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We report an instability exhibited by a fluid system when coupling two distinct types of waves, both
linearly damped. While none of them is unstable on its own, they amplify one another, resulting in a
previously unreported convective instability. An external excitation is used to induce a parametric cross-
coupling between longitudinal and transverse deformations of a liquid bridge between two vertical glass
plates. Coherent amplification results in waves satisfying a synchronization condition, which selects a
precise wavelength. We derive a model for this instability using depth-averaged Navier-Stokes equations,
showing the physical origin of the coamplification, and confirm its relevance experimentally. Our findings
open new perspectives in the study of parametrically controlled pattern formation, and invites the search for
analogous parametric cross-coupling instabilities in other systems exhibiting distinct wave types, from
plasma to elastic media.
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For more than one and a half centuries, the study of
hydrodynamic instabilities has driven our understanding of
dynamical systems, and led to the development of tools to
tackle nonlinear systems with many degrees of freedom
that are used in all realms of physics and indeed all
sciences. Examples of hydrodynamic instabilities include
the laminar-to-turbulent transition [1], the Rayleigh-Plateau
instability of a liquid cylinder [2], or the Kelvin-
Helmholtz instability of the interface between fluid phases
moving relative to one another, as in wind blowing over
water giving rise to waves [3]. Understanding these
instabilities is of tremendous importance in environmental,
biological, and other natural settings, as well as in many
industrial processes, where the instability can be desirable
as in combustion or printing or deleterious as in coating [4].
This Letter reports on an original parametric instability

that should be relevant in many contexts outside hydro-
dynamics. Parametric instabilities arise from the temporal
variation of a multiplicative parameter. In hydrodynamics
(Faraday instability of an accelerated liquid [5]) or optics
(parametric amplification of optical signals [6]), this
variation usually creates a nonlinear coupling of a wave
field to itself (surface height and electric field, respectively,
in the given examples). In contrast, the instability described
here involved the coupling of two distinct wave types,
which do not interact in the absence of external forcing.
The parametric coupling of distinct modes can also occur in
plasma, e.g., Langmuir and ion acoustic waves, under the
effect of an external dipolar field [7,8]. As a multitude
of physical systems can sustain distinct wave types (e.g.,

compressive and shear waves in elastic media), we expect
that analogous nonlinear wave coupling instabilities may
occur in other very different contexts from geophysics and
acoustics to astrophysics.
Here, we subject a liquid filament, henceforth termed

“rivulet,” to homogeneous acoustic forcing, and describe a
previously unreported instability where the path followed
by the rivulet becomes sinuous, while simultaneously the
streamwise mass distribution becomes inhomogeneous. We
show that both features, although damped under normal
conditions, grow by amplifying one another through a
parametric coupling created by the acoustic forcing. When
the difference between fluid advection velocity and sinus-
oidal wave speed precisely matches the ratio of perturba-
tion wavelength and period, the coupling becomes coherent
and phase-locked, leading to reciprocal amplification. For
the sake of clarity we stress that this cross-coupling and its
parametric origin is the original finding of this Letter, and
fundamentally distinguishes the resulting instability from
the unforced, inertial meandering instability occurring
above a threshold flow rate [9,10].
Experimental setup—We inject liquid between two

vertical and parallel glass plates separated by a gap of
air of thickness b ¼ 0.6 mm, forming a Hele-Shaw cell.
The liquid (perfluorinated polyether PFPE, Galden HT135,
density ρ ¼ 1.71 g=ml, surface tension γ ¼ 17 mN=m,
kinematic viscosity ν ¼ 1 mm2=s) totally wets the glass.
The liquid forms a bridge joining the plates and falling
downward. Since the plate separation b is chosen inferior to
the capillary length, the bridge is in first approximation
bounded by semicylindrical interfaces meeting the glass
with vanishing contact angle [11].*Contact author: gregoire.le-lay@u-paris.fr
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The liquid is injected into the cell through a pipette tip
fed by a gear pump. Underneath the cell the fluid falls into a
container that is continuously weighed, allowing us to
measure the flow rate Q.
We use a camera to look at the rivulet, which is backlit

with quasicollimated light. The two regions of curved
menisci appear as dark bands on a bright background,
framing a central light band where light passes unhindered
through the bulk (Fig. 1). This allows us to record the
position of both the menisci as a function of x, from which
we define the rivulet position ζðx; tÞ as the middle of the
bright region and the rivulet width wðx; tÞ as the distance
between the two menisci. By measuring the width of the
dark regions, we are also able to know if the menisci are
still semicircular or have been deformed.
When not subject to forcing, the rivulet flows straight

vertically or exhibits spontaneous meandering depending
on whether the flow rate is inferior or superior to a critical
flow rate Q�, the origin of which has been studied
previously [10]. In both cases, the rivulet is always
observed to be of constant width. Indeed, since the
curvature of the interface in the transverse ðy; zÞ plane is
fixed by the cell spacing, the rivulet is not subjected to the
Plateau-Rayleigh instability and any variation in width is
linearly damped.
The rivulet behaves as a one-dimensional membrane

effectively splitting the cell in two regions, into which we

force air using speakers on the sides of the cell (Fig. 1)
driven by a sinusoidal signal of frequency f0 in a push-pull
configuration: when one speaker pushes air into the space
on the left of the rivulet, the other draws air on the right, and
the process is reversed half a period later. Since the acoustic
wavelength in air corresponding to the frequency used is
always larger than the cell width, the rivulet is subjected to
spatially homogeneous forcing over a region spanning
20 cm lengthwise. The neutral line around which the
rivulet oscillates can display a small shift in the z direction,
with respect to the path in the absence of forcing, over the
scale of the excited portion of the cell. This is a conse-
quence of a slight asymmetry in amplitude of the move-
ments induced by the two speakers.
Results—At leading order, the rivulet responds to the

forcing by moving sideways, i.e., along z, harmonically. At
low to moderate frequencies we observe that inertia is
negligible, that is, the rivulet displacement is in phase with
that of the loudspeaker membranes. This sideways move-
ment of the whole rivulet at the forcing frequency is always
present, as indicated by the displacement relative to the
blue dashed line in Fig. 2. In the experiments that follow,
we induced transverse displacements of 0.2–2 mm, depend-
ing on the frequency.

FIG. 1. Sketch of the experimental apparatus, not to scale. The
glass panes are 1 m high and 30 cm wide, and set b ¼ 0.6 mm
apart. The lateral boundaries are closed except for a 20 cm range,
vertically centered, where loudspeakers impose the pressure.
When viewed head on, the rivulet appears delimited by dark
bands where the curved interface refracts light away from the
optical axis.

FIG. 2. Left: snapshots of the rivulet over one forcing period
T ¼ 20 ms, for Q > Q� (Q ¼ 46� 1 mm3=s). The phase veloc-
ity vdrift of the sinuous deformation is smaller than that at which
the liquid bulges flow downstream. Note how the pattern
reproduces exactly after one period T, up to a translation. The
dashed blue line represents the position of the rivulet averaged in
time and space. The spatially averaged (over x) rivulet position
coincides with this line at t ¼ 0; T=2; T and the rivulet is off-
centered on the left at t ¼ T=4 and symmetrically on the right at
t ¼ 3T=4. Right: decomposition of the rivulet profile into the z-
wise deformation of the center line (ζ, in blue) and the width
modulation (w, in red).
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On top of this synchronous sideways movement, when
the forcing amplitude is above a certain threshold that
depends on the forcing frequency, the rivulet adopts a
sinuous trajectory with a well-defined wavelength λ that is
orders of magnitude below the acoustic wavelength.
Moreover, the width of the rivulet is also modulated with
the same spatial periodicity (Fig. 2 and movie S1 [12];
such a modulation is sometimes termed “varicose mode” in
the literature). Movie S2 shows the initial growth after the
onset of forcing, while movie S3 shows how the perturba-
tions quickly decay when the excitation is switched off.
The width modulations are advected streamwise at a

velocity only weakly depending on frequency and flow
rate, whereas the sinuous pattern is either static or drifts
slowly at a drift speed vdrift, which can be zero, positive, or
negative and that depends on the forcing frequency and the
flow rate (Fig. 3 inset).
This reorganization of the rivulet is observed for a wide

range of frequencies (10–1000 Hz). The wavelength nears
the system size at the low end of this range, and drops
below the gap size b and optical resolution at high
frequencies, indicating that the frequency range of observ-
able response could be extended even further through
appropriate modifications of the setup.
When the drift speed is zero, we observe that the rivulet

profile is exactly the same, both in lateral displacement and

width, every period T. This also holds, up to a translation in
x, when the drift speed is nonzero (Fig. 2). In other terms
the path and width modulations are phase-locked. This
suggests that the wavelength selection is given by the
relative speed of the width modulation with respect to the
path modulation: after one period, compared to the path
modulation, the width modulation has traveled exactly one
wavelength further downstream. The wavelength thus acts
as a degree of freedom that allows the rivulet to respond to
any forcing frequency (movie S1).
This is remarkably confirmed by plotting the distance

traveled by the width modulation, i.e., the wavelength λ
plus path drift distance in one period vdriftT, as a function
of the external forcing period T (Fig. 3). Assuming the
phase speed of the width modulations matches the bulk
(Darcy) flow speed u0 ¼ gb2=ð12νÞ ¼ 280� 40 mm=s,
one expects the relation λþ vdriftT ¼ u0T to hold. We find
quantitative agreement over 2 orders of magnitude with this
prediction without any adjustable parameter.
The points are slightly offset from the curve for periods

smaller than 4 ms, an effect that we attribute to the
meniscus deformation. Indeed, the semicircular shape of
the meniscus is maintained for slow rivulet movements,
but viscous dissipation changes the dynamic contact
angle on the glass significantly for faster motion. When
the rivulet is subjected to fast transverse movements, the
interface flattens where the fluid advances, while the
concavity increases where it retreats. For this reason, at
high frequencies we experimentally observe the interface to
become noncircular, with the meniscus shadows showing
time oscillating asymmetry (not shown). We thus expect
the average viscous dissipation to differ from the semi-
cylindrical meniscus case, affecting the fluid velocity and/
or the sinuous drift velocity.
The measured drift speed of the path modulation (Fig. 3

inset) shows a nontrivial behavior: for flow rates below the
spontaneous meandering threshold (Q < Q�) the sinuous
pattern is stationary for frequency below 100 Hz, and drifts
upstream at higher frequencies. For flow rates above Q�
and at low frequencies, the sinuous pattern moves down-
stream at the spontaneous meanders’ phase speed, which
we measure independently in the absence of forcing.
Discussion—In this section we propose a model for the

rivulet dynamics, based on the dominant physical ingre-
dients. We identify the mechanism for the unstable cross-
amplification of phase-locked path and width modulations.
The action of the speakers can be taken as equivalent to

that of two infinite rigid vertical walls placed symmetrically
at distance �l0 from the rest position of the straight rivulet
at ζ ¼ 0, moving horizontally so that their position relative
to the situation at rest is given by ZðtÞ ¼ Z0 cosð2πf0tÞ,
and acting like pistons on the air to the left and right of the
rivulet. From Mariotte’s law, for small displacements it
follows that the force per unit length exerted on the rivulet
is bρΠðZ − hζixÞ with Π ¼ 2P0=ðρl0Þ, where P0 is the

FIG. 3. The distance traveled over one period by the width
modulation as a function of the forcing period for two flow rates
Q, 26� 1 mm3=s and 46� 1 mm3=s, being respectively below
and above the spontaneous meandering thresholdQ�. The dashed
line is the linear function of slope u0. Inset: sinuous pattern drift
speed vdrift as a function of the forcing period.
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atmospheric pressure and hζix is the space-averaged
position of the rivulet. Thus the rivulet behavior is given by

wð∂t þ βu · ∇Þu ¼ wg − wμuþ wΓ∇ð∂xxwÞ

þ
�
Γ∂xxζ − μclu · nþ ΠðZ − hζixÞ

�
n;

ð1Þ

ð∂t þ u · ∇Þw ¼ −w∇ · u: ð2Þ

The first equation is the depth-averaged Navier-Stokes
equation integrated over the width of the rivulet w, where
u ¼ uex þ vez is the fluid velocity and n is a unit vector
normal to the rivulet path ζ. The second equation reflects
mass conservation.
The lhs of Eq. (1) represents inertia, where the numerical

prefactor β ≃ 1 accounts for the velocity’s y profile.
Henceforth, following [10], we take β ¼ 1 to simplify
the equations without losing physical relevance. The terms
on the right represent, in this order, gravity, viscous friction
internal to the rivulet following from Darcy’s law with
μ ¼ 12ν=b2, streamwise Laplace pressure gradient inside
the rivulet due to width variations and forces normal to the
rivulet center line. Note that the streamwise Laplace
pressure gradient tends to regularize width variations,
unlike in the Rayleigh-Plateau instability of cylindrical
filaments.
The last term includes three contributions of normal

forces. Surface tension γ tends to straighten the rivulet, with
∂xxζ being the curvature of the rivulet in the ðx; zÞ plane and
Γ ¼ πγ=ð2ρÞ [11]. The second term makes for contact line
friction, accounting for the high dissipation at the meniscus
edges when the rivulet slides transversally on thin films
of thickness h ≪ b on the plates outside the rivulet:
μcl ≈ bμ

ffiffiffiffiffiffiffiffi
b=h

p
([10], to be published), with h ¼ 3 μm

for Q ¼ 46� 1 mm3=s. The last term is the acoustic
pressure discussed above.
The base solution is a straight rivulet of constant width

w0, located at z ¼ ζ0ðtÞ with velocity u ¼ ½u0 ¼ g=μ;
v0 ¼ ∂tζ0ðtÞ�. The rivulet rest width w0 in the experimental
results presented here was measured to be 0.22� 0.04 mm
for Q ¼ 26� 1 mm3=s and 0.33� 0.04 mm for Q ¼
46� 1 mm3=s. To understand the mechanism leading to
the instability we consider a weak perturbation of this
straight rivulet with u¼u0þϵu1ðx;tÞ, w¼w0þϵw1ðx;tÞ,
and ζ ¼ ζ0ðtÞ þ ϵζ1ðx; tÞ. The transverse speed is
v ¼ ð∂t þ u · ∇Þζ. The Navier-Stokes Eq. (1) projected
on ez gives at order 0

w0ð∂t þ μÞ∂tζ0 ¼ −μcl∂tζ0 þ ΠðZ − ζ0Þ≕w0FðtÞ: ð3Þ

This equation describes the back and forth membranelike
movement of the rivulet. It is linear in the forcing
amplitude, and indeed the experimental space-averaged

rivulet position ζ0 is always well fitted by a sine function
of time.
At order 1 the same projection yields an equation

governing the fluid path ζ,

½w0ð∂t þ u0∂xÞð∂t þ u0∂x þ μÞ − Γ∂xx þ μcl∂t�ζ1 ¼ −Fw1;

ð4Þ

which corresponds to Eq. (4) from [10] with an extra
forcing term on the rhs. This term couples the purely time-
dependent forcing F and the width w, which is advected at
speed u0. It is destabilizing and causes width modulations
in conjunction with acoustic forcing to amplify path
perturbations.
By projecting Eq. (1) on ex, we obtain at first order in ϵ

the evolution equation for the width w,

½ð∂t þ u0∂xÞð∂t þ u0∂x þ μÞ þ w0Γ∂xxxx�w1 ¼ w0F∂xxζ1:

ð5Þ

The right-hand term can be understood as a stretching or
compression of curved rivulet segments by the pressure
difference across the rivulet. This term implies that the
growth of width perturbations is a consequence of path
modulations combined with acoustic forcing.
An interesting property of Eqs. (4) and (5) is that the

destabilizing rhs does not contain the quantity differenti-
ated on the lhs. In other words neither the sinuosity ζ1 nor
the width variations w1 are directly amplified by the
excitation forcing, but rather the acoustic forcing allows
mutual growth by cross-coupling the two modes. While a
coupling between sinuous and width variation modes is not
unusual and is found for example in jets [13,14], usually
both modes are intrinsically unstable, can exist on their
own, and compete against each other. Here, sinuous and
width perturbations are linearly damped when considered
independently, i.e., in the absence of forcing-induced
coupling. They grow only by sustaining one another
through parametric coupling.
We can find experimental confirmation of this mecha-

nism by looking at the spatiotemporal Fourier transform of
the position and width of the rivulet. Using image analysis
tools, we extract from the video the width and the position
of the rivulet as a function of time and the x coordinate
(Fig. 2 right, Figs. SF2 and SF3). In Fig. 4 and Fig. S1 we
represent the logarithm of the power spectrum of ζ and w in
the reciprocal space ðq; fÞ. Zones of high intensity are
organized in localized spots because of the quasiperiodicity
of the pattern. For nonzero wave numbers, the more intense
harmonics are at positive frequencies, corresponding to
positive speed (downward displacement).
More can be said from Fig. 4 and Fig. S1 on the

spatiotemporal behavior of the rivulet. For instance, note
how for q ¼ 0, the displacement spectrum ζ̂ has peaks (blue
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patches) at�f0 but not at�nf0 with n > 1: this reflects the
fact that the space-averaged response of the rivulet is linear
and the global movement of the filet ζ0ðtÞ is sinusoidal in
time, in accordance with Eq. (3).
More importantly, the patches of highest power in ŵ

(red) lie on a line whose slope is the speed of the width
modulations. The relevance of the mutual amplification
mechanism described above is supported by the fact that on
a given vertical line the high-signal regions alternate
between ŵ (red) and ζ̂ (blue), the gap between two
consecutive spots being the forcing frequency f0. This
shows that both modes are coupled by a function oscillating
at f0, and that no mode is unstable on its own (or we would
see all its time harmonics). Finally the localization of the
spectrum at discrete wave numbers is also explained by our
model, positive feedback, and mutual amplification of
longitudinal and transverse waves requiring the resonance
condition u0q ¼ vdriftqþ nf0 to be met.
Conclusion and perspectives—Under the effect of a

spatially uniform forcing, a homogeneous membrane or
string is expected to respond by homogeneous transverse
translation. Remarkably, the liquid rivulet studied in this
Letter develops a pattern with a well-defined wavelength
combining transverse deformations of the flow path and
longitudinal modulations of the local cross section.
It is far from obvious that the added degree of freedom

with respect to a string, namely the possibility to

redistribute mass along the rivulet, should lead to an
instability. Indeed both modes growing simultaneously,
sinuosity and width variations, are linearly damped, and
they amplify one another only when coupled by the forcing.
This contrasts with vibrated soap films and strings loaded
with beads, where mass redistribution merely causes the
broadening of resonances [15,16].
Interestingly, although the acoustic forcing is additive,

the effective forcing felt by the sinuosity and width
variations is multiplicative. Formally this parametric
cross-coupling is reminiscent of the way standing waves
in the annular Faraday instability can be seen as arising
through the coupling of counterpropagating waves [5]. The
resonance condition to the amplification indicates a pos-
sible connection with the energy transfer due to resonant
three-wave interaction in the case of stratified or homo-
geneous free-surface flows over a nonflat bottom [17,18].
The selection of the pattern drift speed is an open

problem. We attributed modifications of the width advec-
tion speed at high frequencies to asymmetric deformations
of the rivulet cross section. The study of these deforma-
tions, which can lead to rivulet breaking, could open the
perspective of investigating the problem of the behavior of
an air-fluid interface in a Hele-Shaw cell in the oscillating
regime where inertial effects can be as important as
capillary ones [19]. The forced rivulet also allows the
coupling and simultaneous study of both the retreating and
advancing menisci.
As an experimental investigation of a previously unre-

ported instability, validated by theoretical modeling that
identifies the mechanism as a new type of parametric
coupling, this Letter opens exciting perspectives for new
research and applications. The generation of wavelengths
that are orders of magnitude smaller than the acoustic
wavelength of the forcing could be exploited for controlled
liquid fragmentation, mixing, and micromanufacturing. We
also expect fundamental research on dynamical wetting to
take advantage of the broad frequency response, that can
for instance be used to probe timescales relevant in
surfactant diffusion, adsorption, and desorption dynamics.
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