊥ω2
. (11)

At short times, the angle of inclination of the levitating magnet
thus varies as 1/r3.

D. Conclusion on the levitation mechanism

The levitation takes place because of the balance between
the attractive component of the magnetic force, which only de-
pends on the constant inclination angle of the rotor γ , and its
repulsive component, which depends on the inclination angle
of the levitator θ . According to the torque balance condition,
on short timescales we always have θ (r) ∝ 1/r3. Therefore,
we can now draw the whole physical picture, using a potential
energy diagram depicted in Fig. 4.

In this figure, the repulsive and attractive components are
represented and the resulting potential energy is plotted as a
function of the distance between the two magnets. One can
see that the energy landscape exhibits a potential well which
defines the stable position for the levitator. For completeness,
the effect of gravity was added.

When the magnets are close, the magnetic torque increases,
and to keep the equilibrium the centrifugal torque also aug-
ments, so the levitating magnet leans toward the horizontal.
This effect strongly increases the repulsive magnetic force.
When the levitating magnet is further away, the attractive
magnetic force gains importance, until an equilibrium position
is attained. The addition of gravity deforms the energy well,
and makes the situation metastable, as illustrated in Fig. 4.
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FIG. 4. Potential energy diagram as a function of the distance
between magnets r. This corresponds to the point ω = 1362 rad/s
of Fig. 8. The equilibrium position results from an equilibrium be-
tween an attractive term ∝ −1/r3 and a repulsive term ∝ θ/r3. Since
θ ∝ 1/r3, the repulsive interaction potential energy is as 1/r6. The
equilibrium position is at the minimum of the energy well, where
small oscillations can take place. When the levitator is below the
rotating magnet, gravity makes the situation metastable and beyond
a critical distance the levitator will run off to r → ∞. Note that if
the levitator is placed above the rotor, the metastability turns into a
complete stability for vertical displacements as gravity acts in the
opposite direction.

III. EXPERIMENTAL VERIFICATION

In this section, we present our experimental results and
quantitatively discuss their agreement with the model devel-
oped above.

A. Torque balance

Experiments in this subsection were conducted using as
a rotor a 12.7 mm diameter spherical magnet of remanence
(1.32 ± 0.03) T glued to an aluminum bit fitted in the chuck
of a motor tool (Dremel 4250) and spun between 12 000
and 18 000 rpm. Its magnetic moment is inclined by an an-
gle γ = (6 ± 1)◦ from the horizontal. The levitating magnet
was a cylinder-shaped magnet (5 mm height, 5 mm diameter)
weighing 746 mg with a remanence of (1.35 ± 0.02) T. Dur-
ing the initialization of the levitation we used an aluminium
block as induction damper which was removed once the levi-
tation has started.

The setup was backlit by an LED panel and a small portion
of wire of negligible weight was attached to the levitating
magnet to keep track of the rotation around its own axis. In
order to resolve all the time scales involved, videos were taken
with a high-speed camera, Chronos CR14-1.0, at a frame
rate of 8810 frames per second. The images were analyzed
using in-house Python routines in order to extract the distance
between the magnets r and the polar angle θ .

An example of the data obtained can be seen in Fig. 5. The
levitating magnet is in a bound state for more than 4 s, as it
performs small oscillations around the equilibrium position
(in a potential well similar to that of Fig. 4, a representation of
which is given in the Supplemental Material S4 [12]). One can
easily observe that the levitating distance r and the polar angle

FIG. 5. Angle of the levitating magnet and distance between the
two magnets as a function of time for one given rotor frequency. For
this recording the rotor was turning at f = (216 ± 2) Hz.

θ are highly correlated. Near the end of the recording, we see
the magnet falling vertically as r increases toward infinity.

The data allows us to validate the scaling law of
Eq. (11), arising from the equilibrium of magnetic and iner-
tial centrifugal torques in a conservative system, along with
approximations that are appropriate in our setup. The period
of the oscillations (typically 0.2 s) is much greater that than of
the imposed rotation (smaller than 5 ms), leaving enough time
for the inclination of the levitator, θ (t ) to adapt to a varying
distance r(t ).

The data in Fig. 6, in which the angle θ is plotted against
the distance r between the magnets, is in excellent agreement
with the predicted power law, even during the fall of the

FIG. 6. The inclination angle of the levitation magnet as a func-
tion of the distance between the two magnets, for a rotor frequency of
f = (216 ± 2) Hz. According to our theoretical model [Eq. (11)], we
expect a power law of exponent −3. The experimental values are well
fitted by A/r3, red solid line, where A is an adjustable parameter (see
text). The equilibrium values for the distance req and the inclination
θeq are indicated in dotted lines. By performing small oscillations,
the levitating magnet explores the potential well, while verifying the
scaling law. During the fall of the magnet, the scaling law is still
respected.
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FIG. 7. Measured value of the angle θeq at equilibrium for differ-
ent rotor angular velocities. The angle γ is such that γ = (9 ± 1)◦.
We observe that Eq. (3) holds up to experimental precision.

levitating magnet. The fitting parameter takes the value Aexp =
(2.08 ± 0.34) × 10−6 rad m3, while the predicted value us-
ing Eq. (11) is Ath = (2.32 ± 0.08) × 10−6 rad m3, which is
compatible with the experiments. We thus correctly identified
the mechanisms behind the scaling law and demonstrates the
robustness of our nondissipative approach for short times.

B. Equilibrium state: Polar angle and distance

Experiments in this subsection were performed using a
setup similar to the one presented in the previous subsec-
tion. The rotor was a 10 mm diameter spherical magnet with
remanence 1.22 T to 1.26 T. The tilt angle of the rotor was
chosen to be γ = (9 ± 1)◦ and the rotation speed was var-
ied. The resulting equilibrium distance and the equilibrium
inclination of the levitator were measured using a large block
of aluminum which serves as an inductive damper for the
oscillations reported in Fig. 5. Each data point corresponds
to an individual run which was filmed using a high-speed
camera. We used Python image analysis tools to extract the
distance between magnets as well as the polar angle θ , and
an exploitation of the spectrogram of the sound made by the
motor tool to determine the rotation frequency.

As a reminder, according to Eq. (3), the mean polar angle θ

should be independent of the frequency and is equal to twice
the rotor inclination γ . To confirm this, we used as levitating
magnet a cylindrical magnet with height 12.5 mm and diam-
eter 4 mm of remanence 1.29 T to 1.32 T. Exploiting a video
of the experiment, we measured the angle of inclination of
the levitator θ . We were limited in precision when measuring
the angle because it exhibits small variations due to vertical
oscillations. Figure 7 indeed shows that the inclination of the
levitating magnet does not depend on the rotation speed, and
remains equal to 2γ with experimental uncertainties. Again,
these results confirm the prediction of our dipolar model.

Combining Eqs. (3) and (11), one finds that the equilibrium
condition (in the no gravity limit) reads

r = 3

√
G

2 γ I⊥ ω2
∝ ω−2/3. (12)

The experimental measurements of the equilibrium dis-
tance as a function of the rotation speed are plotted in Fig. 8.

FIG. 8. Equilibrium distance r between the two magnets as a
function of the rotation speed ω. The experimental data is correctly
described by a model r = A′ω−2/3, with A′ a free parameter, which
validates the theoretical result in Eq. (12) (see text).

For these experiments, the levitating magnet was a sphere
of diameter 10 mm and remanence 1.22 T − 1.26 T. Errors
in ω correspond to the measurement of the rotation speed
from video acquisition and errors in r are determined by
the fluctuations in position during movement for one acqui-
sition. Again, the predicted ω−2/3 power law is in excellent
agreement with the data. The fitting parameter takes the value
A′

exp = (1.69 ± 0.02) m s2/3, while the predicted value using
Eq. (12) is A′

th = (1.48 ± 0.06) m s2/3. The disagreement be-
tween these two values can be explained by the simplicity of
our model, which induces systematic errors. In particular, as
the magnetic field of the magnets varies strongly at distances
less than a few radii, the assimilation of magnets to point
dipoles is a considerable approximation. Consequently, the
actions felt by the levitating magnet are not exactly the force
and torque given in Eqs. (2) and (4). Nevertheless, these two
values being close to each other and of the same order of
magnitude confirms that the model correctly encompasses the
main physical effects. Note that levitation can be obtained for
lower values of the rotation speed but as ω decreases, the role
played by gravity become increasingly preeminent.

IV. CONCLUSION/PERSPECTIVE

In this article, we have proposed a clear explanation of
the levitation phenomenon first described by Ucar [1]. Our
approach focuses on the case in which the rotor is slightly
tilted from the horizontal, which creates a two-component
magnetic interaction, leading to the existence of a stable
point. Our model is compatible with the approaches of Ucar
[1] and Hermansen et al. [11], but instead of relying on
numerical simulation of the dynamical system, we used ap-
propriate simplifications and analytic calculations to draw a
comprehensible picture of how the levitation emerges from
the interactions. Moreover, we derived simple scaling laws
that match our experimental data quantitatively.

The theory and results presented here are obtained with
working assumptions whose range of applicability needs to
be discussed and tested.

First, the scaling given by Eq. (11) is derived in the
absence of any source of dissipation. This is a reasonable

045003-6



MAGNETIC LEVITATION IN THE FIELD OF A … PHYSICAL REVIEW E 110, 045003 (2024)

assumption which holds for low rotation speeds and which
remains valid at short timescales. While it allows for the
explanation of the levitation, arguably in a more realis-
tic approach, encompassing wider timescales and studying
the destabilization mechanism and the lifetime of the phe-
nomenon, dissipation, coming either from air drag or eddy
currents heat loss, should be included as well as energy in-
jection from the rotor magnet.

In the regime presented here, as far as we can tell, the two
magnetic moments remain in the same (rotating) plane, one
magnet rotating, the other precessing. In general a lag between
the two can exist. Indeed, a phase angle between the rotor and
the levitator of (6.4 ± 5.1)◦ was observed by Hermansen et
al. [11]. Such a small phase shift has no significant impact on
our model and its conclusions, as it induces only a quadratic
correction on the magnetic torque (Appendix A). As a lag
induces axial torque (although quadratically small), it may,
however, be an important degree of freedom for the dynamics
on longer time scales and for the stability of the system.

Our model treats the two magnets as pointlike dipoles.
While it is known that spheres of uniform magnetic material
indeed create a dipolar field, the deviation from such a field
for nonspherical or unevenly magnetized levitators may come
into play when the magnets get close to one another. Note,
however, that the levitation is possible even when consid-
ering strongly nonspherical, and thus less dipolar, levitating
magnets (Supplemental Movie S2 [12]). The limitations men-
tioned above imply corrections merely of higher order, since
our model quantitatively describes the data well.

In conclusion, we provided a first quantitative experimen-
tal verification of the stabilizing mechanism for an original
magnetic levitation in a rotating dipolar field that differs
fundamentally from the spin stabilization of the levitron.
Compared to the latter which balances weight with magnetic
repulsion, trapping occurs only through magnetic interactions
which have both an attractive and a repulsive contribution. The
trapping energy in the milli-Joule range (Fig. 4 and [1]) is eas-
ily two orders of magnitude above that of the levitron, making
this levitation far easier to reproduce. Last but not least, here
dissipation helps in reaching the equilibrium position, which
is maintained as long as the second magnet is spun, while
dissipation limits the levitron’s duration and stability. There
are several interesting ways to deepen the understanding of
the phenomenon that we have not explored. We believe that
the most promising one would be to add one (or several)
degree of freedom to the small-angle model to study how
the destabilization occurs and what dynamical path it takes
to escape the potential well. It would also be interesting to
have an estimation of the lower bound of the rotor speed
allowing for levitation, which could be quantitatively com-
pared to experimental measurements such as the ones made
by Hermansen et al. [11].
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APPENDIX A: EFFECT OF LEVITATOR
PRECESSION PHASE LAG

Consistent with our experimental observations, we assume
that the levitator’s magnetic moment is contained in the same
vertical plane as the magnetic moment of the rotor. Here we
discuss the implications of a small but nonzero constant phase
shift between the horizontal components that rotate at the
same rate around the vertical. When the magnetic moment
of the rotor is aligned with −j, note ml = ml(− sin θ sin δ i −
sin θ cos δ j + cos θ k) the moment of the levitator, whose pro-
jection in the (i, j) plane lags by an angle δ behind that of the
rotor. With Eq. (1) the magnetic torque then reads

� = ml×Br(L)

= −G

r3
((cos γ cos θ + 2 sin γ sin θ cos δ) i

− 2 sin γ sin θ sin δ j + sin γ sin θ cos δ k)

≈ −G

r3
((1 + 2γ θ ) i + θδk) with G = μ0mrml

4π
.

(A1)

Compared to the torque (4), the inclining magnetic torque ∝ i
is unchanged to second order in small angles, justifying that
we neglect the phase δ. Interestingly, there is a second order
term ∝ k that tends to change δ, which may play a role in
stability and in determining the levitator spin around its axis.

APPENDIX B: LEVITATOR ORBITING AROUND
ROTATION AXIS

If we consider that the levitator is at r = −zk + δii + δ jj,
then we can compute the force acting on the levitator. Consid-
ering a small deviation from the equilibrium presented above,
we take γ , θ � 1 and also consider δi, δ j � r. Last, we place
ourselves at the equilibrium position on the vertical axis, i.e.,
we consider Eq. (3) to be valid. We then obtain, up to second
order in γ , θ, δi/r, δ j/r,

F = 3 G

r4

(
4
δ j

r
k −

(
2γ

δi

r
+ 5

δi δ j

r2

)
i

+
(

1 + 2γ
δ j

r
− δi

2

2 r2
− 11 δ j

2

2 r2

)
j
)

. (B1)

In the lateral direction, the leading term is F(0) = 3G/r4 j
which is seen on Eq. (2), all other terms being of order two.
The discussion of the stability of a very small displacement
in the lateral direction would thus necessitate a quadratic
development of all the equations previously computed and an
analysis over long time scales for which dissipation as well as
energy injection can become relevant. Note that since it only
stays in the same direction during a short time (of order 1/ω),
the transverse magnetic force F ≈ 3G/r4 j can only move the
magnet of a distance of order

δ j

r
∼ F

r m ω2
= 6 γ I⊥

m r2
≈ 6γ

(a

r

)2
� 1,

where a is the characteristic size of the levitating magnet.
Since this displacement is small, the magnet stays, to a good
approximation, on the rotation axis. As the levitator moves in
the opposite direction half a period later, this magnetic force
effectively averages at zero.
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